SlideShare a Scribd company logo
Chapter 3  Digital Transmission Fundamentals Contain slides by Leon-Garcia and Widjaja
Chapter 3  Digital Transmission Fundamentals Digital Representation of Information Why Digital Communications? Digital Representation of Analog Signals Characterization of Communication Channels Fundamental Limits in Digital Transmission Line Coding Modems and Digital Modulation Properties of Media and Digital Transmission Systems Error Detection and Correction
Digital Networks ,[object Object],E-mail Telephone TV
Questions of Interest ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Chapter 3   Digital Transmission Fundamentals Digital Representation of Information
Bits, numbers, information ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Block vs. Stream Information ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transmission Delay ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Delay = t prop  + L/R = d/c + L/R  seconds
Compression ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Color Image = + + Color image Red component image Green component image Blue component image Total bits = 3    H    W pixels    B bits/pixel = 3HWB bits Example:  8  10 inch picture at 400    400 pixels per inch 2 400    400    8    10 = 12.8 million pixels 8 bits/pixel/color 12.8 megapixels    3 bytes/pixel = 38.4 megabytes   H W H W H W H W
Examples of Block Information 1-8 Mbytes  (5-30) 38.4 Mbytes 8x10 in 2  photo 400 2  pixels/in 2 JPEG Color Image 5-54 kbytes (5-50) 256 kbytes A4 page 200x100 pixels/in 2 CCITT Group 3 Fax (2-6) Kbytes- Mbytes ASCII Zip, compress Text Compressed(Ratio) Original Format Method Type
Stream Information ,[object Object],[object Object],Th e  s  p  ee  ch  s  i  g  n al l  e  v  el  v  a  r  ie  s  w i  th  t  i  m(e)
Digitization of Analog Signal ,[object Object],[object Object],Original signal Sample value Approximation R s  = Bit rate = # bits/sample x # samples/second 3 bits / sample        
Bit Rate of Digitized Signal ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example:  Voice & Audio ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Video Signal ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Rate = M bits/pixel  x  (WxH) pixels/frame  x  F   frames/second 30 fps
Video Frames Broadcast TV at 30 frames/sec = 10.4 x 10 6  pixels/sec 720 480 HDTV at 30 frames/sec = 67 x 10 6  pixels/sec 1080 1920 QCIF videoconferencing at 30 frames/sec = 760,000 pixels/sec 144 176
Digital Video Signals 19-38 Mbps 1.6 Gbps 1920x1080  @30 fr/sec MPEG2 HDTV 2-6 Mbps 249 Mbps 720x480 pix @30 fr/sec MPEG2 Full Motion 64-1544 kbps 2-36 Mbps 176x144 or 352x288 pix @10-30 fr/sec H.261 Video Confer-ence Compressed Original Format Method Type
Transmission of Stream Information ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Stream Service Quality Issues ,[object Object],[object Object],[object Object],[object Object],[object Object]
Chapter 3  Communication Networks and Services Why Digital Communications?
A Transmission System ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Receiver Communication channel Transmitter
Transmission Impairments ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Transmitted Signal Received Signal Receiver Communication channel Transmitter
Analog Long-Distance Communications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Source  Destination Repeater Transmission segment Repeater . . .
Analog vs. Digital Transmission ,[object Object],Sent Received Received Distortion Attenuation Digital transmission : only discrete levels need to be reproduced Distortion Attenuation Simple Receiver:  Was original pulse positive or negative? Sent
Digital Long-Distance Communications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Source  Destination Regenerator Transmission segment Regenerator . . .
Bit Rates of Digital Transmission Systems Many wavelengths >1600 Gbps Optical fiber 1 wavelength 2.5-10 Gbps Optical fiber  5 km multipoint radio 1.5-45 Mbps 28 GHz radio  IEEE 802.11 wireless LAN 2-11 Mbps 2.4 GHz radio Coexists with analog telephone signal 64-640 kbps in, 1.536-6.144 Mbps out ADSL twisted pair Shared CATV return channel 500 kbps-4 Mbps Cable modem 100 meters of unshielded twisted copper wire pair 10 Mbps, 100 Mbps Ethernet twisted pair 4 kHz telephone channel 33.6-56 kbps Telephone twisted pair Observations Bit Rate System
Examples of Channels 40 Gbps / wavelength Many TeraHertz Optical fiber 54 Mbps / channel 300 MHz  (11 channels) 5 GHz radio (IEEE 802.11) 30 Mbps/  channel 500 MHz  (6 MHz channels) Coaxial cable 1-6 Mbps 1 MHz Copper pair 33 kbps 3 kHz Telephone voice channel Bit Rates Bandwidth Channel
Chapter 3   Digital Transmission Fundamentals Digital Representation of Analog Signals
Digitization of Analog Signals ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sampling Rate and Bandwidth ,[object Object],[object Object],[object Object],[object Object],1 ms 1 1  1  1  0  0 0 0 . . . . . . t x 2 (t) 1 0  1 0  1  0  1  0 . . . . . . t 1 ms x 1 (t)
Periodic Signals ,[object Object],“DC”  long-term average fundamental frequency  f 0 =1/ T  first harmonic k th harmonic x(t)  =  a 0  +  a 1 cos(2  f 0 t  +   1 )  +  a 2 cos(2  2 f 0 t  +   2 )  + …  +  a k cos(2  kf 0 t  +   k ) + … ,[object Object],[object Object]
Example Fourier Series Only odd harmonics have power T 1  = 1 ms 1 1  1  1  0  0 0 0 . . . . . . t x 2 (t) 1 0  1 0  1  0  1  0 . . . . . . t T 2  =0.25 ms x 1 (t) x 1 ( t )  =  0 +  cos(2  4000 t ) +  cos(2  3(4000) t ) +  cos(2  5(4000) t ) + … 4   4 5  4 3  x 2 ( t )  =  0 +  cos(2  1000 t ) +  cos(2  3(1000) t ) +  cos(2  5(1000) t ) + … 4   4 5  4 3 
Spectra & Bandwidth ,[object Object],[object Object],[object Object],Spectrum of  x 1 (t) Spectrum of  x 2 (t)
Bandwidth of General Signals ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],s  (noisy )  | p  (air stopped)  | ee  (periodic)  | t  (stopped)  | sh  (noisy) “speech” X(f) f 0 W s
Sampling Theorem Interpolation filter (a) (b) Nyquist:  Perfect reconstruction if sampling rate 1/ T  > 2 W s Sampler t x(t) t x(nT) t x(t) t x(nT)
Digital Transmission of Analog Information Interpolation filter Display or  playout 2 W  samples / sec 2 W m  bits/sec x(t) Bandwidth  W Sampling (A/D) Quantization Analog source 2 W  samples / sec m  bits / sample Pulse generator y(t) Original  Approximation Transmission or storage
Quantization of Analog Samples Quantization error: “ noise” =  x ( nT ) –  y ( nT ) ,[object Object],[object Object],[object Object],input  x(nT) output  y(nT)                  /2 3  /2 5  /2 7  /2 -  /2 -3  /2 -5  /2 -7  /2 Original signal Sample value Approximation 3 bits / sample
Quantizer Performance M  = 2 m  levels,  Dynamic range( - V ,  V )  Δ  = 2 V/M Average Noise Power = Mean Square Error: If the number of levels  M  is large, then the error is approximately uniformly distributed between (- Δ /2,  Δ 2) ... error  = y(nT)-x(nT)=e(nT) input ...      x(nT) V -V σ e 2  =  x 2  dx  = Δ 2 12 1  Δ ∫ Δ 2 Δ 2
[object Object],[object Object],[object Object],Quantizer Performance  x 2   /12 = 12  x 2 4 V 2 /M 2 =  x 3   ( V ) 2  M 2 = 3  ( V ) 2  2 2 m  x SNR = The ratio V/  x    4 The SNR is usually stated in decibels: SNR db = 10 log 10    x 2 /  e 2  = 6 + 10 log 10  3  x 2 / V 2 SNR db =  6 m  - 7.27 dB   for  V /  x   = 4 .
