I N T R O D U C T I O N T O
Mohd Noor Abdul Hamid, Ph.D
What is
1. Introduction to Function:
Function = a rule that assigns each input number (x)
exactly one output number (y)
Function :UniversityInput: Students
Output: Graduate/
Worker
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
y = x + 2
Function fx = 1
Input (x)
1 + 2 = 3
Output (y)
x = -4 -4 + 2 = -2
Thus, the rule define y as a function of x
1 to 1
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
y2 = xX = 9
Y = + 3
Y = - 3
y2 = x did not define y as a function of x
1 to Many
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Y = x2 -1
X = 3
Y = 8
X = -3
Y = x2-1 did / did not define y as a function of x??
Many to 1
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
2. Functional Notation
Usually, the letters ƒ, g, h, F, G is used to
represent the function rules.
Example: y = x + 2 can be written as,
ƒ(x) = x + 2, where ƒ(x) is the output
for the function ƒ
with x as the input
Therefore, the output ƒ(x) is equal to y
(that is : y = ƒ(x))
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Example : Given the function f(x) = 4x – 3
5
a)Compute f(2)
f(2) = 4(2) – 3 = 5 = 1
5 5
b) What is the value of x, if f(x) = 3?
3 = 4x – 3
5
15 = 4x -3
18 = 4x
x = 18 = 9
4 2
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Exercise 1:
Find the value f(3) for the function
f(x)=2x-1
Solution:
f(3) = 2(3) -1
= 6 -1
= 5
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Exercise 2:
Given the function:
f(x) = x2 + 3
2
If f(x) = 6, determine the corresponding value of x
Solution:
f(x) = 6 = x2+3
2
12 = x2+3
9 = x2
x = ±3
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Exercise 3:
Given h(u) =
u
u 4
Find:
a)h(5)
b)h(-4)
c)h(u-4)
Answer:
a)±3/5
b) 0
c) u
u-4
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Exercise 4:
Given f(x) = 4,
Find f(4), f(1/100) and f(x+4)
Answer: 4
1/100 4 10
f(x)
x
4
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
3. Domain and Range
Domain : set consist of all valid input (x)
for a given function
Range : set consist of all valid output (y)
for a given function
(produce by the values in the
domain)
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Domain?? { Egg , Rice , Chicken ………..}
{everything that can be fry}
Range?? { Fried Egg, Fried Rice, Fried Chicken…….}
{ all fried food }
Input
Output
Function
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
F(x) = fry
Output
Input
Domain = { everything that can be fry}
Range={allfriedfood}
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Example:
Given the function :
y=f(x) = 2x
5
0
-7
+
:
:
:
:
:
:
-
10
0
-14
+
:
:
:
:
:
:
-
Domain
{x ε R}
Range
{y ε R}
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
F(x)/y
x
Y = 2x
2 4-2
4
8
-4
Domain = ??
Range = ??
Example 2:
{ any real numbers (R)} or can be written as
{ y Є R}
+
{any real numbers (R)} or can be written as
{ x Є R}
- +
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
What have you learnt today??
• Definition of function
- determine whether a mathematical
statement is a function or not.
- determine the input/output of a
function
• Concept of Domain and function
- determine the domain and range of a
given function
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Example 3:
Y = 2x +2
2 4
6
10
Domain ??
Range??
{ 2 ≤ x ≤ 4 }
Domain
{ 6 ≤ y ≤ 10 }
Range
x
y
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Example 4 :
3
10
5
26
Domain = { 3 ≤ x < 5 }
Range = { 10 ≤ y < 26 }
y
x
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
-1
1
3
Example 5:
Domain = {x ≤ -1}
Range = { y = 1, y > 3 }
y
x
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
Example 6 :
1 2 3
2
4
6
0
Domain = { 0 ≤ x < 3}
Range = { y = 2, y=4, y=6}
x
y
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
84
2
4
Example 7:
Domain = { x > 4}
Range = {2 < y ≤ 4 }
x
y
Mohdnoorabdulhamid : mohdnoor@uum.edu.my
4. Types of Function & Its Domain and Range
Form Graph Using Algebra
1. Constant Function
2. Linear Function
3. Quadratic Function
4. Polynomial/Cubic Function
5. Composite Function
6. Absolute Function
7. Rational Function
8. Square Root Function
Mohdnoorabdulhamid : mohdnoor@uum.edu.my

Introduction to Function, Domain and Range - Mohd Noor

  • 1.
