The document discusses maxima and minima of functions of two independent variables. It defines a relative minimum or maximum point of a function f(x,y) and explains how to determine the stationary points by simultaneously solving the partial derivatives of f with respect to x and y. The working rule outlined finds the extreme values by checking the signs of the second order partial derivatives at the stationary points. An example of finding the maxima of f(x,y)=x^2+y^2+12x+22y is provided to illustrate the process.
Hope Foundation’s InternationalInstitute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
https://www.quora.com/What-is-the-difference-between-local-minima-maxima-and-absolute-minima-maxima
2.
Engineering Mathematics-I
Maxima andMinima
Prepared by : Prof. Rupali Yeole
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
3.
Maxima and Minimaof Functions of Two
Independent Variables
• Let be a function of two independent variables
and , which is continuous for all values of and in
the neighborhood of i.e. be a point in its
neighborhood which lies inside the region .
),( yxf x
yxy
kbha , ba,
R
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
4.
• The pointis called a point of relative minimum,
if for all
Then is called the relative minimum value.
• The point is called a point of relative maximum,
if for all
Then is called the relative minimum value.
),(),( kbhafbaf kh,
),( baf
),(),( kbhafbaf kh,
),( baf
ba,
ba,
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
5.
• Stationary point:The point at which function is either
maximum or minimum is known as stationary point.
• Extreme Value: The value of the function at stationary point is
known as extreme value of the function .),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
6.
Working Rule
To determinethe maxima and minima (extreme values) of a
function
• Step I : Solve
simultaneously for &
• Step II: Obtain the values of
),( yxf
0&0
y
f
x
f
x y
2
22
2
2
,,
y
f
t
yx
f
s
x
f
r
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
7.
• Step III:
1)If & at , then is maximum at
& maximum value of the function is .
2) If & at , then is maximum at
& maximum value of the function is .
3) If at , then is neither maximum nor
minimum at .Such point is called Saddle Point.
4) If at , then no conclusion can be made about
the extreme values of & further investigation is
required.
02
srt 0r ba, ),( yxf
ba,
),( baf
02
srt 0r ba, ),( yxf
ba,
),( baf
02
srt
ba, ),( yxf
ba,
02
srt
ba,
),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
8.
Example 1
Q.1 Discussthe maxima and Minima of the function
Answer: Let
Step I: For extreme values
12622
xyx
126, 22
xyxyxf
0,02
0&
3
0)3(2,062
0
yy
y
f
x
xx
x
f
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
9.
Therefore stationary pointis .
• Step II:
0,3
.2
,0
,2
2
2
2
2
2
y
f
t
yx
f
s
x
f
r
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
10.
• Step III:At
Hence is maximum at
0,3
02&
040222
r
srt
3
123603
22
min
f
0,3),( yxf
Hope Foundation’s International Institute of Information Technology, I²IT, P-14 Rajiv Gandhi Infotech Park, Hinjawadi, Pune - 411 057
Tel - +91 20 22933441 / 2 / 3 | Website - www.isquareit.edu.in ; Email - info@isquareit.edu.in
11.
THANK YOU
For furtherdetails please contact
RUPALI YEOLE
Department of Applied Sciences & Engineering
Hope Foundation’s
International Institute of Information Technology, I²IT
P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune – 411 057
www.isquareit.edu.in
Phone : +91 20 22933441 / 2 / 3
rupaliy@isquareit.edu.in | info@isquareit.edu.in