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Example: Telephone Speech
Chapter 3   Digital Transmission Fundamentals Characterization of Communication Channels
Communications Channels ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
How good is a channel? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Communications Channel ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Transmitted Signal Received Signal Receiver Communication channel Transmitter
Frequency Domain Channel Characterization ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Channel t t x(t)= A in cos 2  ft y(t)=A out cos  (2  ft +   (f)) A out A in A(f) =
Ideal Low-Pass Filter ,[object Object],Amplitude Response W c y(t)=A in cos  ( 2  ft  -  2  f    ) = A in cos  ( 2  f(t -    ) ) = x(t-  ) f 1 f 0  (f)   =   - 2  f  1/   2  Phase Response
Example:  Low-Pass Filter ,[object Object],[object Object],[object Object],f 1 A(f)   =   1 (1+4  2 f 2 ) 1/2 Amplitude Response f 0  (f)   =   tan -1  2  f -45 o -90 o 1/   2  Phase Response
Example:  Bandpass Channel ,[object Object],[object Object],[object Object],f Amplitude Response A ( f ) W c
Channel Distortion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],y(t) =   A ( f k )  a k  cos   ( 2  f k t   +  θ k   +  Φ ( f k  )) Channel y(t) x ( t )  =     a k  cos   ( 2  f k t   +  θ k )
Example:  Amplitude Distortion ,[object Object],x(t) ,[object Object],[object Object],[object Object], 1  0  0  0  0  0  0  1 . . . . . . t 1 ms x ( t )  = - 0.5 +  sin(  )cos(2  1000 t ) +  sin(  )cos(2  2 000 t )  +  sin(  )cos(2  3 000 t ) + … 4     4 4  4  2   4 3   4
Amplitude Distortion ,[object Object]
Time-domain Characterization ,[object Object],[object Object],[object Object],[object Object],Channel t 0 t h(t) t d
Nyquist Pulse with Zero Intersymbol Interference ,[object Object],[object Object],[object Object],t s(t) =  sin ( 2  W c  t)/  2  W c t T  T  T  T  T   T  T  T  T  T   T  T  T   T
Example of composite waveform ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],r(t ) + s(t) + s(t-T ) - s(t- 2 T ) t T T T T T T t T T T T T T
Nyquist pulse shapes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],0 f A ( f ) 1 (1 –  α ) W c  W c  (1 +  α ) W c  sin(  t/T)    t/T cos(  α t/T)   1 – (2 α t/T) 2
Chapter 3   Digital Transmission Fundamentals Fundamental Limits in Digital Transmission
Digital Binary Signal ,[object Object],[object Object],[object Object],[object Object],Bit rate = 1  bit / T seconds + A - A 0 T 2 T 3 T 4 T 5 T 6 T 1 1 1 1 0 0
Pulse Transmission Rate ,[object Object],Channel t t ,[object Object],[object Object],[object Object],[object Object],T
Bandwidth of a Channel ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Channel X(t)  = a cos(2  ft ) Y(t)  =  A ( f ) a cos(2  ft ) Ideal low-pass channel W c 0 f A ( f ) 1
Signaling with Nyquist Pulses ,[object Object],[object Object],[object Object],Transmitter Filter Communication Medium Receiver Filter Receiver r(t) Received signal + A - A 0 T 2 T 3 T 4 T 5 T 1 1 1 1 0 0 t
Multilevel Signaling ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example of Multilevel Signaling ,[object Object],[object Object],[object Object],Composite waveform
Noise Limits Accuracy ,[object Object],[object Object],[object Object],[object Object],Four signal levels Eight signal levels Typical noise +A +A/3 -A/3 -A +A +5A/7 +3A/7 +A/7 -A/7 -3A/7 -5A/7 -A
Noise distribution ,[object Object],[object Object],[object Object],[object Object],t Pr[ X(t)>x 0   ] = ? Pr[ X(t)>x 0   ] = Area under graph x 0 x 0     = Avg Noise Power  x 0 x
Probability of Error ,[object Object],[object Object],[object Object],Pr[ X(t)>    ] 0   2   4   6    8   /2 
Channel Noise affects Reliability High SNR Low SNR SNR =  Average Signal Power Average Noise Power SNR (dB) =  10 log 10  SNR virtually error-free error-prone signal noise signal + noise signal noise signal + noise
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Shannon Channel Capacity
Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Chapter 3   Digital Transmission Fundamentals Line Coding
What is Line Coding? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Line coding examples NRZ-inverted (differential encoding) 1 0 1 0 1 1 0 0 1 Unipolar NRZ Bipolar encoding Manchester encoding Differential Manchester encoding Polar NRZ
Spectrum of Line codes ,[object Object],[object Object],[object Object],[object Object]
Unipolar & Polar  Non-Return-to-Zero (NRZ) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Unipolar NRZ Polar NRZ 1 0 1 0 1 1 0 0 1
Bipolar Code ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Bipolar Encoding 1 0 1 0 1 1 0 0 1
Manchester code &  m B n B codes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Manchester Encoding 1 0 1 0 1 1 0 0 1
Differential Coding ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],NRZ-inverted (differential encoding) Differential Manchester encoding 1 0 1 0 1 1 0 0 1
Chapter 3   Digital Transmission Fundamentals Modems and Digital Modulation
Bandpass Channels ,[object Object],[object Object],[object Object],[object Object],[object Object],f c  –  W c /2 f c 0 f c  +  W c /2
Amplitude Modulation and  Frequency Modulation Information +1 -1 Amplitude Shift Keying +1 -1 Frequency Shift Keying t t Map bits into amplitude of sinusoid:  “1” send sinusoid; “0” no sinusoid Demodulator looks for signal vs. no signal Map bits into frequency:  “1” send frequency  f c   +    ; “0” send frequency  f c  -     Demodulator looks for power around  f c  +     or  f c  -     1 1 1 1 0 0 0 T 2 T 3 T 4 T 5 T 6 T 0 T 2 T 3 T 4 T 5 T 6 T
Phase Modulation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Information +1 -1 Phase Shift Keying 0 T 2 T 3 T 4 T 5 T 6 T t 1 1 1 1 0 0
Modulator & Demodulator Modulate   cos(2  f c t )   by multiplying by  A k   for  T  seconds: A k x cos(2  f c t ) Y i ( t ) =  A k  cos(2  f c t ) Transmitted signal  during  k th interval Demodulate (recover  A k ) by multiplying by 2cos(2  f c t ) for  T  seconds and lowpass filtering (smoothing): x 2cos(2  f c t ) 2 A k   cos 2 (2  f c t ) =  A k  {1 + cos(2  2 f c t )} Lowpass Filter (Smoother) X i (t) Y i ( t ) =  A k cos(2  f c t ) Received signal  during  k th interval
Example of Modulation Information Baseband Signal Modulated Signal x(t) A cos(2  ft) -A cos(2  ft) 1 1 1 1 0 0 +A -A 0 T 2T 3T 4T 5T 6T +A -A 0 T 2T 3T 4T 5T 6T
Example of Demodulation Recovered Information Baseband signal discernable after smoothing After multiplication at receiver x(t) cos(2  f c t ) +A -A 0 T 2T 3T 4T 5T 6T A {1 + cos(4  ft )} -A {1 + cos(4  ft )} 1 1 1 1 0 0 +A -A 0 T 2T 3T 4T 5T 6T
Signaling rate and  Transmission Bandwidth ,[object Object],Baseband signal  x(t)  with bandwidth  B  Hz If then Modulated signal  x(t) cos(2  f c t ) has bandwidth 2 B  Hz ,[object Object],[object Object],[object Object],[object Object],[object Object],B f c +B f f f c -B f c
Quadrature Amplitude Modulation (QAM) ,[object Object],[object Object],[object Object],[object Object],A k x cos(2  f c t ) Y i (t)  =  A k  cos(2  f c t ) B k x sin(2  f c t ) Y q (t)  =  B k  sin(2  f c t ) + Y(t) ,[object Object],[object Object],Transmitted Signal
