Section 4-8
The Remainder and Factor
Theorem
Essential Questions
• How do you evaluate functions using
synthetic division?

• How do you determine whether a binomial is a
factor of a polynomial by using synthetic
division?
Vocabulary
1. Synthetic Substitution:
2. Depressed Polynomial:
Vocabulary
1. Synthetic Substitution: Using synthetic division
to determine the solution to evaluating a
function
2. Depressed Polynomial:
Vocabulary
1. Synthetic Substitution: Using synthetic division
to determine the solution to evaluating a
function
2. Depressed Polynomial: A polynomial that is
generally unhappy
Vocabulary
1. Synthetic Substitution: Using synthetic division
to determine the solution to evaluating a
function
2. Depressed Polynomial: A polynomial that is one
degree less than the original polynomial
Remainder Theorem
Remainder Theorem
If a polynomial P(x) is divided by x − r, the
remainder is a constant P(r)
P(x ) = Q(x )i(x − r )+P(r )
where Q(x) is a polynomial with degree one less
than P(x) and P(r) is the evaluated polynomial
Factor Theorem
Factor Theorem
The binomial x − r is a factor of the polynomial
P(x) IFF P(r) =0
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
410
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
410
2460
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
410
2460
2453
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
410
2460
2453
Example 1
f (x ) = 2x 4
− 5x 2
+ 8x − 7
Use synthetic substitution to find f(6) if
2 0 −5 8 −76
2
12
12
72
67
402
410
2460
2453
f (6) = 2453
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
The number of college students from the United
States who study abroad can be modeled by
the function below, where x is the number of
years since 1993 and S(x) is the number of
students in thousands. Find the number of
college students from the US that will study
abroad in 2030.
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
The number of college students from the United
States who study abroad can be modeled by
the function below, where x is the number of
years since 1993 and S(x) is the number of
students in thousands. Find the number of
college students from the US that will study
abroad in 2030.
x = 2030 −1993
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
The number of college students from the United
States who study abroad can be modeled by
the function below, where x is the number of
years since 1993 and S(x) is the number of
students in thousands. Find the number of
college students from the US that will study
abroad in 2030.
x = 2030 −1993
x = 37
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
16741.6
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
16741.6
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
16741.6
16741.6 i1000
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
16741.6
16741.6 i1000
16741600
Example 2
S(x ) = 0.02x 4
− 0.52x 3
+ 4.03x 2
+ 0.09x + 77.54
0.02 −0.52 4.03 0.09 77.5437
0.02
0.74
0.22
8.14
12.17
450.29
450.38
16664.06
16741.6
16741.6 i1000
16741600
There will be 16,741,600 students studying
abroad in 2030.
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
18
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
18
0
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
18
0
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
18
0
(x − 3)(x 2
+ 7x + 6)
Example 3
x 3
+ 4x 2
−15x −18
Determine whether x − 3 is a factor of the
polynomial below. Then find the remaining
factors of the polynomial.
1 4 −15 −183
1
3
7
21
6
18
0
(x − 3)(x 2
+ 7x + 6)
(x − 3)(x + 6)(x +1)

Algebra 2 Section 4-8

  • 1.
    Section 4-8 The Remainderand Factor Theorem
  • 2.
    Essential Questions • Howdo you evaluate functions using synthetic division? • How do you determine whether a binomial is a factor of a polynomial by using synthetic division?
  • 3.
  • 4.
    Vocabulary 1. Synthetic Substitution:Using synthetic division to determine the solution to evaluating a function 2. Depressed Polynomial:
  • 5.
    Vocabulary 1. Synthetic Substitution:Using synthetic division to determine the solution to evaluating a function 2. Depressed Polynomial: A polynomial that is generally unhappy
  • 6.
    Vocabulary 1. Synthetic Substitution:Using synthetic division to determine the solution to evaluating a function 2. Depressed Polynomial: A polynomial that is one degree less than the original polynomial
  • 7.
  • 8.
    Remainder Theorem If apolynomial P(x) is divided by x − r, the remainder is a constant P(r) P(x ) = Q(x )i(x − r )+P(r ) where Q(x) is a polynomial with degree one less than P(x) and P(r) is the evaluated polynomial
  • 9.
  • 10.
    Factor Theorem The binomialx − r is a factor of the polynomial P(x) IFF P(r) =0
  • 11.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if
  • 12.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76
  • 13.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2
  • 14.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12
  • 15.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12
  • 16.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72
  • 17.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67
  • 18.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402
  • 19.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402 410
  • 20.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402 410 2460
  • 21.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402 410 2460 2453
  • 22.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402 410 2460 2453
  • 23.
    Example 1 f (x) = 2x 4 − 5x 2 + 8x − 7 Use synthetic substitution to find f(6) if 2 0 −5 8 −76 2 12 12 72 67 402 410 2460 2453 f (6) = 2453
  • 24.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 The number of college students from the United States who study abroad can be modeled by the function below, where x is the number of years since 1993 and S(x) is the number of students in thousands. Find the number of college students from the US that will study abroad in 2030.
  • 25.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 The number of college students from the United States who study abroad can be modeled by the function below, where x is the number of years since 1993 and S(x) is the number of students in thousands. Find the number of college students from the US that will study abroad in 2030. x = 2030 −1993
  • 26.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 The number of college students from the United States who study abroad can be modeled by the function below, where x is the number of years since 1993 and S(x) is the number of students in thousands. Find the number of college students from the US that will study abroad in 2030. x = 2030 −1993 x = 37
  • 27.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54
  • 28.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437
  • 29.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02
  • 30.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74
  • 31.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22
  • 32.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14
  • 33.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17
  • 34.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29
  • 35.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38
  • 36.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06
  • 37.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06 16741.6
  • 38.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06 16741.6
  • 39.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06 16741.6 16741.6 i1000
  • 40.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06 16741.6 16741.6 i1000 16741600
  • 41.
    Example 2 S(x )= 0.02x 4 − 0.52x 3 + 4.03x 2 + 0.09x + 77.54 0.02 −0.52 4.03 0.09 77.5437 0.02 0.74 0.22 8.14 12.17 450.29 450.38 16664.06 16741.6 16741.6 i1000 16741600 There will be 16,741,600 students studying abroad in 2030.
  • 42.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial.
  • 43.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183
  • 44.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1
  • 45.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3
  • 46.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7
  • 47.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21
  • 48.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6
  • 49.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6 18
  • 50.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6 18 0
  • 51.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6 18 0
  • 52.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6 18 0 (x − 3)(x 2 + 7x + 6)
  • 53.
    Example 3 x 3 +4x 2 −15x −18 Determine whether x − 3 is a factor of the polynomial below. Then find the remaining factors of the polynomial. 1 4 −15 −183 1 3 7 21 6 18 0 (x − 3)(x 2 + 7x + 6) (x − 3)(x + 6)(x +1)