SlideShare a Scribd company logo
Differentiation Chap 9

Objective: How to find
Stationary Points
&
determine their nature
(maximum/minimum)
riazidan
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
on the curve y = x 3 − 3 x 2 − 9 x
y = x3 − 3x2 − 9x
Solution:

dy
⇒
= 3x2 − 6x − 9
dx
dy
⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0
=0
dx
3( x − out + 1 = 0 ⇒ x = 3
Tip: Watch 3)( xfor )common factors or x = −1
x = 3 when finding )stationary points.
⇒ y = ( 3 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Exercises
Find the coordinates of the stationary points of the
following functions
2
1. y = x − 4 x + 5

2.

y = 2 x 3 + 3 x 2 − 12 x + 1

Solutions:
dy
1.
= 2x − 4

dx
dy
= 0 ⇒ 2x − 4 = 0
dx
⇒ x=2

x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1
Ans: St. pt. is ( 2, 1)
y = 2 x 3 + 3 x 2 − 12 x + 1

2.
Solution:

dy
= 6 x 2 + 6 x − 12
dx

dy
= 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0
dx
⇒ x = 1 or x = −2
x = 1 ⇒ y = −6
x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21
Ans: St. pts. are ( 1, −6) and ( −2, 21 )
We need to be able to determine the nature of a
stationary point ( whether it is a max or a min ).
There are several ways of doing this. e.g.
On the left of
a maximum,
the gradient is
positive

+

On the right of
a maximum,
the gradient is
negative

−
So, for a max the gradients are
0 At the max
On the left of
On the right of
the max
the max

−

+

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right of a
stationary point tells us whether the point is a max or a
min.
e.g.2 Find the coordinates of the stationary point of the
2
curve y = x − 4 x + 1 . Is the point a max or min?

− − − − − − (1)
y = x2 − 4x + 1
Solution:
dy
⇒
= 2x − 4
dx
dy
=0
⇒
2x − 4 = 0 ⇒ x = 2
dx
y = ( 2) 2 − 4( 2) + 1
⇒ y = −3
Substitute in (1):
dy
= 2(1) − 4 = − 2 < 0
On the left of x = 2 e.g. at x = 1,
dx
dy
On the right of x = 2 e.g. at x = 3,
= 2( 3) − 4 = 2 > 0
dx
+
−
⇒ ( 2, − 3) is a min
We have
0
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is 0
but the gradient of the gradient is negative.
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of

y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
e.g.3 ( continued ) Find the stationary points on the
curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between
the max and the min.
y = x 3 + 3 x 2 − 9 x + 10
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
2
dy
2 d y
Stationary points:
= 0 ⇒ 3 x + 6 x −is called the
9=0
dx
dx 2 nd
2 derivative
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative, at the stationary points.

d2y
2

= 6x + 6

dx
d y
= 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
At x = −3 ,
2
dx
2

At x = 1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points

+

−
•

⇒ minimum

0

0

+

−

⇒

maximum

or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min
Exercises
Find the coordinates of the stationary points of the
following functions, determine the nature of each
and sketch the functions.
3
2
3

2

y = x + 3x − 2
Ans. (0, − 2) is a min.

1.

(−2 , 2)
2.

y = x + 3x − 2

is a max.

y = 2 + 3x − x3

Ans. (−1, 0)

(1 , 4)

is a min.
is a max.

y = 2 + 3x − x3
The following slides contain repeats of
information on earlier slides, shown without
colour, so that they can be printed and
photocopied.
For most purposes the slides can be printed
as “Handouts” with up to 6 slides per sheet.
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
y = x3 − 3x2 − 9x
on the curve
Solution:

⇒
dy
=0
dx

⇒

y = x3 − 3x2 − 9x
dy
= 3x2 − 6x − 9
dx
3x2 − 6x − 9 = 0 ⇒

3( x 2 − 2 x − 3) = 0

3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1
x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Determining the nature of a Stationary Point
For a max we have
On the left of
the max

+

0

At the max

−

On the right of
the max

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right
of a stationary point tells us whether the point
is a max or a min.
Another method for determining the nature of a
stationary point.
e.g. Consider

y

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is
0, but the gradient of the gradient is negative.
y = x 3 + 3 x 2 − 9 x + 10
The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of
y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
The gradient of the gradient is called the 2nd
derivative and is written as

d2y
dx 2
e.g. Find the stationary points on the curve
3
y = xand 3distinguish between the max
+ x 2 − 9 x + 10

and the=min.+ 3 x 2 − 9 x + 10
y x3
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
dy
Stationary points:
= 0 ⇒ 3x2 + 6x − 9 = 0
dx
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative,
d2y
2

= 6x + 6

dx
d2y
At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
dx
At

x =1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points
0
−
+
−
⇒ maximum
⇒ minimum +
0
• or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min

More Related Content

What's hot

Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
Matthew Leingang
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
Ron Eick
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functions
Victoria Ball
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Matthew Leingang
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theorem
cmorgancavo
 