QAM Demodulation Y(t) x 2cos(2  f c t ) 2cos 2 (2  f c t )+2B k  cos(2  f c t )sin(2  f c t ) =  A k  {1 + cos(4  f c t )}+ B k   {0 + sin(4  f c t )} Lowpass filter  (smoother) A k  2 B k   sin 2 (2  f c t )+2A k  cos(2  f c t )sin(2  f c t ) =  B k   {1 - cos(4  f c t )}+ A k  {0 + sin(4  f c t )} x 2sin(2  f c t ) B k  Lowpass filter  (smoother) smoothed to zero smoothed to zero
Signal Constellations ,[object Object],[object Object],4 possible points per  T  sec. 2 bits / pulse 16 possible points per  T  sec. 4 bits / pulse A k B k A k B k (A, A) (A,-A) (-A,-A) (-A,A)
Other Signal Constellations ,[object Object],4 possible points per  T  sec. 16 possible points per  T  sec. A k B k A k B k A k  cos(2  f c t ) +  B k  sin(2  f c t ) =  √ A k 2  + B k 2   cos(2  f c t  + tan -1 ( B k /A k ))
Telephone Modem Standards ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Chapter 3   Digital Transmission Fundamentals Properties of Media and Digital Transmission Systems
Fundamental Issues in Transmission Media ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],t  = 0 t = d/c Communication channel d  meters
Communications systems & Electromagnetic Spectrum ,[object Object],Analog telephone DSL Cell phone WiFi Optical fiber 10 2 10 4 10 6 10 8 10 10 10 12 10 14 10 16 10 18 10 20 10 22 10 24 Frequency (Hz) Wavelength (meters) 10 6 10 4 10 2 10 10 -2 10 -4 10 -6 10 -8 10 -10 10 -12 10 -14 Power and telephone Broadcast radio Microwave radio Infrared light Visible light Ultraviolet light X-rays Gamma rays
Wireless & Wired Media ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Attenuation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Twisted Pair ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Lower  attenuation rate analog telephone Higher  attenuation rate for DSL Attenuation (dB/mi) f   (kHz) 19 gauge 22 gauge 24 gauge 26 gauge 6 12 18 24 30 1 10 100 1000
Twisted Pair Bit Rates ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Table 3.5 Data rates of 24-gauge twisted pair  1000 feet, 300 m 51.840 Mbps STS-1 3000 feet, 0.9 km 25.920 Mbps 1/2 STS-1 4500 feet, 1.4 km 12.960 Mbps 1/4 STS-1 12,000 feet, 3.7 km 6.312 Mbps DS2 18,000 feet, 5.5 km 1.544 Mbps T-1 Distance Data Rate Standard
Ethernet LANs ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],               
Coaxial Cable ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],35  30 10 25 20 5 15 Attenuation (dB/km) 0.1 1.0 10 100 f   (MHz) 2.6/9.5 mm 1.2/4.4 mm 0.7/2.9 mm
Cable Modem & TV Spectrum ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],550 MHz 750 MHz Downstream Upstream Downstream 5 MHz 42 MHz 54 MHz 500 MHz
Cable Network Topology Head end Upstream fiber Downstream fiber Fiber node Coaxial distribution plant Fiber node = Bidirectional split-band amplifier Fiber Fiber
Optical Fiber ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Optical fiber Optical source Modulator Electrical signal Receiver Electrical signal
Transmission in Optical Fiber ,[object Object],[object Object],[object Object],Geometry of optical fiber Total Internal Reflection in optical fiber Core Cladding Jacket Light  c
[object Object],[object Object],[object Object],[object Object],Multimode & Single-mode Fiber Multimode fiber: multiple rays follow different paths Single-mode fiber: only direct path propagates in fiber Direct path Reflected path
Optical Fiber Properties ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Very Low Attenuation 850 nm Low-cost LEDs LANs 1300 nm Metropolitan Area Networks “ Short Haul” 1550 nm Long Distance Networks “ Long Haul Water Vapor Absorption (removed in new fiber designs) 100 50 10 5 1 0.5 0.1 0.05 0.01 0.8 1.0 1.2 1.4 1.6 1.8 Wavelength (  m) Loss (dB/km) Infrared absorption Rayleigh scattering
Huge Available Bandwidth ,[object Object],[object Object],B =  ≈   19 THz 100 50 10 5 1 0.5 0.1 0.8 1.0 1.2 1.4 1.6 1.8 Loss (dB/km) B = f 1  – f 2  =  –  v   λ 1  +  Δλ  v   λ 1  v  Δλ   λ 1 2 =  ≈   Δλ  /  λ 1   1 +  Δλ  /  λ 1  v   λ 1  2(10 8 )m/s 200nm  (1450 nm) 2
Wavelength-Division Multiplexing ,[object Object],[object Object],[object Object],[object Object], 1  2  m optical mux  1  2  m optical demux  1  2 .  m optical fiber
Coarse & Dense WDM ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],1550 1560 1540
Regenerators & Optical Amplifiers ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
DWDM & Regeneration ,[object Object],[object Object],[object Object],[object Object],Regenerator R R R R R R R R DWDM multiplexer … … R R R R … R R R R … R R R R … R R R R …
Optical Amplifiers ,[object Object],[object Object],[object Object],[object Object],[object Object],R R R R Optical amplifier … … … R R R R OA OA OA OA … …
Radio Transmission ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Radio Spectrum 10 4 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Frequency (Hz) Wavelength (meters) 10 3 10 2 10 1 1 10 -1 10 -2 10 -3 10 5 Satellite and terrestrial microwave AM radio FM radio and TV LF MF HF VHF UHF SHF EHF 10 4 Cellular and PCS Wireless cable Omni-directional applications Point-to-Point applications
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Chapter 3   Digital Transmission Fundamentals Error Detection and Correction
Error Control ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Key Idea ,[object Object],[object Object],[object Object],[object Object],Channel Encoder User information Pattern checking All inputs to channel satisfy pattern or condition Channel output Deliver user  information or set error alarm
Single Parity Check ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Info Bits:  b 1 , b 2 , b 3 , …,  b k   Check Bit:  b k+1 =  b 1 + b 2 + b 3 + …+ b k   modulo 2 Codeword:  (b 1 , b 2 , b 3 , …, b k , , b k +! )
Example of Single Parity Code ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Checkbits & Error Detection Calculate check bits Channel Recalculate check bits Compare Information bits Received information bits Sent check bits Information accepted if check bits match Received check bits k  bits n – k  bits
How good is the single parity check code? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What if bit errors are random? ,[object Object],[object Object],[object Object],[object Object],[object Object],P [10000000] =  p (1 –  p ) 7   and  P [11000000] =  p 2 (1 –  p ) 6
Single parity check code with random bit errors ,[object Object],[object Object],[object Object],P [error detection failure] =  P [undetectable error pattern]  =  P [error patterns with even number of 1s] =  p 2 (1 –  p ) n -2  +  p 4 (1 –  p ) n -4  + … n 2 n 4 P [undetectable error] =  (10 -3 ) 2  (1 – 10 -3 ) 30  +  (10 -3 ) 4  (1 – 10 -3 ) 28 ≈  496 (10 -6 ) + 35960 (10 -12 ) ≈ 4.96 (10 -4 )   32 2 32 4
What is a good code? ,[object Object],[object Object],[object Object],[object Object],x  = codewords o  =  noncodewords Poor distance properties Good distance properties x x x x x x x o o o o o o o o o o o o o x x x x x x x o o o o o o o o o o o
Two-Dimensional Parity Check ,[object Object],[object Object],[object Object],[object Object],[object Object],1  0  0  1  0  0 0  1  0  0  0  1 1  0  0  1  0  0 1  1  0  1  1  0 1  0  0  1  1   1   Bottom row consists of check bit for each column  Last column consists of check bits for each row
