SlideShare a Scribd company logo
Higher Unit 2
www.mathsrevision.com

Higher
Higher

Outcome 2

What is Integration
The Process of Integration
Integration & Area of a Curve
Exam Type Questions

www.mathsrevision.com
Integration
Higher

www.mathsrevision.com

Part 1

Outcome 2
Anti-Differentiation

Integration can be thought of as the opposite of differentiation
(just as subtraction is the opposite of addition).

In general: Differentiating

d n
( x ) = nx n −1
dx
Confusing?

Integrating

x n +1
x n dx =
+C
∫
n +1

Is there any easier way?
Integration
Outcome 2

www.mathsrevision.com

Higher

Differentiation

x

n

multiply by power

decrease power by 1

divide by new power

increase power by 1

x n +1
x n dx =
+C
∫
n +1
Where does this + C come from?

Integration
Integration
Outcome 2

Higher

www.mathsrevision.com

Integrating is the opposite of differentiating, so:

f ( x)

differentiate
integrate

But:

f ( x) = 3x + 1
f ( x) = 3 x 2 + 4
f ( x) = 3 x 2 − 10
2

differentiate

6x
integrate

Integrating

f ′( x)
= f ′( x)

 = g ′( x)
 = h′( x)


6x….......which function do we get back to?
Integration
Outcome 2

www.mathsrevision.com

Higher

Solution:

When you integrate a function
remember to add the

Constant of Integration……………+ C
Integration
www.mathsrevision.com

Higher

Notation

∫ 6x dx
∫ f ( x) dx

∫

Outcome 2
means “integrate 6x with respect to x”
means “integrate f(x) with respect to x”

This notation was “invented” by
Gottfried Wilhelm von Leibniz
Integration
Outcome 2

Higher

www.mathsrevision.com

Examples:

x dx
∫
7

3x − 2 x + 1 dx
∫
2

3

8

x
⇒
+C
8

2

x
x
⇒3 −2 + x
3
2
⇒ x − x + x+C
3

2
Just
Integration like we
differentiation,

www.mathsrevision.com

Higher

Outcome 2must arrange the
function as a series of
powers of x before
1  2 1 

 3x −  dx
2
∫ 4 + x 
we integrate.



3
x 


⇒ ∫ (12 x − 4 x
2

−

2
3

3
2

−2

+ 3 x − x )dx

1
3

5
2

x3
x
x
x −1
⇒ 12 − 4 1 + 3 5 −
3
−1
3
2
1
3

5
2

−1

⇒ 4 x − 12 x + x + x + C
3

6
5
Integration
Outcome 2

www.mathsrevision.com

Higher

If F '( x) = 3 x 2 + 4 x − 1 and F (2) = 11, find F ( x).
To get the function F(x) from the derivative F’(x)
we do the opposite, i.e. we integrate.

F ( x) = ∫ (3x 2 + 4 x − 1)dx

Hence
:

F (2) = 11
⇒ 23 + 2.22 − 2 + C = 11

⇒ 8 + 8 − 2 + C = 11
x
x
=3 +4 − x+C
3
2
⇒ C = −3
3

2

= x + 2x − x + C
3

2

F ( x) = x + 2 x − x − 3
3

2
Integration
www.mathsrevision.com

Higher

Outcome 2

Further examples of
integration
Exam Standard
Area under a Curve
Outcome 2

www.mathsrevision.com

Higher

The integral of a function can be used to determine the
area between the x-axis and the graph of the function.
y
y = f ( x)

b

Area = ∫ f ( x) dx
a

a

If

b

∫ f ( x) dx = F ( x)

x

then

b

∫a f ( x) dx = F (b) − F (a)

NB: this is a definite integral.
It has lower limit

a and an upper limit b.
Area under a Curve
Outcome 2

Higher

www.mathsrevision.com

Examples:

∫

5

1

(3 + x) dx

F ( x) = ∫ (3 + x) dx

x2
⇒ F ( x) = 3 x +
2

( +c)

25
1
30 + 25 − 6 − 1
(3 + x) dx = F (5) − F (1) = 15 +  −  3 +  =
= 48
∫1

 

2  
2
2

5

∫

2

−2

( x − 2) dx
2

F ( x) = ∫ ( x − 2) dx
2

x3
⇒ F ( x) = − 2 x ( + c)
3

16
−8
8
  −8

∫−2 ( x − 2) dx = F (2) − F (−2) =  3 − 4  −  3 + 4  = 3 − 8 = 3

 

2

2
Area under a Curve
Outcome 2

Higher

www.mathsrevision.com

b

From the definition of

∫ f ( x) dx it follows that:
a

b

∫ f ( x) dx

a

a

= − ∫ f ( x) dx
b

F (b) − F (a ) = − ( F (a ) − F (b) )
Conventionally, the lower limit of a definite integral
is always less then its upper limit.
Area under a Curve
Outcome 2

www.mathsrevision.com

Higher

y=f(x)
a

b

a

d

When calculating integrals:
areas above the x-axis are positive

d

b

∫

c

Very Important Note:

f ( x) dx > 0

∫

f ( x) dx < 0

areas below the x-axis are negative

c

When calculating the area between a curve and the x-axis:
•

make a sketch

•

calculate areas above and below the x-axis separately

•

ignore the negative signs and add
Area under a Curve
Outcome 2

Higher

www.mathsrevision.com

The Area Between Two Curves
To find the area between two
curves we evaluate:
Area = ∫ (top curve − bottom curve)

y = f ( x)

a
y = g ( x)

b

b

Area = ∫ ( f ( x) − g ( x) dx
a
Area under a Curve
Higher

Example:

