SlideShare a Scribd company logo
IMPACT OF FREE JETS
(OPEN CHANNEL FLOW AND HYDRAULIC
MACHINERY)
UNIT – III
Dr. Rambabu Palaka, Assistant ProfessorBVRIT
Pelton Wheel
Vane or Bucket
Topics
1. Impulse-Momentum Principle
2. Hydrodynamic Force of Jets
3. Work done and Efficiency
4. Angular Momentum Principle
5. Applications to Radial Flow Turbines
6. Layout of Hydropower Installation
7. Heads and Efficiencies
Introduction
Analysis and Design of Hydraulic Machines (Turbines and
Pumps) is essentially based on the knowledge of forces
exerted on or by the moving fluids.
Learning Objective:
Evaluation of force, both in magnitude and direction, by free
jets (constant pressure throughout) when they impinge upon
stationary or moving objects such as flat plates and vanes of
different shapes and orientation.
Force exerted by the jet on a stationary plate
Impact of Jets
The jet is a stream of liquid comes out from nozzle with a high velocity under
constant pressure. When the jet impinges on plates or vanes, its momentum is
changed and a hydrodynamic force is exerted. Vane is a flat or curved plate fixed
to the rim of the wheel
1. Force exerted by the jet on a stationary plate
a) Plate is vertical to the jet
b) Plate is inclined to the jet
c) Plate is curved
2. Force exerted by the jet on a moving plate
a) Plate is vertical to the jet
b) Plate is inclined to the jet
c) Plate is curved
Impulse-Momentum Principle
From Newton's 2nd Law:
F = m a = m (V1- V2) / t
Impulse of a force is given by the change in momentum caused by the force
on the body.
Ft = mV1 – mV2 = Initial Momentum – Final Momentum
Force exerted by jet on the plate in the direction of jet, F = m (V1 – V2) / t
= (Mass / Time) (Initial Velocity – Final Velocity)
= (ρQ) (V1 – V2) = (ρaV) (V1 – V2)
Force exerted by the jet on a stationary plate
Plate is vertical to the jet
F = aV2
If Plate is moving at a velocity of ‘U’ m/s,
F = a(V-U)2
Problems:
1. A jet of water 50 mm diameter strikes a flat plate held normal to the direction of jet.
Estimate the force exerted and work done by the jet if
a. The plate is stationary
b. The plate is moving with a velocity of 1 m/s away from the jet along the line of jet.
The discharge through the nozzle is 76 lps.
2. A jet of water 50 mm diameter exerts a force of 3 kN on a flat vane held
perpendicular to the direction of jet. Find the mass flow rate.
Force exerted by the jet on a stationary plate
Plate is inclined to the jet
FN = aV2 sin 
Fx = FN sin 
Fx = FN cos 
Force exerted by the jet on a moving plate
Plate is inclined to the jet
FN = a(V-U)2 sin