Error-detecting capability 1, 2, or 3 errors can always be detected;  Not all patterns >4  errors can be detected 1  0  0  1  0  0 0  0  0  1  0  1 1  0  0  1  0  0 1  0  0  0  1  0 1  0  0  1  1  1  1  0  0  1  0  0 0  0  0  0  0  1 1  0  0  1  0  0 1  0  0  1  1  0 1  0  0  1  1  1  1  0  0  1  0  0 0  0  0  1  0  1 1  0  0  1  0  0 1  0  0  1  1  0 1  0  0  1  1  1  1  0  0  1  0  0 0  0  0  0  0  1 1  0  0  1  0  0 1  1  0  1  1  0 1  0  0  1  1  1  Arrows indicate failed check bits Two errors One error Three errors Four errors  (undetectable)
Other Error Detection Codes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internet Checksum ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Checksum Calculation
Internet Checksum Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],b 0  + b 1  = 1100+1010 =10110 =0111 (1s complement) =7 Take 1s complement b 2  = -0111  =1000
Polynomial Codes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Binary Polynomial Arithmetic ,[object Object],Addition :  Multiplication :  ( i k -1  ,   i k -2  , …,  i 2  ,  i 1  ,  i 0 )     i k -1 x k -1  +  i k -2 x k -2  + … +  i 2 x 2  +  i 1 x  +  i 0 ( x 7  +  x 6  + 1) + ( x 6  + x 5 ) =  x 7  +  x 6  + x 6  +  x 5  + 1 =  x 7  +(1+1) x 6   +  x 5  + 1 =  x 7  + x 5  + 1  since 1+1=0 mod2 ( x   + 1) ( x 2  + x +  1) =  x ( x 2  +  x +  1)  +  1( x 2  +  x   + 1) =  x 3  +  x 2  + x ) + ( x 2   +  x   + 1) =  x 3  + 1
Binary Polynomial Division ,[object Object],32 ,[object Object],Note:  Degree of r(x) is less than degree of divisor 35 ) 1222 3 105 17 2 4 140 divisor quotient remainder dividend 1222 = 34 x 35 + 32 dividend = quotient x divisor  +remainder x 3  +  x   + 1 )  x 6  +  x 5  x 6  +  x 4  +  x 3 x 5  +  x 4  +  x 3 x 5  +  x 3  +  x 2 x 4  +  x 2 x 4  +  x 2  +  x x =  q(x)   quotient =  r(x)  remainder divisor dividend +  x +  x 2 x 3
Polynomial Coding ,[object Object],[object Object],[object Object],[object Object],g(x)  =  x n-k  +  g n-k -1 x n-k -1  + … +  g 2 x 2  +  g 1 x  + 1 i(x)  =  i k -1 x k -1  +  i k -2 x k -2  + … +  i 2 x 2  +  i 1 x  +  i 0 g(x)  )  x n-k  i(x) q(x) r(x) x n-k i(x) = q(x)g(x) +  r(x) b(x)  =  x n-k i(x)  +  r(x) n  bits k  bits n-k  bits
Polynomial example:  k  = 4,  n–k  = 3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],1011 ) 1100000   1110 1011 1110 1011 1010 1011 010 x 3  + x   +  1  ) x 6  + x 5 x 3  + x 2  + x x 6  +  x 4  + x 3 x 5  + x 4  + x 3 x 5  +  x 3  + x 2 x 4  +  x 2 x 4  +  x 2  + x x
The  Pattern  in Polynomial Coding ,[object Object],[object Object],[object Object],[object Object],b(x) = x n-k i(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x)
Shift-Register Implementation ,[object Object],[object Object],[object Object],[object Object]
Division Circuit Clock Input Reg 0 Reg 1 Reg 2 0 -  0 0 0 1 1 =  i 3 1 0 0 2 1 =  i 2 1 1 0 3 0 =  i 1 0 1 1 4 0 =  i 0 1 1 1 5 0 1 0 1 6 0 1 0 0 7 0 0 1 0 Check bits: r 0  = 0 r 1  = 1 r 2  = 0 r(x) = x Reg 0 + + Encoder for  g(x)  =  x 3  +  x  + 1 Reg 1 Reg 2 0,0,0,i 0 ,i 1 ,i 2 ,i 3 g 0  = 1 g 1  = 1 g 3  = 1
Undetectable error patterns ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],b(x) ,[object Object],R(x)=b(x)+e(x) + (Receiver) (Transmitter) Error polynomial (Channel)
Designing good polynomial codes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Designing good polynomial codes ,[object Object],[object Object],[object Object],[object Object],[object Object]
Standard Generator Polynomials ,[object Object],[object Object],[object Object],[object Object],CRC = cyclic redundancy check HDLC, XMODEM, V.41 IEEE 802, DoD, V.42  Bisync ATM = x 8  + x 2  + x +  1 = x 16  + x 15  + x 2  +  1 = ( x  + 1)( x 15  + x +  1) = x 16  + x 12  + x 5  +  1 = x 32  + x 26  + x 23  +   x 22  + x 16  + x 12  + x 11  + x 10  + x 8  +   x 7  + x 5  + x 4  + x 2  + x   +  1
Hamming Codes ,[object Object],[object Object],[object Object],Redundancy 57 26 11 4 k  =  n – m   6/63 63 6 5/31 31 5 4/15 15 4 3/7 7 3 m/n n  = 2 m –1  m
m  = 3 Hamming Code ,[object Object],[object Object],[object Object],[object Object],b 5  =  b 1   +  b 3  +  b 4  b 6  =  b 1  +  b 2   +  b 4 b 7  =  +  b 2  +  b 3  +  b 4
Hamming (7,4) code 7 1  1  1  1  1  1  1 1  1  1  1 3 1  1  1  0  0  0  0 1  1  1  0 4 1  1  0  1  0  1  0 1  1  0  1 4 1  1  0  0  1  0  1 1  1  0  0 4 1  0  1  1  1  0  0 1  0  1  1 4 1  0  1  0  0  1  1 1  0  1  0 3 1  0  0  1  0  0  1 1  0  0  1 3 1  0  0  0  1  1  0 1  0  0  0 4 0  1  1  1  0  0  1 0  1  1  1 4 0  1  1  0  1  1  0 0  1  1  0 3 0  1  0  1  1  0  0 0  1  0  1 3 0  1  0  0  0  1  1 0  1  0  0 3 0  0  1  1  0  1  0 0  0  1  1 3 0  0  1  0  1  0  1 0  0  1  0 4 0  0  0  1  1  1  1 0  0  0  1 0 0  0  0  0  0  0  0 0  0  0  0 w ( b ) b 1   b 2   b 3   b 4   b 5   b 6   b 7 b 1   b 2   b 3   b 4 Weight Codeword Information
Parity Check Equations ,[object Object],[object Object],[object Object],[object Object],0 =  b 5  +  b 5  =  b 1   +  b 3  +  b 4  +  b 5  0 =  b 6  +  b 6  =  b 1  +  b 2   +  b 4   +  b 6 0 =  b 7  +  b 7  =  +  b 2  +  b 3  +  b 4   +  b 7 b 1   b 2 0  =  1 0 1 1 1 0 0  b 3 0  =  1 1 0 1 0 1 0  b 4   =  H   b t   =  0 0  =  0 1 1 1 0 0 1  b 5 b 6   b 7
Error Detection with Hamming Code 0 0 1 0 0 0 0 s  =  H  e   =  = 1 0 1 Single error detected 0 1 0 0 1 0 0 s  =  H  e   =  =  +  = 0 1 1 Double error detected 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 s  =  H  e   =  =  +  +  =  0   1 1 0 Triple error not detected 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1
Minimum distance of Hamming Code ,[object Object],[object Object],Set of  n -tuples within distance 1 of b 1 Set of  n -tuples within distance 1 of b 2 ,[object Object],[object Object],Distance 3 b 1 b 2 o o o o o o o o
General Hamming Codes ,[object Object],[object Object],[object Object],[object Object],[object Object]
Error-correction using Hamming Codes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],b e R + (Receiver) (Transmitter) Error pattern
Performance of Hamming Error-Correcting Code ,[object Object],s  =  H   R  =  H e s  =  0 s  =  0 No errors in transmission  Undetectable errors Correctable errors Uncorrectable errors (1– p ) 7 7 p 3 1–3 p 3 p 7 p 7 p (1–3 p ) 21 p 2
Chapter 3   Digital Transmission Fundamentals RS-232 Asynchronous Data Transmission
Recommended Standard (RS) 232 ,[object Object],[object Object],[object Object],[object Object]
Pins in RS-232 connector DTE DCE Protective Ground (PGND) Transmit Data (TXD) Receive Data (RXD) Request to Send (RTS)  Clear to Send (CTS)  Data Set Ready (DSR)  Ground (G)  Carrier Detect (CD)  Data Terminal Ready (DTR)  Ring Indicator (RI)  1 2 3 4 5 6 7 8 20 22 1 2 3 4 5 6 7 8 20 22 (b) 13 (a)                                                                          1 25 14
Synchronization ,[object Object],[object Object],[object Object],[object Object],[object Object],Clock Data S T 1  0  1  1  0  1  0  0  1  0  0 Clock Data S ’ T 1  0  1  1  1  0  0  1  0  0  0
Synchronization (cont’d) ,[object Object],[object Object],[object Object],[object Object],Clock Data S ’ T 1  0  1  1  1  0  0  1  0  0  0
Asynchronous Transmission ,[object Object],[object Object],Start bit Stop bit 1  2  3  4  5  6  7  8 Data bits Line idle 3T/2 T T T T T T T Receiver samples the bits
Synchronous Transmission ,[object Object],[object Object],[object Object],[object Object],[object Object],Voltage 1  0  0  0  1  1  0  1  0 time