    I N TR O D U C T I O N T O Mohd Noor Abdul Hamid, Ph.D
  • 2.
  • 3.
    1. Introduction toFunction: Function = a rule that assigns each input number (x) exactly one output number (y) Function :UniversityInput: Students Output: Graduate/ Worker Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 4.
    y = x+ 2 Function fx = 1 Input (x) 1 + 2 = 3 Output (y) x = -4 -4 + 2 = -2 Thus, the rule define y as a function of x 1 to 1 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 5.
    y2 = xX= 9 Y = + 3 Y = - 3 y2 = x did not define y as a function of x 1 to Many Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 6.
    Y = x2-1 X = 3 Y = 8 X = -3 Y = x2-1 did / did not define y as a function of x?? Many to 1 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 7.
    2. Functional Notation Usually,the letters ƒ, g, h, F, G is used to represent the function rules. Example: y = x + 2 can be written as, ƒ(x) = x + 2, where ƒ(x) is the output for the function ƒ with x as the input Therefore, the output ƒ(x) is equal to y (that is : y = ƒ(x)) Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 8.
    Example : Giventhe function f(x) = 4x – 3 5 a)Compute f(2) f(2) = 4(2) – 3 = 5 = 1 5 5 b) What is the value of x, if f(x) = 3? 3 = 4x – 3 5 15 = 4x -3 18 = 4x x = 18 = 9 4 2 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 9.
    Exercise 1: Find thevalue f(3) for the function f(x)=2x-1 Solution: f(3) = 2(3) -1 = 6 -1 = 5 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 10.
    Exercise 2: Given thefunction: f(x) = x2 + 3 2 If f(x) = 6, determine the corresponding value of x Solution: f(x) = 6 = x2+3 2 12 = x2+3 9 = x2 x = ±3 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 11.
    Exercise 3: Given h(u)= u u 4 Find: a)h(5) b)h(-4) c)h(u-4) Answer: a)±3/5 b) 0 c) u u-4 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 12.
    Exercise 4: Given f(x)= 4, Find f(4), f(1/100) and f(x+4) Answer: 4 1/100 4 10 f(x) x 4 Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 13.
    3. Domain andRange Domain : set consist of all valid input (x) for a given function Range : set consist of all valid output (y) for a given function (produce by the values in the domain) Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 14.
    Domain?? { Egg, Rice , Chicken ………..} {everything that can be fry} Range?? { Fried Egg, Fried Rice, Fried Chicken…….} { all fried food } Input Output Function Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 15.
    F(x) = fry Output Input Domain= { everything that can be fry} Range={allfriedfood} Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 16.
    Example: Given the function: y=f(x) = 2x 5 0 -7 + : : : : : : - 10 0 -14 + : : : : : : - Domain {x ε R} Range {y ε R} Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 17.
    F(x)/y x Y = 2x 24-2 4 8 -4 Domain = ?? Range = ?? Example 2: { any real numbers (R)} or can be written as { y Є R} + {any real numbers (R)} or can be written as { x Є R} - + Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 18.
    What have youlearnt today?? • Definition of function - determine whether a mathematical statement is a function or not. - determine the input/output of a function • Concept of Domain and function - determine the domain and range of a given function Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 19.
    Example 3: Y =2x +2 2 4 6 10 Domain ?? Range?? { 2 ≤ x ≤ 4 } Domain { 6 ≤ y ≤ 10 } Range x y Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 20.
    Example 4 : 3 10 5 26 Domain= { 3 ≤ x < 5 } Range = { 10 ≤ y < 26 } y x Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 21.
    -1 1 3 Example 5: Domain ={x ≤ -1} Range = { y = 1, y > 3 } y x Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 22.
    Example 6 : 12 3 2 4 6 0 Domain = { 0 ≤ x < 3} Range = { y = 2, y=4, y=6} x y Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 23.
    84 2 4 Example 7: Domain ={ x > 4} Range = {2 < y ≤ 4 } x y Mohdnoorabdulhamid : mohdnoor@uum.edu.my
  • 24.
    4. Types ofFunction & Its Domain and Range Form Graph Using Algebra 1. Constant Function 2. Linear Function 3. Quadratic Function 4. Polynomial/Cubic Function 5. Composite Function 6. Absolute Function 7. Rational Function 8. Square Root Function Mohdnoorabdulhamid : mohdnoor@uum.edu.my