Fx = FN sin 
F = F cos 
Problems:
1. A jet of data 75 mm diameter has a velocity of 30 m/s. It strikes a flat plate inclined
at 450 to the axis of jet. Find the force on the plate when.
a. The plate is stationary
b. The plate is moving with a velocity of 15 m/s along and away from the jet.
Also find power and efficiency in case (b)
2. A 75 mm diameter jet having a velocity of 12 m/s impinges a smooth flat plate, the
normal of which is inclined at 600 to the axis of jet. Find the impact of jet on the plate
at right angles to the plate when the plate is stationery.
a. What will be the impact if the plate moves with a velocity of 6 m/s in the direction
of jet and away from it.
b. What will be the force if the plate moves towards the plate.
Force exerted by the jet on a stationary plate
Plate is Curved and Jet strikes at Centre
F = aV2 (1+ cos )
Force exerted by the jet on a moving plate
Plate is Curved and Jet strikes at Centre
F = a(V-U)2 (1+ cos )
Problems:
1. A jet of water of diameter 50 mm strikes a stationary, symmetrical curved plate
with a velocity of 40 m/s. Find the force extended by the jet at the centre of plate
along its axis if the jet is deflected through 1200 at the outlet of the curved plate
2. A jet of water from a nozzle is deflected through 600 from its direction by a curved
plate to which water enters tangentially without shock with a velocity of 30m/s
and leaver with a velocity of 25 m/s. If the discharge from the nozzle is 0.8 kg/s,
calculate the magnitude and direction of resultant force on the vane.
Force exerted by the jet on a stationary plate
(Symmetrical Plate)
Plate is Curved and Jet strikes at tip
Fx = 2aV2 cos 
Force exerted by the jet on a stationary plate
(Unsymmetrical Plate)
Plate is Curved and Jet strikes at tip
Fx = aV2 (cos  + cos )
Problems:
1. A jet of water strikes a stationery curved plate tangentially at one end at an angle
of 300 . The jet of 75 mm diameter has a velocity of 30 m/s. The jet leaves at the
other end at angle of 200 to the horizontal. Determine the magnitude of force exerted
along ‘x’ and ‘y’ directions.
Force exerted by the jet on a moving plate
Considering Relative Velocity,
Fx = aVr1 (Vr1 cos  + Vr2 cos )
Fx = aVr1 (VW1 + VW2)
OR
If  < 900
Force exerted by the jet on a moving plate
If  = 900
Considering Relative Velocity,
Fx = aVr1 (Vr1 cos  – Vr2 cos )
OR
Fx = aVr1 (VW1)
Force exerted by the jet on a moving plate
If  = 900
Considering Relative Velocity,
Fx = aVr1 (Vr1 cos  – Vr2 cos )
OR
Fx = aVr1 (VW1 – VW2)
Impact of jet on a series of flat vanes mounted radially on the periphery of a
circular wheel
F = aV (V-
U)
Impact of jet on a series of flat vanes mounted radially on the periphery of a
circular wheel
F = aV (V-U) (1+ cos )
Problems:
1. A jet of water of diameter 75 mm strikes a curved plate at its centre with a velocity
of 25 m/s. The curved plate is moving with a velocity of 10 m/s along the direction of
jet. If the jet gets deflected through 1650 in the smooth vane, compute.
a) Force exerted by the jet.
b) Power of jet.
c) Efficiency of jet.
2. A jet of water impinges a curved plate with a velocity of 20 m/s making an angle of
200 with the direction of motion of vane at inlet and leaves at 1300 to the direction of
motion at outlet. The vane is moving with a velocity of 10 m/s. Compute.
i) Vane angles, so that water enters and leaves without shock.
ii) Work done per unit mass flow rate
Force exerted by the jet on a moving plate (PELTON WHEEL)
Considering Relative Velocity,
Fx = aVr1 (Vr1 – Vr2 cos )
OR
Fx = aVr1 (VW1 – VW2)
Work done / sec = F.U
Power = F. U
F.U
½ mV2
Efficiency =
Problems:
1. A jet of water having a velocity of 35 m/s strikes a series of radial curved vanes
mounted on a wheel. The wheel has 200 rpm. The jet makes 200 with the tangent to
wheel at inlet and leaves the wheel with a velocity of 5 m/s at 1300 to tangent to the
wheel at outlet. The diameters of wheel are 1 m and 0.5 m. Find
i) Vane angles at inlet and outlet for radially outward flow turbine.
ii) Work done
iii) Efficiency of the system
Applications to Radial Flow Turbines
If  = 900
Considering Angular Momentum Principle,
Torque (T) = Rate of Change of Angular
Momentum
P = Q (VW1 U1)
If  > 900
P = Q (VW1 U1 + VW2 U2)
T = Q (VW1 R1 - VW1 R2)
VW1 = Vr1 cos  VW2 = Vr1 cos &
P = T.
Power (P) = Torque x Angular
Velocity
If  < 900
P = Q (VW1 U1– VW2 U2)
P = Q [VW1 (R1. ) – VW2 (R2. ))
Layout of Hydropower Installation
Hg = Gross Head
hf = Head Loss due to Friction
=
Where
V = Velocity of Flow in
Penstock
L = Length of Penstock
D = Dia. of Penstock
H = Net Head
= Hg- hf
Efficiencies of Turbine
1. Hydraulic Efficiency
2. Mechanical Efficiency
3. Volumetric Efficiency
4. Overall Efficiency
Reference
Chapter 17 & 18
A Textbook of Fluid Mechanics and
Hydraulic Machines
Dr. R. K. Bansal
Laxmi Publications

More Related Content

What's hot

Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
vaibhav tailor
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
Deepak Agarwal
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
Mohsin Siddique
 