More Related Content

What's hot

Small Scale Multi path measurements
Small Scale Multi path measurements Small Scale Multi path measurements
Small Scale Multi path measurements
Siva Ganesan
 
PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )
vijidhivi
 
Ec 2401 wireless communication unit 4
Ec 2401 wireless communication   unit 4Ec 2401 wireless communication   unit 4
Ec 2401 wireless communication unit 4
JAIGANESH SEKAR
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fading
AJAL A J
 
Ec 2401 wireless communication unit 2
Ec 2401 wireless communication   unit 2Ec 2401 wireless communication   unit 2
Ec 2401 wireless communication unit 2
JAIGANESH SEKAR
 
Optical multiplexers
Optical multiplexersOptical multiplexers
Optical multiplexers
Aizaz Ahmed Sahito
 
Outdoor propagatiom model
Outdoor propagatiom modelOutdoor propagatiom model
Outdoor propagatiom model
Krishnapavan Samudrala
 
Single Frequency Networks for FM Broadcast (SFNs)
Single Frequency Networks for FM Broadcast (SFNs)Single Frequency Networks for FM Broadcast (SFNs)
Single Frequency Networks for FM Broadcast (SFNs)
Nautel
 
Sonet
SonetSonet
Sonet
rohit25786
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
gopi789
 
Ec 2401 wireless communication unit 3
Ec 2401 wireless communication   unit 3Ec 2401 wireless communication   unit 3
Ec 2401 wireless communication unit 3
JAIGANESH SEKAR
 
PCM-Part 1.pptx
PCM-Part 1.pptxPCM-Part 1.pptx
PCM-Part 1.pptx
SubaShree87
 
Coherent systems
Coherent systemsCoherent systems
Coherent systems
CKSunith1
 
Speech encoding techniques
Speech encoding techniquesSpeech encoding techniques
Speech encoding techniques
Hemaraja Nayaka S
 
Transmission of digital signals
Transmission of digital signalsTransmission of digital signals
Transmission of digital signals
Sachin Artani
 
optical time division multiplexing
optical time division multiplexingoptical time division multiplexing
optical time division multiplexing
Amandeep kaur
 
Digital Communication 4
Digital Communication 4Digital Communication 4
Digital Communication 4
admercano101
 

What's hot (20)

Small Scale Multi path measurements
Small Scale Multi path measurements Small Scale Multi path measurements
Small Scale Multi path measurements
 
PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
Ec 2401 wireless communication unit 4
Ec 2401 wireless communication   unit 4Ec 2401 wireless communication   unit 4
Ec 2401 wireless communication unit 4
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fading
 
Ec 2401 wireless communication unit 2
Ec 2401 wireless communication   unit 2Ec 2401 wireless communication   unit 2
Ec 2401 wireless communication unit 2
 
Optical multiplexers
Optical multiplexersOptical multiplexers
Optical multiplexers
 
Outdoor propagatiom model
Outdoor propagatiom modelOutdoor propagatiom model
Outdoor propagatiom model
 
Single Frequency Networks for FM Broadcast (SFNs)
Single Frequency Networks for FM Broadcast (SFNs)Single Frequency Networks for FM Broadcast (SFNs)
Single Frequency Networks for FM Broadcast (SFNs)
 
Sonet
SonetSonet
Sonet
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Ch2 network models
Ch2 network modelsCh2 network models
Ch2 network models
 
Ec 2401 wireless communication unit 3
Ec 2401 wireless communication   unit 3Ec 2401 wireless communication   unit 3
Ec 2401 wireless communication unit 3
 
PCM-Part 1.pptx
PCM-Part 1.pptxPCM-Part 1.pptx
PCM-Part 1.pptx
 
Ch 05
Ch 05Ch 05
Ch 05
 
Coherent systems
Coherent systemsCoherent systems
Coherent systems
 
Speech encoding techniques
Speech encoding techniquesSpeech encoding techniques
Speech encoding techniques
 
Transmission of digital signals
Transmission of digital signalsTransmission of digital signals
Transmission of digital signals
 
optical time division multiplexing
optical time division multiplexingoptical time division multiplexing
optical time division multiplexing
 
Digital Communication 4
Digital Communication 4Digital Communication 4
Digital Communication 4
 

Viewers also liked

CCNAv5 - S2: Chapter1 Introsuction to switched networks
CCNAv5 - S2: Chapter1 Introsuction to switched networksCCNAv5 - S2: Chapter1 Introsuction to switched networks
CCNAv5 - S2: Chapter1 Introsuction to switched networks
Vuz Dở Hơi
 
CCNAv5 - S1: Chapter 1 Exploring The Network
CCNAv5 - S1: Chapter 1 Exploring The NetworkCCNAv5 - S1: Chapter 1 Exploring The Network
CCNAv5 - S1: Chapter 1 Exploring The Network
Vuz Dở Hơi
 
CCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
CCNAv5 - S2: Chapter2 Basic Switching Concepts and ConfigurationCCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
CCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
Vuz Dở Hơi
 
INTRODUCTION TO UML DIAGRAMS
INTRODUCTION TO UML DIAGRAMSINTRODUCTION TO UML DIAGRAMS
INTRODUCTION TO UML DIAGRAMS
Ashita Agrawal
 
Network topologies
Network topologiesNetwork topologies
Network topologies
Norah Saad
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
Wayne Jones Jnr
 
CCNA Network Services
CCNA Network ServicesCCNA Network Services
CCNA Network ServicesDsunte Wilson
 
CCNA Basic Switching and Switch Configuration Questions
CCNA Basic Switching and Switch Configuration QuestionsCCNA Basic Switching and Switch Configuration Questions
CCNA Basic Switching and Switch Configuration QuestionsDsunte Wilson
 
CCNA Routing Protocols
CCNA Routing ProtocolsCCNA Routing Protocols
CCNA Routing ProtocolsDsunte Wilson
 
CCNA Advanced Routing Protocols
CCNA Advanced Routing ProtocolsCCNA Advanced Routing Protocols
CCNA Advanced Routing ProtocolsDsunte Wilson
 
CCNA Router and IOS Basics
CCNA Router and IOS BasicsCCNA Router and IOS Basics
CCNA Router and IOS BasicsDsunte Wilson
 
CCNA PPP and Frame Relay
CCNA PPP and Frame RelayCCNA PPP and Frame Relay
CCNA PPP and Frame RelayDsunte Wilson
 
CCNA Advanced Switching
CCNA Advanced SwitchingCCNA Advanced Switching
CCNA Advanced SwitchingDsunte Wilson
 
CCNA Introducing Networks
CCNA Introducing NetworksCCNA Introducing Networks
CCNA Introducing NetworksDsunte Wilson
 
Introduction to oracle primavera
Introduction to oracle primaveraIntroduction to oracle primavera
Introduction to oracle primaveraDsunte Wilson
 
CCNA Network Devices
CCNA Network DevicesCCNA Network Devices
CCNA Network DevicesDsunte Wilson
 
CCNA Router Startup and Configuration
CCNA Router Startup and ConfigurationCCNA Router Startup and Configuration
CCNA Router Startup and ConfigurationDsunte Wilson
 
CCNA Basic Switching and Switch Configuration
CCNA Basic Switching and Switch ConfigurationCCNA Basic Switching and Switch Configuration
CCNA Basic Switching and Switch ConfigurationDsunte Wilson
 

Viewers also liked (20)

CCNAv5 - S2: Chapter1 Introsuction to switched networks
CCNAv5 - S2: Chapter1 Introsuction to switched networksCCNAv5 - S2: Chapter1 Introsuction to switched networks
CCNAv5 - S2: Chapter1 Introsuction to switched networks
 
CCNAv5 - S1: Chapter 1 Exploring The Network
CCNAv5 - S1: Chapter 1 Exploring The NetworkCCNAv5 - S1: Chapter 1 Exploring The Network
CCNAv5 - S1: Chapter 1 Exploring The Network
 
CCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
CCNAv5 - S2: Chapter2 Basic Switching Concepts and ConfigurationCCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
CCNAv5 - S2: Chapter2 Basic Switching Concepts and Configuration
 
INTRODUCTION TO UML DIAGRAMS
INTRODUCTION TO UML DIAGRAMSINTRODUCTION TO UML DIAGRAMS
INTRODUCTION TO UML DIAGRAMS
 
Network topologies
Network topologiesNetwork topologies
Network topologies
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
 