Integration by Parts & by Partial Fractions
Integration by Parts & by Partial FractionsIntegration by Parts & by Partial Fractions
Integration by Parts & by Partial Fractions
MuhammadAliSiddique1
 
FM calculus
FM calculusFM calculus
FM calculus
Mike Hoad
 
Function transformations
Function transformationsFunction transformations
Function transformations
Terry Gastauer
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
Digvijaysinh Gohil
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
Department of Education
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
Rnold Wilson
 
2.4 Linear Functions
2.4 Linear Functions2.4 Linear Functions
2.4 Linear Functions
smiller5
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
hisema01
 
Deriving the composition of functions
Deriving the composition of functionsDeriving the composition of functions
Deriving the composition of functions
Alona Hall
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
Ayesha Ch
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
Matthew Leingang
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
Matthew Leingang
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS
Rc Os
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving Infinity
Matthew Leingang
 

What's hot (20)

Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functions
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theorem
 
Integration by Parts & by Partial Fractions
Integration by Parts & by Partial FractionsIntegration by Parts & by Partial Fractions
Integration by Parts & by Partial Fractions
 
FM calculus
FM calculusFM calculus
FM calculus
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
2.4 Linear Functions
2.4 Linear Functions2.4 Linear Functions
2.4 Linear Functions
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
 
Deriving the composition of functions
Deriving the composition of functionsDeriving the composition of functions
Deriving the composition of functions
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
Derivatives
DerivativesDerivatives
Derivatives
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving Infinity
 

Viewers also liked

Stationary points
Stationary pointsStationary points
Stationary points
Shaun Wilson
 
IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative test
estelav
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
coburgmaths
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative test
estelav
 
C4 2012 june
C4 2012 juneC4 2012 june
C4 2012 june
anicholls1234
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
anicholls1234
 
Simltaneous equations
Simltaneous equationsSimltaneous equations
Simltaneous equations
Mohammed Ahmed
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2
anicholls1234
 
C3 bronze 1
C3 bronze 1C3 bronze 1
C3 bronze 1
Mohammed Ahmed
 
Kinematics
KinematicsKinematics
Kinematics
Mohammed Ahmed
 
M1 January 2012 QP
M1 January 2012 QPM1 January 2012 QP
M1 January 2012 QP
anicholls1234
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
anicholls1234
 
C3 2012 june
C3 2012 juneC3 2012 june
C3 2012 june
anicholls1234
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)
Mohammed Ahmed
 
Kinematics jan 27
Kinematics jan 27Kinematics jan 27
Kinematics jan 27
Mohammed Ahmed
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphs
Mohammed Ahmed
 
C4 EDEXCEL HELP
C4 EDEXCEL HELPC4 EDEXCEL HELP
C4 EDEXCEL HELP
anicholls1234
 
dynamics text (M1)
dynamics text (M1)dynamics text (M1)
dynamics text (M1)
Mohammed Ahmed
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functions
Shaun Wilson
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variables
SHAMJITH KM
 

Viewers also liked (20)

Stationary points
Stationary pointsStationary points
Stationary points
 
IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative test
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative test
 
C4 2012 june
C4 2012 juneC4 2012 june
C4 2012 june
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Simltaneous equations
Simltaneous equationsSimltaneous equations
Simltaneous equations
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2
 
C3 bronze 1
C3 bronze 1C3 bronze 1
C3 bronze 1
 
Kinematics
KinematicsKinematics
Kinematics
 
M1 January 2012 QP
M1 January 2012 QPM1 January 2012 QP
M1 January 2012 QP
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
C3 2012 june
C3 2012 juneC3 2012 june
C3 2012 june
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)
 
Kinematics jan 27
Kinematics jan 27Kinematics jan 27
Kinematics jan 27
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphs
 
C4 EDEXCEL HELP
C4 EDEXCEL HELPC4 EDEXCEL HELP
C4 EDEXCEL HELP
 
dynamics text (M1)
dynamics text (M1)dynamics text (M1)
dynamics text (M1)
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functions
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variables
 

Similar to Differentiation jan 21, 2014

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
fatima d
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
dicosmo178
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
AaronChi5
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
Lina Ša
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
Renate Rohrs
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
Yanbu Industrial College
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
Allanna Unias
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
Educación
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
claire meadows-smith
 
整卷
整卷整卷
Integration
IntegrationIntegration
Integration
SharingIsCaring1000
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
akabaka12
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
Zerick Lucernas
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
Kuan-Lun Wang
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
tenwoalex
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
Kuan-Lun Wang
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
Nazrin Nazdri
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
kaveeshasathsarani3
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
Arvy Crescini
 

Similar to Differentiation jan 21, 2014 (20)

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
 
整卷
整卷整卷
整卷
 
Integration
IntegrationIntegration
Integration
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 

More from Mohammed Ahmed

vectors
vectorsvectors
vectors
vectorsvectors
Moments
MomentsMoments
statics
staticsstatics
Chap 3 3a to 3d
Chap 3 3a to 3dChap 3 3a to 3d
Chap 3 3a to 3d
Mohammed Ahmed
 