Stability of Submerged Bodies in Fluid
Stability of Submerged Bodies in FluidStability of Submerged Bodies in Fluid
Stability of Submerged Bodies in Fluid
Ankit Singhal
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
KESHAV
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
Urvish Patel
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
Yuri Melliza
 
Nozzle and diffuser
Nozzle and diffuserNozzle and diffuser
Nozzle and diffuser
Avinash Navin
 
impact of jets on the moving plate
impact of jets on the moving plateimpact of jets on the moving plate
impact of jets on the moving plate
rujan timsina
 
PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)
KHORASIYA DEVANSU
 
Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbines
Malla Reddy University
 
Hydraulic ram
Hydraulic ramHydraulic ram
Hydraulic ram
Subhash kumar
 
Turbine and pump.pptx
Turbine and pump.pptxTurbine and pump.pptx
Turbine and pump.pptx
MdToukirShah
 
Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
sushma chinta
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
Mohsin Siddique
 
Mechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jetsMechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jets
Himanshu Vasistha
 
Bending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth JebarajBending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth Jebaraj
Vinoth Jebaraj A
 
120218 chapter 8 momentum analysis of flow
120218 chapter 8 momentum analysis of flow120218 chapter 8 momentum analysis of flow
120218 chapter 8 momentum analysis of flow
Binu Karki
 

What's hot (20)

Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
 
Stability of Submerged Bodies in Fluid
Stability of Submerged Bodies in FluidStability of Submerged Bodies in Fluid
Stability of Submerged Bodies in Fluid
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
Nozzle and diffuser
Nozzle and diffuserNozzle and diffuser
Nozzle and diffuser
 
impact of jets on the moving plate
impact of jets on the moving plateimpact of jets on the moving plate
impact of jets on the moving plate
 
PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)
 
Chap 03
Chap 03Chap 03
Chap 03
 
Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbines
 
Hydraulic ram
Hydraulic ramHydraulic ram
Hydraulic ram
 
Turbine and pump.pptx
Turbine and pump.pptxTurbine and pump.pptx
Turbine and pump.pptx
 
Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Mechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jetsMechanical Engineering-Fluid mechanics-impact of jets
Mechanical Engineering-Fluid mechanics-impact of jets
 
Bending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth JebarajBending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth Jebaraj
 
120218 chapter 8 momentum analysis of flow
120218 chapter 8 momentum analysis of flow120218 chapter 8 momentum analysis of flow
120218 chapter 8 momentum analysis of flow
 

Viewers also liked

Impact of jet on a fixed curved plate
Impact of jet on a fixed curved plateImpact of jet on a fixed curved plate
Impact of jet on a fixed curved plate
Pavan Narkhede
 
Fluid machinery ppt
Fluid machinery pptFluid machinery ppt
Fluid machinery ppt
mahesh kumar
 
Chapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applicationsChapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applications
ZackRule
 
Hydraulic turbine
Hydraulic  turbineHydraulic  turbine
Hydraulic turbine
Jay Patel
 
Experiment no 7 fluid mechanics lab
Experiment no 7 fluid mechanics lab Experiment no 7 fluid mechanics lab
Experiment no 7 fluid mechanics lab
Tanveer Hussain
 
Centrifugal Pumps
Centrifugal PumpsCentrifugal Pumps
Centrifugal Pumps
Malla Reddy University
 
Ppt of turbine
Ppt of turbinePpt of turbine
Ppt of turbine
Rajeev Mandal
 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
Mohsin Siddique
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier application
daudsangeenkhan
 
Fluid machines turbines
Fluid machines turbinesFluid machines turbines
Fluid machines turbines
Nisarg Shah
 
PELTON WHEEL TURBINE
PELTON WHEEL TURBINEPELTON WHEEL TURBINE
PELTON WHEEL TURBINEgyan singh
 
Hydraulic turbines
Hydraulic turbinesHydraulic turbines
Hydraulic turbines
Nikhilesh Mane
 
Hydraulic turbines
Hydraulic turbinesHydraulic turbines
Hydraulic turbinesDr. Ramesh B
 
Data collection
Data collectionData collection
Data collection
Malla Reddy University
 
Open Channel Flow
Open Channel FlowOpen Channel Flow
Open Channel Flow
Malla Reddy University
 
6 Centrifugal Pump Parts & Their Functions
6 Centrifugal Pump Parts & Their Functions6 Centrifugal Pump Parts & Their Functions
6 Centrifugal Pump Parts & Their Functions
Sher Thapa
 