CCNA Network Services
CCNA Network ServicesCCNA Network Services
CCNA Network Services
 
CCNA Basic Switching and Switch Configuration Questions
CCNA Basic Switching and Switch Configuration QuestionsCCNA Basic Switching and Switch Configuration Questions
CCNA Basic Switching and Switch Configuration Questions
 
CCNA Access Lists
CCNA Access ListsCCNA Access Lists
CCNA Access Lists
 
CCNA Routing Protocols
CCNA Routing ProtocolsCCNA Routing Protocols
CCNA Routing Protocols
 
CCNA Advanced Routing Protocols
CCNA Advanced Routing ProtocolsCCNA Advanced Routing Protocols
CCNA Advanced Routing Protocols
 
CCNA Router and IOS Basics
CCNA Router and IOS BasicsCCNA Router and IOS Basics
CCNA Router and IOS Basics
 
CCNA PPP and Frame Relay
CCNA PPP and Frame RelayCCNA PPP and Frame Relay
CCNA PPP and Frame Relay
 
CCNA Advanced Switching
CCNA Advanced SwitchingCCNA Advanced Switching
CCNA Advanced Switching
 
CCNA Introducing Networks
CCNA Introducing NetworksCCNA Introducing Networks
CCNA Introducing Networks
 
Introduction to oracle primavera
Introduction to oracle primaveraIntroduction to oracle primavera
Introduction to oracle primavera
 
CCNA Network Devices
CCNA Network DevicesCCNA Network Devices
CCNA Network Devices
 
CCNA TCP/IP
CCNA TCP/IPCCNA TCP/IP
CCNA TCP/IP
 
CCNA Router Startup and Configuration
CCNA Router Startup and ConfigurationCCNA Router Startup and Configuration
CCNA Router Startup and Configuration
 
CCNA Basic Switching and Switch Configuration
CCNA Basic Switching and Switch ConfigurationCCNA Basic Switching and Switch Configuration
CCNA Basic Switching and Switch Configuration
 

Similar to Digital Transmission Fundamentals

3. digital transmission fundamentals
3. digital transmission fundamentals3. digital transmission fundamentals
3. digital transmission fundamentalsRovin Valencia
 
Data transmission rate and bandwidth
Data transmission rate and bandwidth Data transmission rate and bandwidth
Data transmission rate and bandwidth
Kajal Chaudhari
 
Digital audio
Digital audioDigital audio
Digital audio
Devashish Raval
 
2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt
PutraPrayoga4
 
Chapter 2- Digital Data Acquistion.ppt
Chapter 2- Digital Data Acquistion.pptChapter 2- Digital Data Acquistion.ppt
Chapter 2- Digital Data Acquistion.ppt
VasanthiMuniasamy2
 
multimedia chapter1
multimedia chapter1multimedia chapter1
multimedia chapter1nes
 
Multimedia data compression challenge and their solution
Multimedia data compression challenge and their solutionMultimedia data compression challenge and their solution
Multimedia data compression challenge and their solution
shamsbhai495
 
Digitization of Audio.ppt
Digitization of Audio.pptDigitization of Audio.ppt
Digitization of Audio.pptVideoguy
 
Mk3422222228
Mk3422222228Mk3422222228
Mk3422222228
IJERA Editor
 
Multimedia
MultimediaMultimedia
Multimedia
BUDNET
 
2[1].1 data transmission
2[1].1 data transmission2[1].1 data transmission
2[1].1 data transmissionHattori Sidek
 
Linear Programming Case Study - Maximizing Audio Quality
Linear Programming Case Study - Maximizing Audio QualityLinear Programming Case Study - Maximizing Audio Quality
Linear Programming Case Study - Maximizing Audio QualitySharad Srivastava
 
Mm01 a vformat
Mm01 a vformatMm01 a vformat
Mm01 a vformatgotovikas
 
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
wadzani umaru
 
03-DataTransmission.ppt
03-DataTransmission.ppt03-DataTransmission.ppt
03-DataTransmission.ppt
Praches1
 
Voice over IP (VoIP)
Voice over IP (VoIP)Voice over IP (VoIP)
Voice over IP (VoIP)
Peter R. Egli
 
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
ZeyadAlabsy
 
4 signal encodingtechniques
4 signal encodingtechniques4 signal encodingtechniques
4 signal encodingtechniquesHattori Sidek
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
Joe Christensen
 

Similar to Digital Transmission Fundamentals (20)

3. digital transmission fundamentals
3. digital transmission fundamentals3. digital transmission fundamentals
3. digital transmission fundamentals
 
Data transmission rate and bandwidth
Data transmission rate and bandwidth Data transmission rate and bandwidth
Data transmission rate and bandwidth
 
Digital audio
Digital audioDigital audio
Digital audio
 
2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt
 
Chapter 2- Digital Data Acquistion.ppt
Chapter 2- Digital Data Acquistion.pptChapter 2- Digital Data Acquistion.ppt
Chapter 2- Digital Data Acquistion.ppt
 
multimedia chapter1
multimedia chapter1multimedia chapter1
multimedia chapter1
 
Multimedia data compression challenge and their solution
Multimedia data compression challenge and their solutionMultimedia data compression challenge and their solution
Multimedia data compression challenge and their solution
 
Digitization of Audio.ppt
Digitization of Audio.pptDigitization of Audio.ppt
Digitization of Audio.ppt
 
Mk3422222228
Mk3422222228Mk3422222228
Mk3422222228
 
Multimedia
MultimediaMultimedia
Multimedia
 
Multimedia
Multimedia Multimedia
Multimedia
 
2[1].1 data transmission
2[1].1 data transmission2[1].1 data transmission
2[1].1 data transmission
 
Linear Programming Case Study - Maximizing Audio Quality
Linear Programming Case Study - Maximizing Audio QualityLinear Programming Case Study - Maximizing Audio Quality
Linear Programming Case Study - Maximizing Audio Quality
 
Mm01 a vformat
Mm01 a vformatMm01 a vformat
Mm01 a vformat
 
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
AUDIO VOICE RECORDER AND TRANSMISSION THROUGH A WIRELESS MEDIUM BETWEEN PC AN...
 
03-DataTransmission.ppt
03-DataTransmission.ppt03-DataTransmission.ppt
03-DataTransmission.ppt
 
Voice over IP (VoIP)
Voice over IP (VoIP)Voice over IP (VoIP)
Voice over IP (VoIP)
 
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
03_04-AnalogDigital-HYanikomeroglu-12Jan2011_14Jan2011_Old1.ppt
 
4 signal encodingtechniques
4 signal encodingtechniques4 signal encodingtechniques
4 signal encodingtechniques
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 

More from Aisu

ma project
ma projectma project
ma projectAisu
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton RaphsonAisu
 
Aisuphysics
AisuphysicsAisuphysics
AisuphysicsAisu
 
Dreaming In Arabicnovel
Dreaming In ArabicnovelDreaming In Arabicnovel
Dreaming In ArabicnovelAisu
 
The Society For The Betterment Of Mankind
The Society For The Betterment Of MankindThe Society For The Betterment Of Mankind
The Society For The Betterment Of MankindAisu
 
8251 08 Serial
8251 08 Serial8251 08 Serial
8251 08 SerialAisu
 
8251
82518251
8251Aisu
 
11 Serial 0515
11 Serial 051511 Serial 0515
11 Serial 0515Aisu
 
Io (2)
Io (2)Io (2)
Io (2)Aisu
 
I Ointerface in mp
I Ointerface in mpI Ointerface in mp
I Ointerface in mpAisu
 
Display1in mp
Display1in mpDisplay1in mp
Display1in mpAisu
 
Display11 in mp
Display11 in mpDisplay11 in mp
Display11 in mpAisu
 
8279 in microprocessor
8279 in microprocessor8279 in microprocessor
8279 in microprocessorAisu
 
8259 A P R O G R A M M A B L E I N T E R R U P T C O N T R O L L E R2
8259 A  P R O G R A M M A B L E  I N T E R R U P T  C O N T R O L L E R28259 A  P R O G R A M M A B L E  I N T E R R U P T  C O N T R O L L E R2
8259 A P R O G R A M M A B L E I N T E R R U P T C O N T R O L L E R2Aisu
 
db
dbdb
dbAisu
 
Timer
TimerTimer
TimerAisu
 
Serial Io
Serial IoSerial Io
Serial IoAisu
 
Interrupt11
Interrupt11Interrupt11
Interrupt11Aisu
 
B Trees
B TreesB Trees
B Trees
Aisu
 
overview of physical storage media
overview of physical storage mediaoverview of physical storage media
overview of physical storage media
Aisu
 