C2 differentiation jan 22
C2 differentiation jan 22C2 differentiation jan 22
C2 differentiation jan 22
Mohammed Ahmed
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
Mohammed Ahmed
 

More from Mohammed Ahmed (7)

vectors
vectorsvectors
vectors
 
vectors
vectorsvectors
vectors
 
Moments
MomentsMoments
Moments
 
statics
staticsstatics
statics
 
Chap 3 3a to 3d
Chap 3 3a to 3dChap 3 3a to 3d
Chap 3 3a to 3d
 
C2 differentiation jan 22
C2 differentiation jan 22C2 differentiation jan 22
C2 differentiation jan 22
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 

Recently uploaded

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 

Recently uploaded (20)

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 

Differentiation jan 21, 2014

  • 1. Differentiation Chap 9 Objective: How to find Stationary Points & determine their nature (maximum/minimum) riazidan
  • 2. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 3. e.g.1 Find the coordinates of the stationary points on the curve y = x 3 − 3 x 2 − 9 x y = x3 − 3x2 − 9x Solution: dy ⇒ = 3x2 − 6x − 9 dx dy ⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 =0 dx 3( x − out + 1 = 0 ⇒ x = 3 Tip: Watch 3)( xfor )common factors or x = −1 x = 3 when finding )stationary points. ⇒ y = ( 3 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 4. Exercises Find the coordinates of the stationary points of the following functions 2 1. y = x − 4 x + 5 2. y = 2 x 3 + 3 x 2 − 12 x + 1 Solutions: dy 1. = 2x − 4 dx dy = 0 ⇒ 2x − 4 = 0 dx ⇒ x=2 x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1 Ans: St. pt. is ( 2, 1)
  • 5. y = 2 x 3 + 3 x 2 − 12 x + 1 2. Solution: dy = 6 x 2 + 6 x − 12 dx dy = 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0 dx ⇒ x = 1 or x = −2 x = 1 ⇒ y = −6 x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21 Ans: St. pts. are ( 1, −6) and ( −2, 21 )
  • 6. We need to be able to determine the nature of a stationary point ( whether it is a max or a min ). There are several ways of doing this. e.g. On the left of a maximum, the gradient is positive + On the right of a maximum, the gradient is negative −
  • 7. So, for a max the gradients are 0 At the max On the left of On the right of the max the max − + The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 8. e.g.2 Find the coordinates of the stationary point of the 2 curve y = x − 4 x + 1 . Is the point a max or min? − − − − − − (1) y = x2 − 4x + 1 Solution: dy ⇒ = 2x − 4 dx dy =0 ⇒ 2x − 4 = 0 ⇒ x = 2 dx y = ( 2) 2 − 4( 2) + 1 ⇒ y = −3 Substitute in (1): dy = 2(1) − 4 = − 2 < 0 On the left of x = 2 e.g. at x = 1, dx dy On the right of x = 2 e.g. at x = 3, = 2( 3) − 4 = 2 > 0 dx + − ⇒ ( 2, − 3) is a min We have 0
  • 9. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0 but the gradient of the gradient is negative.
  • 10. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 11. e.g.3 ( continued ) Find the stationary points on the curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between the max and the min. y = x 3 + 3 x 2 − 9 x + 10 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx 2 dy 2 d y Stationary points: = 0 ⇒ 3 x + 6 x −is called the 9=0 dx dx 2 nd 2 derivative ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 12. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, at the stationary points. d2y 2 = 6x + 6 dx d y = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) At x = −3 , 2 dx 2 At x = 1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 13. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points + − • ⇒ minimum 0 0 + − ⇒ maximum or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min
  • 14. Exercises Find the coordinates of the stationary points of the following functions, determine the nature of each and sketch the functions. 3 2 3 2 y = x + 3x − 2 Ans. (0, − 2) is a min. 1. (−2 , 2) 2. y = x + 3x − 2 is a max. y = 2 + 3x − x3 Ans. (−1, 0) (1 , 4) is a min. is a max. y = 2 + 3x − x3
  • 15.
  • 16. The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.
  • 17. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 18. e.g.1 Find the coordinates of the stationary points y = x3 − 3x2 − 9x on the curve Solution: ⇒ dy =0 dx ⇒ y = x3 − 3x2 − 9x dy = 3x2 − 6x − 9 dx 3x2 − 6x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1 x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 19. Determining the nature of a Stationary Point For a max we have On the left of the max + 0 At the max − On the right of the max The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 20. Another method for determining the nature of a stationary point. e.g. Consider y y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0, but the gradient of the gradient is negative.
  • 21. y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 22. The gradient of the gradient is called the 2nd derivative and is written as d2y dx 2
  • 23. e.g. Find the stationary points on the curve 3 y = xand 3distinguish between the max + x 2 − 9 x + 10 and the=min.+ 3 x 2 − 9 x + 10 y x3 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx dy Stationary points: = 0 ⇒ 3x2 + 6x − 9 = 0 dx ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 24. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, d2y 2 = 6x + 6 dx d2y At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) dx At x =1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 25. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points 0 − + − ⇒ maximum ⇒ minimum + 0 • or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min