FLUID
FLUIDFLUID
Impulse (turgo and pelton) turbine performance characteristics and their impa...
Impulse (turgo and pelton) turbine performance characteristics and their impa...Impulse (turgo and pelton) turbine performance characteristics and their impa...
Impulse (turgo and pelton) turbine performance characteristics and their impa...
Bilawal Ahmed
 
Hydraulic pumps
Hydraulic pumpsHydraulic pumps
Hydraulic pumps
Ashish Khudaiwala
 

Viewers also liked (20)

Impact of jet on a fixed curved plate
Impact of jet on a fixed curved plateImpact of jet on a fixed curved plate
Impact of jet on a fixed curved plate
 
Fluid machinery ppt
Fluid machinery pptFluid machinery ppt
Fluid machinery ppt
 
Chapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applicationsChapter 5 -momentum_equation_and_its_applications
Chapter 5 -momentum_equation_and_its_applications
 
Hydraulic turbine
Hydraulic  turbineHydraulic  turbine
Hydraulic turbine
 
Experiment no 7 fluid mechanics lab
Experiment no 7 fluid mechanics lab Experiment no 7 fluid mechanics lab
Experiment no 7 fluid mechanics lab
 
Centrifugal Pumps
Centrifugal PumpsCentrifugal Pumps
Centrifugal Pumps
 
Ppt of turbine
Ppt of turbinePpt of turbine
Ppt of turbine
 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier application
 
Fluid machines turbines
Fluid machines turbinesFluid machines turbines
Fluid machines turbines
 
PELTON WHEEL TURBINE
PELTON WHEEL TURBINEPELTON WHEEL TURBINE
PELTON WHEEL TURBINE
 
Hydraulic turbines
Hydraulic turbinesHydraulic turbines
Hydraulic turbines
 
Hydraulic turbines
Hydraulic turbinesHydraulic turbines
Hydraulic turbines
 
Data collection
Data collectionData collection
Data collection
 
Open Channel Flow
Open Channel FlowOpen Channel Flow
Open Channel Flow
 
6 Centrifugal Pump Parts & Their Functions
6 Centrifugal Pump Parts & Their Functions6 Centrifugal Pump Parts & Their Functions
6 Centrifugal Pump Parts & Their Functions
 
JET impact
JET impactJET impact
JET impact
 
FLUID
FLUIDFLUID
FLUID
 
Impulse (turgo and pelton) turbine performance characteristics and their impa...
Impulse (turgo and pelton) turbine performance characteristics and their impa...Impulse (turgo and pelton) turbine performance characteristics and their impa...
Impulse (turgo and pelton) turbine performance characteristics and their impa...
 
Hydraulic pumps
Hydraulic pumpsHydraulic pumps
Hydraulic pumps
 

Similar to Impact of Free Jets

Applied Hydraulics Module 3 Impact of Jets
Applied Hydraulics Module 3 Impact of JetsApplied Hydraulics Module 3 Impact of Jets
Applied Hydraulics Module 3 Impact of Jets
nirannjan344
 
Force on Plate when Vane is moving in direction of jet | Fluid Power Engineering
Force on Plate when Vane is moving in direction of jet | Fluid Power EngineeringForce on Plate when Vane is moving in direction of jet | Fluid Power Engineering
Force on Plate when Vane is moving in direction of jet | Fluid Power Engineering
Harsh Lakhara
 
Ppt unit 3 4 thm
Ppt unit 3 4 thmPpt unit 3 4 thm
Ppt unit 3 4 thm
MD ATEEQUE KHAN
 
Force exerted by a jet on moving plates copy
Force exerted by a jet on moving plates   copyForce exerted by a jet on moving plates   copy
Force exerted by a jet on moving plates copy
Amitkumar7087
 
Mid year Exam post graduate 2018.docx
Mid year Exam post graduate  2018.docxMid year Exam post graduate  2018.docx
Mid year Exam post graduate 2018.docx
Dr. Ezzat Elsayed Gomaa
 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
Keith Vaugh
 
impact of jet on curved plate
impact of jet on curved plateimpact of jet on curved plate
impact of jet on curved plate
Rathod Mehul
 