More from Aisu (20)

ma project
ma projectma project
ma project
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton Raphson
 
Aisuphysics
AisuphysicsAisuphysics
Aisuphysics
 
Dreaming In Arabicnovel
Dreaming In ArabicnovelDreaming In Arabicnovel
Dreaming In Arabicnovel
 
The Society For The Betterment Of Mankind
The Society For The Betterment Of MankindThe Society For The Betterment Of Mankind
The Society For The Betterment Of Mankind
 
8251 08 Serial
8251 08 Serial8251 08 Serial
8251 08 Serial
 
8251
82518251
8251
 
11 Serial 0515
11 Serial 051511 Serial 0515
11 Serial 0515
 
Io (2)
Io (2)Io (2)
Io (2)
 
I Ointerface in mp
I Ointerface in mpI Ointerface in mp
I Ointerface in mp
 
Display1in mp
Display1in mpDisplay1in mp
Display1in mp
 
Display11 in mp
Display11 in mpDisplay11 in mp
Display11 in mp
 
8279 in microprocessor
8279 in microprocessor8279 in microprocessor
8279 in microprocessor
 
8259 A P R O G R A M M A B L E I N T E R R U P T C O N T R O L L E R2
8259 A  P R O G R A M M A B L E  I N T E R R U P T  C O N T R O L L E R28259 A  P R O G R A M M A B L E  I N T E R R U P T  C O N T R O L L E R2
8259 A P R O G R A M M A B L E I N T E R R U P T C O N T R O L L E R2
 
db
dbdb
db
 
Timer
TimerTimer
Timer
 
Serial Io
Serial IoSerial Io
Serial Io
 
Interrupt11
Interrupt11Interrupt11
Interrupt11
 
B Trees
B TreesB Trees
B Trees
 
overview of physical storage media
overview of physical storage mediaoverview of physical storage media
overview of physical storage media
 

Recently uploaded

Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)
CristianMestre
 
IrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptxIrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptx
Aine Greaney Ellrott
 
Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)
SuryaKalyan3
 
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives ProjectthGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
Marc Dusseiller Dusjagr
 
The Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance LindallThe Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance Lindall
BBaez1
 
2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories
luforfor
 
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
luforfor
 
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
beduwt
 
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
taqyed
 
Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menangSundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Situs Slot gacor dan terpercaya
 
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERSART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
Sandhya J.Nair
 
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, BesCLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
aditiyad2020
 
一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单
zvaywau
 
acting board rough title here lolaaaaaaa
acting board rough title here lolaaaaaaaacting board rough title here lolaaaaaaa
acting board rough title here lolaaaaaaa
angelicafronda7
 
Codes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new newCodes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new new
ZackSpencer3
 
ashokathegreat project class 12 presentation
ashokathegreat project class 12 presentationashokathegreat project class 12 presentation
ashokathegreat project class 12 presentation
aditiyad2020
 
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
iraqartsandculture
 
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
zvaywau
 
Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)
SuryaKalyan3
 

Recently uploaded (20)

Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)
 
IrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptxIrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptx
 
Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)
 
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives ProjectthGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
 
European Cybersecurity Skills Framework Role Profiles.pdf
European Cybersecurity Skills Framework Role Profiles.pdfEuropean Cybersecurity Skills Framework Role Profiles.pdf
European Cybersecurity Skills Framework Role Profiles.pdf
 
The Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance LindallThe Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance Lindall
 
2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories
 
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
 
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
 
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
 
Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menangSundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menang
 
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERSART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
 
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, BesCLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
 
一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单
 
acting board rough title here lolaaaaaaa
acting board rough title here lolaaaaaaaacting board rough title here lolaaaaaaa
acting board rough title here lolaaaaaaa
 
Codes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new newCodes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new new
 
ashokathegreat project class 12 presentation
ashokathegreat project class 12 presentationashokathegreat project class 12 presentation
ashokathegreat project class 12 presentation
 
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
 
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
 
Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)
 

