Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
https://www.quora.com/What-is-the-difference-between-local-minima-maxima-and-absolute-minima-maxima
Engineering Mathematics-I
Maxima and Minima
Prepared by : Prof. Rupali Yeole
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
Maxima and Minima of Functions of Two
Independent Variables
• Let be a function of two independent variables
and , which is continuous for all values of and in
the neighborhood of i.e. be a point in its
neighborhood which lies inside the region .
),( yxf x
yxy
 kbha  , ba,
R
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
• The point is called a point of relative minimum,
if for all
Then is called the relative minimum value.
• The point is called a point of relative maximum,
if for all
Then is called the relative minimum value.
),(),( kbhafbaf  kh,
),( baf
),(),( kbhafbaf  kh,
),( baf
 ba,
 ba,
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
• Stationary point: The point at which function is either
maximum or minimum is known as stationary point.
• Extreme Value: The value of the function at stationary point is
known as extreme value of the function .),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
Working Rule
To determine the maxima and minima (extreme values) of a
function
• Step I : Solve
simultaneously for &
• Step II: Obtain the values of
),( yxf
0&0 





y
f
x
f
x y
2
22
2
2
,,
y
f
t
yx
f
s
x
f
r









Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
• Step III:
1) If & at , then is maximum at
& maximum value of the function is .
2) If & at , then is maximum at
& maximum value of the function is .
3) If at , then is neither maximum nor
minimum at .Such point is called Saddle Point.
4) If at , then no conclusion can be made about
the extreme values of & further investigation is
required.
02
 srt 0r  ba, ),( yxf
 ba,
),( baf
02
 srt 0r  ba, ),( yxf
 ba,
),( baf
02
 srt
 ba, ),( yxf
 ba,
02
 srt
 ba,
),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
Example 1
Q.1 Discuss the maxima and Minima of the function
Answer: Let
Step I: For extreme values
12622
 xyx
  126, 22
 xyxyxf
0,02
0&
3
0)3(2,062
0









yy
y
f
x
xx
x
f
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
Therefore stationary point is .
• Step II:
 0,3
.2
,0
,2
2
2
2
2
2












y
f
t
yx
f
s
x
f
r
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
• Step III: At
Hence is maximum at
 0,3
02&
040222


r
srt
     
3
123603
22
min

f
 0,3),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
THANK YOU
For further details please contact
RUPALI YEOLE
Department of Applied Sciences & Engineering
Hope Foundation’s
International Institute of Information Technology, I²IT
P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune – 411 057
www.isquareit.edu.in
Phone : +91 20 22933441 / 2 / 3
rupaliy@isquareit.edu.in | info@isquareit.edu.in

Engineering Mathematics | Maxima and Minima

  • 1.
    Hope Foundation’s InternationalInstitute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in https://www.quora.com/What-is-the-difference-between-local-minima-maxima-and-absolute-minima-maxima
  • 2.
    Engineering Mathematics-I Maxima andMinima Prepared by : Prof. Rupali Yeole Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 3.
    Maxima and Minimaof Functions of Two Independent Variables • Let be a function of two independent variables and , which is continuous for all values of and in the neighborhood of i.e. be a point in its neighborhood which lies inside the region . ),( yxf x yxy  kbha  , ba, R Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 4.
    • The pointis called a point of relative minimum, if for all Then is called the relative minimum value. • The point is called a point of relative maximum, if for all Then is called the relative minimum value. ),(),( kbhafbaf  kh, ),( baf ),(),( kbhafbaf  kh, ),( baf  ba,  ba, Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 5.
    • Stationary point:The point at which function is either maximum or minimum is known as stationary point. • Extreme Value: The value of the function at stationary point is known as extreme value of the function .),( yxf Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 6.
    Working Rule To determinethe maxima and minima (extreme values) of a function • Step I : Solve simultaneously for & • Step II: Obtain the values of ),( yxf 0&0       y f x f x y 2 22 2 2 ,, y f t yx f s x f r          Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 7.
    • Step III: 1)If & at , then is maximum at & maximum value of the function is . 2) If & at , then is maximum at & maximum value of the function is . 3) If at , then is neither maximum nor minimum at .Such point is called Saddle Point. 4) If at , then no conclusion can be made about the extreme values of & further investigation is required. 02  srt 0r  ba, ),( yxf  ba, ),( baf 02  srt 0r  ba, ),( yxf  ba, ),( baf 02  srt  ba, ),( yxf  ba, 02  srt  ba, ),( yxf Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 8.
    Example 1 Q.1 Discussthe maxima and Minima of the function Answer: Let Step I: For extreme values 12622  xyx   126, 22  xyxyxf 0,02 0& 3 0)3(2,062 0          yy y f x xx x f Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 9.
    Therefore stationary pointis . • Step II:  0,3 .2 ,0 ,2 2 2 2 2 2             y f t yx f s x f r Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 10.
    • Step III:At Hence is maximum at  0,3 02& 040222   r srt       3 123603 22 min  f  0,3),( yxf Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057 Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
  • 11.
    THANK YOU For furtherdetails please contact RUPALI YEOLE Department of Applied Sciences & Engineering Hope Foundation’s International Institute of Information Technology, I²IT P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune – 411 057 www.isquareit.edu.in Phone : +91 20 22933441 / 2 / 3 rupaliy@isquareit.edu.in | info@isquareit.edu.in