Impact of jets
Impact of jetsImpact of jets
Impact of jets
Adhil Fuad Fuad
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
Devendra Raut
 
Q922+de1+l04 v1
Q922+de1+l04 v1Q922+de1+l04 v1
Q922+de1+l04 v1AFATous
 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse Turbine
Showhanur Rahman
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
theijes
 
Centripetalforce (1)
Centripetalforce (1)Centripetalforce (1)
Centripetalforce (1)
Antony santhanraj
 
DC machine.ppt
DC machine.pptDC machine.ppt
DC machine.ppt
LAYTH3
 
Q921 de1 lec 4 v1
Q921 de1 lec 4 v1Q921 de1 lec 4 v1
Q921 de1 lec 4 v1AFATous
 
Turbomachine Module02.pptx
Turbomachine Module02.pptxTurbomachine Module02.pptx
Turbomachine Module02.pptx
VinothKumarG25
 
Examples in fluid mechanics
Examples in fluid mechanicsExamples in fluid mechanics
Examples in fluid mechanics
Dr. Ezzat Elsayed Gomaa
 
circular motion Mechanics
circular motion Mechanicscircular motion Mechanics
circular motion Mechanics
nethmina1
 
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
João Baltazar
 
Magnetorheological fluid
Magnetorheological fluid Magnetorheological fluid
Magnetorheological fluid
IqbalMohammed8
 

Similar to Impact of Free Jets (20)

Applied Hydraulics Module 3 Impact of Jets
Applied Hydraulics Module 3 Impact of JetsApplied Hydraulics Module 3 Impact of Jets
Applied Hydraulics Module 3 Impact of Jets
 
Force on Plate when Vane is moving in direction of jet | Fluid Power Engineering
Force on Plate when Vane is moving in direction of jet | Fluid Power EngineeringForce on Plate when Vane is moving in direction of jet | Fluid Power Engineering
Force on Plate when Vane is moving in direction of jet | Fluid Power Engineering
 
Ppt unit 3 4 thm
Ppt unit 3 4 thmPpt unit 3 4 thm
Ppt unit 3 4 thm
 
Force exerted by a jet on moving plates copy
Force exerted by a jet on moving plates   copyForce exerted by a jet on moving plates   copy
Force exerted by a jet on moving plates copy
 
Mid year Exam post graduate 2018.docx
Mid year Exam post graduate  2018.docxMid year Exam post graduate  2018.docx
Mid year Exam post graduate 2018.docx
 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
 
impact of jet on curved plate
impact of jet on curved plateimpact of jet on curved plate
impact of jet on curved plate
 
Impact of jets
Impact of jetsImpact of jets
Impact of jets
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
 
Q922+de1+l04 v1
Q922+de1+l04 v1Q922+de1+l04 v1
Q922+de1+l04 v1
 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse Turbine
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Centripetalforce (1)
Centripetalforce (1)Centripetalforce (1)
Centripetalforce (1)
 
DC machine.ppt
DC machine.pptDC machine.ppt
DC machine.ppt
 
Q921 de1 lec 4 v1
Q921 de1 lec 4 v1Q921 de1 lec 4 v1
Q921 de1 lec 4 v1
 
Turbomachine Module02.pptx
Turbomachine Module02.pptxTurbomachine Module02.pptx
Turbomachine Module02.pptx
 
Examples in fluid mechanics
Examples in fluid mechanicsExamples in fluid mechanics
Examples in fluid mechanics
 
circular motion Mechanics
circular motion Mechanicscircular motion Mechanics
circular motion Mechanics
 
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
 
Magnetorheological fluid
Magnetorheological fluid Magnetorheological fluid
Magnetorheological fluid
 

More from Malla Reddy University

Angular Directives
Angular DirectivesAngular Directives
Angular Directives
Malla Reddy University
 
Unit 2 - Data Manipulation with R.pptx
Unit 2 - Data Manipulation with R.pptxUnit 2 - Data Manipulation with R.pptx
Unit 2 - Data Manipulation with R.pptx
Malla Reddy University
 
Unit 1 - R Programming (Part 2).pptx
Unit 1 - R Programming (Part 2).pptxUnit 1 - R Programming (Part 2).pptx
Unit 1 - R Programming (Part 2).pptx
Malla Reddy University
 
Unit 1 - Statistics (Part 1).pptx
Unit 1 - Statistics (Part 1).pptxUnit 1 - Statistics (Part 1).pptx
Unit 1 - Statistics (Part 1).pptx
Malla Reddy University
 