Digital Transmission Fundamentals

  • 1. Chapter 3 Digital Transmission Fundamentals Contain slides by Leon-Garcia and Widjaja
  • 2. Chapter 3 Digital Transmission Fundamentals Digital Representation of Information Why Digital Communications? Digital Representation of Analog Signals Characterization of Communication Channels Fundamental Limits in Digital Transmission Line Coding Modems and Digital Modulation Properties of Media and Digital Transmission Systems Error Detection and Correction
  • 3.
  • 4.
  • 5. Chapter 3 Digital Transmission Fundamentals Digital Representation of Information
  • 6.
  • 7.
  • 8.
  • 9.
  • 10. Color Image = + + Color image Red component image Green component image Blue component image Total bits = 3  H  W pixels  B bits/pixel = 3HWB bits Example: 8  10 inch picture at 400  400 pixels per inch 2 400  400  8  10 = 12.8 million pixels 8 bits/pixel/color 12.8 megapixels  3 bytes/pixel = 38.4 megabytes H W H W H W H W
  • 11. Examples of Block Information 1-8 Mbytes (5-30) 38.4 Mbytes 8x10 in 2 photo 400 2 pixels/in 2 JPEG Color Image 5-54 kbytes (5-50) 256 kbytes A4 page 200x100 pixels/in 2 CCITT Group 3 Fax (2-6) Kbytes- Mbytes ASCII Zip, compress Text Compressed(Ratio) Original Format Method Type
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. Video Frames Broadcast TV at 30 frames/sec = 10.4 x 10 6 pixels/sec 720 480 HDTV at 30 frames/sec = 67 x 10 6 pixels/sec 1080 1920 QCIF videoconferencing at 30 frames/sec = 760,000 pixels/sec 144 176
  • 18. Digital Video Signals 19-38 Mbps 1.6 Gbps 1920x1080 @30 fr/sec MPEG2 HDTV 2-6 Mbps 249 Mbps 720x480 pix @30 fr/sec MPEG2 Full Motion 64-1544 kbps 2-36 Mbps 176x144 or 352x288 pix @10-30 fr/sec H.261 Video Confer-ence Compressed Original Format Method Type
  • 19.
  • 20.
  • 21. Chapter 3 Communication Networks and Services Why Digital Communications?
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. Bit Rates of Digital Transmission Systems Many wavelengths >1600 Gbps Optical fiber 1 wavelength 2.5-10 Gbps Optical fiber 5 km multipoint radio 1.5-45 Mbps 28 GHz radio IEEE 802.11 wireless LAN 2-11 Mbps 2.4 GHz radio Coexists with analog telephone signal 64-640 kbps in, 1.536-6.144 Mbps out ADSL twisted pair Shared CATV return channel 500 kbps-4 Mbps Cable modem 100 meters of unshielded twisted copper wire pair 10 Mbps, 100 Mbps Ethernet twisted pair 4 kHz telephone channel 33.6-56 kbps Telephone twisted pair Observations Bit Rate System
  • 28. Examples of Channels 40 Gbps / wavelength Many TeraHertz Optical fiber 54 Mbps / channel 300 MHz (11 channels) 5 GHz radio (IEEE 802.11) 30 Mbps/ channel 500 MHz (6 MHz channels) Coaxial cable 1-6 Mbps 1 MHz Copper pair 33 kbps 3 kHz Telephone voice channel Bit Rates Bandwidth Channel
  • 29. Chapter 3 Digital Transmission Fundamentals Digital Representation of Analog Signals
  • 30.
  • 31.
  • 32.
  • 33. Example Fourier Series Only odd harmonics have power T 1 = 1 ms 1 1 1 1 0 0 0 0 . . . . . . t x 2 (t) 1 0 1 0 1 0 1 0 . . . . . . t T 2 =0.25 ms x 1 (t) x 1 ( t ) = 0 + cos(2  4000 t ) + cos(2  3(4000) t ) + cos(2  5(4000) t ) + … 4  4 5  4 3  x 2 ( t ) = 0 + cos(2  1000 t ) + cos(2  3(1000) t ) + cos(2  5(1000) t ) + … 4  4 5  4 3 
  • 34.
  • 35.
  • 36. Sampling Theorem Interpolation filter (a) (b) Nyquist: Perfect reconstruction if sampling rate 1/ T > 2 W s Sampler t x(t) t x(nT) t x(t) t x(nT)
  • 37. Digital Transmission of Analog Information Interpolation filter Display or playout 2 W samples / sec 2 W m bits/sec x(t) Bandwidth W Sampling (A/D) Quantization Analog source 2 W samples / sec m bits / sample Pulse generator y(t) Original Approximation Transmission or storage
  • 38.
  • 39. Quantizer Performance M = 2 m levels, Dynamic range( - V , V ) Δ = 2 V/M Average Noise Power = Mean Square Error: If the number of levels M is large, then the error is approximately uniformly distributed between (- Δ /2, Δ 2) ... error = y(nT)-x(nT)=e(nT) input ...      x(nT) V -V σ e 2 = x 2 dx = Δ 2 12 1 Δ ∫ Δ 2 Δ 2
  • 40.
  • 41.
  • 42. Chapter 3 Digital Transmission Fundamentals Characterization of Communication Channels
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57. Chapter 3 Digital Transmission Fundamentals Fundamental Limits in Digital Transmission
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67. Channel Noise affects Reliability High SNR Low SNR SNR = Average Signal Power Average Noise Power SNR (dB) = 10 log 10 SNR virtually error-free error-prone signal noise signal + noise signal noise signal + noise
  • 68.
  • 69.
  • 70. Chapter 3 Digital Transmission Fundamentals Line Coding
  • 71.
  • 72. Line coding examples NRZ-inverted (differential encoding) 1 0 1 0 1 1 0 0 1 Unipolar NRZ Bipolar encoding Manchester encoding Differential Manchester encoding Polar NRZ
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78. Chapter 3 Digital Transmission Fundamentals Modems and Digital Modulation
  • 79.
  • 80. Amplitude Modulation and Frequency Modulation Information +1 -1 Amplitude Shift Keying +1 -1 Frequency Shift Keying t t Map bits into amplitude of sinusoid: “1” send sinusoid; “0” no sinusoid Demodulator looks for signal vs. no signal Map bits into frequency: “1” send frequency f c +  ; “0” send frequency f c -  Demodulator looks for power around f c +  or f c -  1 1 1 1 0 0 0 T 2 T 3 T 4 T 5 T 6 T 0 T 2 T 3 T 4 T 5 T 6 T
  • 81.
  • 82. Modulator & Demodulator Modulate cos(2  f c t ) by multiplying by A k for T seconds: A k x cos(2  f c t ) Y i ( t ) = A k cos(2  f c t ) Transmitted signal during k th interval Demodulate (recover A k ) by multiplying by 2cos(2  f c t ) for T seconds and lowpass filtering (smoothing): x 2cos(2  f c t ) 2 A k cos 2 (2  f c t ) = A k {1 + cos(2  2 f c t )} Lowpass Filter (Smoother) X i (t) Y i ( t ) = A k cos(2  f c t ) Received signal during k th interval
  • 83. Example of Modulation Information Baseband Signal Modulated Signal x(t) A cos(2  ft) -A cos(2  ft) 1 1 1 1 0 0 +A -A 0 T 2T 3T 4T 5T 6T +A -A 0 T 2T 3T 4T 5T 6T
  • 84. Example of Demodulation Recovered Information Baseband signal discernable after smoothing After multiplication at receiver x(t) cos(2  f c t ) +A -A 0 T 2T 3T 4T 5T 6T A {1 + cos(4  ft )} -A {1 + cos(4  ft )} 1 1 1 1 0 0 +A -A 0 T 2T 3T 4T 5T 6T
  • 85.
  • 86.
  • 87. QAM Demodulation Y(t) x 2cos(2  f c t ) 2cos 2 (2  f c t )+2B k cos(2  f c t )sin(2  f c t ) = A k {1 + cos(4  f c t )}+ B k {0 + sin(4  f c t )} Lowpass filter (smoother) A k 2 B k sin 2 (2  f c t )+2A k cos(2  f c t )sin(2  f c t ) = B k {1 - cos(4  f c t )}+ A k {0 + sin(4  f c t )} x 2sin(2  f c t ) B k Lowpass filter (smoother) smoothed to zero smoothed to zero
  • 88.
  • 89.
  • 90.
  • 91. Chapter 3 Digital Transmission Fundamentals Properties of Media and Digital Transmission Systems
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101. Cable Network Topology Head end Upstream fiber Downstream fiber Fiber node Coaxial distribution plant Fiber node = Bidirectional split-band amplifier Fiber Fiber
  • 102.
  • 103.
  • 104.
  • 105.
  • 106. Very Low Attenuation 850 nm Low-cost LEDs LANs 1300 nm Metropolitan Area Networks “ Short Haul” 1550 nm Long Distance Networks “ Long Haul Water Vapor Absorption (removed in new fiber designs) 100 50 10 5 1 0.5 0.1 0.05 0.01 0.8 1.0 1.2 1.4 1.6 1.8 Wavelength (  m) Loss (dB/km) Infrared absorption Rayleigh scattering
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114. Radio Spectrum 10 4 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Frequency (Hz) Wavelength (meters) 10 3 10 2 10 1 1 10 -1 10 -2 10 -3 10 5 Satellite and terrestrial microwave AM radio FM radio and TV LF MF HF VHF UHF SHF EHF 10 4 Cellular and PCS Wireless cable Omni-directional applications Point-to-Point applications
  • 115.
  • 116. Chapter 3 Digital Transmission Fundamentals Error Detection and Correction
  • 117.
  • 118.
  • 119.
  • 120.
  • 121. Checkbits & Error Detection Calculate check bits Channel Recalculate check bits Compare Information bits Received information bits Sent check bits Information accepted if check bits match Received check bits k bits n – k bits
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127. Error-detecting capability 1, 2, or 3 errors can always be detected; Not all patterns >4 errors can be detected 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 Arrows indicate failed check bits Two errors One error Three errors Four errors (undetectable)
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139. Division Circuit Clock Input Reg 0 Reg 1 Reg 2 0 - 0 0 0 1 1 = i 3 1 0 0 2 1 = i 2 1 1 0 3 0 = i 1 0 1 1 4 0 = i 0 1 1 1 5 0 1 0 1 6 0 1 0 0 7 0 0 1 0 Check bits: r 0 = 0 r 1 = 1 r 2 = 0 r(x) = x Reg 0 + + Encoder for g(x) = x 3 + x + 1 Reg 1 Reg 2 0,0,0,i 0 ,i 1 ,i 2 ,i 3 g 0 = 1 g 1 = 1 g 3 = 1
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146. Hamming (7,4) code 7 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 0 0 0 0 1 1 1 0 4 1 1 0 1 0 1 0 1 1 0 1 4 1 1 0 0 1 0 1 1 1 0 0 4 1 0 1 1 1 0 0 1 0 1 1 4 1 0 1 0 0 1 1 1 0 1 0 3 1 0 0 1 0 0 1 1 0 0 1 3 1 0 0 0 1 1 0 1 0 0 0 4 0 1 1 1 0 0 1 0 1 1 1 4 0 1 1 0 1 1 0 0 1 1 0 3 0 1 0 1 1 0 0 0 1 0 1 3 0 1 0 0 0 1 1 0 1 0 0 3 0 0 1 1 0 1 0 0 0 1 1 3 0 0 1 0 1 0 1 0 0 1 0 4 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 w ( b ) b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 1 b 2 b 3 b 4 Weight Codeword Information
  • 147.
  • 148. Error Detection with Hamming Code 0 0 1 0 0 0 0 s = H e = = 1 0 1 Single error detected 0 1 0 0 1 0 0 s = H e = = + = 0 1 1 Double error detected 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 s = H e = = + + = 0 1 1 0 Triple error not detected 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1
  • 149.
  • 150.
  • 151.
  • 152.
  • 153. Chapter 3 Digital Transmission Fundamentals RS-232 Asynchronous Data Transmission
  • 154.
  • 155. Pins in RS-232 connector DTE DCE Protective Ground (PGND) Transmit Data (TXD) Receive Data (RXD) Request to Send (RTS) Clear to Send (CTS) Data Set Ready (DSR) Ground (G) Carrier Detect (CD) Data Terminal Ready (DTR) Ring Indicator (RI) 1 2 3 4 5 6 7 8 20 22 1 2 3 4 5 6 7 8 20 22 (b) 13 (a)                          1 25 14
  • 156.
  • 157.
  • 158.
  • 159.