Unit 2 - Data Binding.pptx
Unit 2 - Data Binding.pptxUnit 2 - Data Binding.pptx
Unit 2 - Data Binding.pptx
Malla Reddy University
 
Unit 1 - TypeScript & Introduction to Angular CLI.pptx
Unit 1 - TypeScript & Introduction to Angular CLI.pptxUnit 1 - TypeScript & Introduction to Angular CLI.pptx
Unit 1 - TypeScript & Introduction to Angular CLI.pptx
Malla Reddy University
 
GIS - Project Planning and Implementation
GIS - Project Planning and ImplementationGIS - Project Planning and Implementation
GIS - Project Planning and Implementation
Malla Reddy University
 
Geo-spatial Analysis and Modelling
Geo-spatial Analysis and ModellingGeo-spatial Analysis and Modelling
Geo-spatial Analysis and Modelling
Malla Reddy University
 
GIS - Topology
GIS - Topology GIS - Topology
GIS - Topology
Malla Reddy University
 
Geographical Information System (GIS)
Geographical Information System (GIS)Geographical Information System (GIS)
Geographical Information System (GIS)
Malla Reddy University
 
Introduction to Maps
Introduction to MapsIntroduction to Maps
Introduction to Maps
Malla Reddy University
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
Malla Reddy University
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
Malla Reddy University
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic Pressure
Malla Reddy University
 
Fluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurementFluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurement
Malla Reddy University
 
Fluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid PropertiesFluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid Properties
Malla Reddy University
 
Reciprocating Pump
Reciprocating PumpReciprocating Pump
Reciprocating Pump
Malla Reddy University
 
E-waste Management
E-waste ManagementE-waste Management
E-waste Management
Malla Reddy University
 
Biomedical Waste Management
Biomedical Waste ManagementBiomedical Waste Management
Biomedical Waste Management
Malla Reddy University
 
Hazardous Waste Management
Hazardous Waste ManagementHazardous Waste Management
Hazardous Waste Management
Malla Reddy University
 

More from Malla Reddy University (20)

Angular Directives
Angular DirectivesAngular Directives
Angular Directives
 
Unit 2 - Data Manipulation with R.pptx
Unit 2 - Data Manipulation with R.pptxUnit 2 - Data Manipulation with R.pptx
Unit 2 - Data Manipulation with R.pptx
 
Unit 1 - R Programming (Part 2).pptx
Unit 1 - R Programming (Part 2).pptxUnit 1 - R Programming (Part 2).pptx
Unit 1 - R Programming (Part 2).pptx
 
Unit 1 - Statistics (Part 1).pptx
Unit 1 - Statistics (Part 1).pptxUnit 1 - Statistics (Part 1).pptx
Unit 1 - Statistics (Part 1).pptx
 
Unit 2 - Data Binding.pptx
Unit 2 - Data Binding.pptxUnit 2 - Data Binding.pptx
Unit 2 - Data Binding.pptx
 
Unit 1 - TypeScript & Introduction to Angular CLI.pptx
Unit 1 - TypeScript & Introduction to Angular CLI.pptxUnit 1 - TypeScript & Introduction to Angular CLI.pptx
Unit 1 - TypeScript & Introduction to Angular CLI.pptx
 
GIS - Project Planning and Implementation
GIS - Project Planning and ImplementationGIS - Project Planning and Implementation
GIS - Project Planning and Implementation
 
Geo-spatial Analysis and Modelling
Geo-spatial Analysis and ModellingGeo-spatial Analysis and Modelling
Geo-spatial Analysis and Modelling
 
GIS - Topology
GIS - Topology GIS - Topology
GIS - Topology
 
Geographical Information System (GIS)
Geographical Information System (GIS)Geographical Information System (GIS)
Geographical Information System (GIS)
 
Introduction to Maps
Introduction to MapsIntroduction to Maps
Introduction to Maps
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic Pressure
 
Fluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurementFluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurement
 
Fluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid PropertiesFluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid Properties
 
Reciprocating Pump
Reciprocating PumpReciprocating Pump
Reciprocating Pump
 
E-waste Management
E-waste ManagementE-waste Management
E-waste Management
 
Biomedical Waste Management
Biomedical Waste ManagementBiomedical Waste Management
Biomedical Waste Management
 
Hazardous Waste Management
Hazardous Waste ManagementHazardous Waste Management
Hazardous Waste Management
 

Recently uploaded

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 

Impact of Free Jets

  • 1. IMPACT OF FREE JETS (OPEN CHANNEL FLOW AND HYDRAULIC MACHINERY) UNIT – III Dr. Rambabu Palaka, Assistant ProfessorBVRIT
  • 3. Topics 1. Impulse-Momentum Principle 2. Hydrodynamic Force of Jets 3. Work done and Efficiency 4. Angular Momentum Principle 5. Applications to Radial Flow Turbines 6. Layout of Hydropower Installation 7. Heads and Efficiencies
  • 4. Introduction Analysis and Design of Hydraulic Machines (Turbines and Pumps) is essentially based on the knowledge of forces exerted on or by the moving fluids. Learning Objective: Evaluation of force, both in magnitude and direction, by free jets (constant pressure throughout) when they impinge upon stationary or moving objects such as flat plates and vanes of different shapes and orientation.
  • 5. Force exerted by the jet on a stationary plate Impact of Jets The jet is a stream of liquid comes out from nozzle with a high velocity under constant pressure. When the jet impinges on plates or vanes, its momentum is changed and a hydrodynamic force is exerted. Vane is a flat or curved plate fixed to the rim of the wheel 1. Force exerted by the jet on a stationary plate a) Plate is vertical to the jet b) Plate is inclined to the jet c) Plate is curved 2. Force exerted by the jet on a moving plate a) Plate is vertical to the jet b) Plate is inclined to the jet c) Plate is curved
  • 6. Impulse-Momentum Principle From Newton's 2nd Law: F = m a = m (V1- V2) / t Impulse of a force is given by the change in momentum caused by the force on the body. Ft = mV1 – mV2 = Initial Momentum – Final Momentum Force exerted by jet on the plate in the direction of jet, F = m (V1 – V2) / t = (Mass / Time) (Initial Velocity – Final Velocity) = (ρQ) (V1 – V2) = (ρaV) (V1 – V2)
  • 7. Force exerted by the jet on a stationary plate Plate is vertical to the jet F = aV2 If Plate is moving at a velocity of ‘U’ m/s, F = a(V-U)2
  • 8. Problems: 1. A jet of water 50 mm diameter strikes a flat plate held normal to the direction of jet. Estimate the force exerted and work done by the jet if a. The plate is stationary b. The plate is moving with a velocity of 1 m/s away from the jet along the line of jet. The discharge through the nozzle is 76 lps. 2. A jet of water 50 mm diameter exerts a force of 3 kN on a flat vane held perpendicular to the direction of jet. Find the mass flow rate.
  • 9. Force exerted by the jet on a stationary plate Plate is inclined to the jet FN = aV2 sin  Fx = FN sin  Fx = FN cos 
  • 10. Force exerted by the jet on a moving plate Plate is inclined to the jet FN = a(V-U)2 sin  Fx = FN sin  F = F cos 
  • 11. Problems: 1. A jet of data 75 mm diameter has a velocity of 30 m/s. It strikes a flat plate inclined at 450 to the axis of jet. Find the force on the plate when. a. The plate is stationary b. The plate is moving with a velocity of 15 m/s along and away from the jet. Also find power and efficiency in case (b) 2. A 75 mm diameter jet having a velocity of 12 m/s impinges a smooth flat plate, the normal of which is inclined at 600 to the axis of jet. Find the impact of jet on the plate at right angles to the plate when the plate is stationery. a. What will be the impact if the plate moves with a velocity of 6 m/s in the direction of jet and away from it. b. What will be the force if the plate moves towards the plate.
  • 12. Force exerted by the jet on a stationary plate Plate is Curved and Jet strikes at Centre F = aV2 (1+ cos )
  • 13. Force exerted by the jet on a moving plate Plate is Curved and Jet strikes at Centre F = a(V-U)2 (1+ cos )
  • 14. Problems: 1. A jet of water of diameter 50 mm strikes a stationary, symmetrical curved plate with a velocity of 40 m/s. Find the force extended by the jet at the centre of plate along its axis if the jet is deflected through 1200 at the outlet of the curved plate 2. A jet of water from a nozzle is deflected through 600 from its direction by a curved plate to which water enters tangentially without shock with a velocity of 30m/s and leaver with a velocity of 25 m/s. If the discharge from the nozzle is 0.8 kg/s, calculate the magnitude and direction of resultant force on the vane.
  • 15. Force exerted by the jet on a stationary plate (Symmetrical Plate) Plate is Curved and Jet strikes at tip Fx = 2aV2 cos 
  • 16. Force exerted by the jet on a stationary plate (Unsymmetrical Plate) Plate is Curved and Jet strikes at tip Fx = aV2 (cos  + cos )
  • 17. Problems: 1. A jet of water strikes a stationery curved plate tangentially at one end at an angle of 300 . The jet of 75 mm diameter has a velocity of 30 m/s. The jet leaves at the other end at angle of 200 to the horizontal. Determine the magnitude of force exerted along ‘x’ and ‘y’ directions.
  • 18. Force exerted by the jet on a moving plate Considering Relative Velocity, Fx = aVr1 (Vr1 cos  + Vr2 cos ) Fx = aVr1 (VW1 + VW2) OR If  < 900
  • 19. Force exerted by the jet on a moving plate If  = 900 Considering Relative Velocity, Fx = aVr1 (Vr1 cos  – Vr2 cos ) OR Fx = aVr1 (VW1)
  • 20. Force exerted by the jet on a moving plate If  = 900 Considering Relative Velocity, Fx = aVr1 (Vr1 cos  – Vr2 cos ) OR Fx = aVr1 (VW1 – VW2)
  • 21. Impact of jet on a series of flat vanes mounted radially on the periphery of a circular wheel F = aV (V- U)
  • 22. Impact of jet on a series of flat vanes mounted radially on the periphery of a circular wheel F = aV (V-U) (1+ cos )
  • 23. Problems: 1. A jet of water of diameter 75 mm strikes a curved plate at its centre with a velocity of 25 m/s. The curved plate is moving with a velocity of 10 m/s along the direction of jet. If the jet gets deflected through 1650 in the smooth vane, compute. a) Force exerted by the jet. b) Power of jet. c) Efficiency of jet. 2. A jet of water impinges a curved plate with a velocity of 20 m/s making an angle of 200 with the direction of motion of vane at inlet and leaves at 1300 to the direction of motion at outlet. The vane is moving with a velocity of 10 m/s. Compute. i) Vane angles, so that water enters and leaves without shock. ii) Work done per unit mass flow rate
  • 24. Force exerted by the jet on a moving plate (PELTON WHEEL) Considering Relative Velocity, Fx = aVr1 (Vr1 – Vr2 cos ) OR Fx = aVr1 (VW1 – VW2) Work done / sec = F.U Power = F. U F.U ½ mV2 Efficiency =
  • 25. Problems: 1. A jet of water having a velocity of 35 m/s strikes a series of radial curved vanes mounted on a wheel. The wheel has 200 rpm. The jet makes 200 with the tangent to wheel at inlet and leaves the wheel with a velocity of 5 m/s at 1300 to tangent to the wheel at outlet. The diameters of wheel are 1 m and 0.5 m. Find i) Vane angles at inlet and outlet for radially outward flow turbine. ii) Work done iii) Efficiency of the system
  • 26. Applications to Radial Flow Turbines If  = 900 Considering Angular Momentum Principle, Torque (T) = Rate of Change of Angular Momentum P = Q (VW1 U1) If  > 900 P = Q (VW1 U1 + VW2 U2) T = Q (VW1 R1 - VW1 R2) VW1 = Vr1 cos  VW2 = Vr1 cos & P = T. Power (P) = Torque x Angular Velocity If  < 900 P = Q (VW1 U1– VW2 U2) P = Q [VW1 (R1. ) – VW2 (R2. ))
  • 27. Layout of Hydropower Installation Hg = Gross Head hf = Head Loss due to Friction = Where V = Velocity of Flow in Penstock L = Length of Penstock D = Dia. of Penstock H = Net Head = Hg- hf
  • 28. Efficiencies of Turbine 1. Hydraulic Efficiency 2. Mechanical Efficiency 3. Volumetric Efficiency 4. Overall Efficiency
  • 29. Reference Chapter 17 & 18 A Textbook of Fluid Mechanics and Hydraulic Machines Dr. R. K. Bansal Laxmi Publications