Outcome 2

www.mathsrevision.com

Calculate the area enclosed by the lines x = 2, x = 4
and the curves y = x 2 and y = 4 − x 2
y

4

y = x2

4

Area = ∫ [ x − (4 − x )] dx = ∫ (2 x 2 − 4) dx
2

2

2

2 x3
∫ (2 x − 4) dx = F ( x) = 3 − 4 x

x=4

2

x

x=2

Area = F (4) − F (2)
128
16
− 16) − ( − 8)
3
3
112
=
−8
3
88
=
3
=(

y = 4 − x2

2
Area under a Curve
www.mathsrevision.com

Higher

Complicated Example:

Outcome 2

The cargo space of a small bulk carrier is 60m long. The shaded
part of the diagram represents the uniform cross-section of this
space.
x2
It is shaped like a parabola with y = , − 6 ≤ x ≤ 6,
4
between lines y = 1 and y = 9.

Find the area of this crosssection and hence find the
volume of cargo that this ship
can carry.

9

1
Area under a Curve
y

www.mathsrevision.com

y=9
Higher

y=

y = 1 −t

The shape is symmetrical about the
y-axis. So we calculate the area of
one of the light shaded rectangles
and one of the dark shaded wings.
The area is then double their sum.

2

x
4

−s

s

t
x

The rectangle:

let its width be s

The wing: extends from x = s to x = t

s2
y =1=
4

⇒ s=2

t2
y=9=
4

⇒ t =6

t

The area of a wing (W ) is given by:

x2
W = ∫ (9 − ) dx
4
s
Area under a Curve
Outcome 2

Higher

www.mathsrevision.com

6

x2
W = ∫ (9 − ) dx
4
2
F (6) = (9.6 −

x2
x3
∫ (9 − 4 ) dx = F ( x) = (9 x − 12 )

6.6.6
) = 54 − 18 = 36
12

W = F (6) − F (2) = 36 − 18 +

2
=
3

F (2) = (9.2 −

2.2.2
2
) = 18 −
12
3

56
3

The area of a rectangle is given by:

R = (9 − 1) s = 16

The area of the complete shaded area is given by:
A = 2(16 +

56
48 + 56
)=2
=
3
3

The cargo volume is:

A = 2( R + W )

208
3
60 A = 60.

208
= 20.208 = 4160m3
3
Exam Type Questions

www.mathsrevision.com

Higher

Outcome 2

At this stage in the course we can only do
Polynomial integration questions.
In Unit 3 we will tackle trigonometry integration
www.maths4scotland.co.uk

Integration
Higher Mathematics

Next
Calculus
Integrate

∫x

Revision

2

− 4 x + 3 dx
3

Integrate term by term

simplif
y

Back

2

x 4x
−
+ 3x + c
3
2

1 3
2
x − 2 x + 3x + c
3

Quit

Next
Calculus
Revision
Find

∫

3cos x dx
3sin x + c

Back

Quit

Next
Calculus
Revision

Integrate

∫ (3x − 1)( x + 5) dx

Multiply out brackets
Integrate term by term
simplify

Back

∫ 3x

2

+ 14 x − 5 dx

3x 3 14 x 2
+
− 5x + c
3
2

x + 7 x − 5x + c
3

Quit

2

Next
Calculus
Revision
Find

∫

−2sin θ dθ
2 cos θ + c

Back

Quit

Next
Calculus

Integrate

∫

Revision

(5 + 3 x) 2 dx
(5 + 3x)
+c
3× 3
3

Standard Integral
(from Chain Rule)

1
3
(5 + 3 x)
9

Back

Quit

+c

Next
Calculus

∫

Find p, given

Revision

p

x dx = 42

1

∫

p

x

1
2

dx = 42

1

→

→

2
3

p3

p3

−

2
3

p

2 
→  x  = 42 →
3

1
3
2

→ 2

= 42

p3

2
3

3
2

p −

2
(1)
3

1
12 3

Quit

= 42

− 2 = 126

→ p 3 = 642 = 212 → p = ( 2
= 64

Back

3
2

)

Next

= 16
Calculus
Revision
Evaluate

∫

2

1

dx
2
x

→
Straight line form

→ − x 

1

→ ( −2

 1
→  − ÷+ 1
 2

∫

2

x −2 dx

1

1
→
2

−1 2

Back

Quit

−1

) − ( −1 )
−1

Next
Calculus
Revision
Find

∫

1

(2 x + 3) dx

(from chain rule)

0
1

 (2 x + 3) 
→ 
7 × 2 0


7

 57   37 
→  ÷−  ÷
 14   14 

Back

Use standard Integral

6

 (2 + 3) 7   (0 + 3) 7 
→ 
÷− 
÷
 14   14 

→ 5580.36 − 156.21

Quit

→ 5424

Next

(4sf)
Calculus
Revision
Find

∫

1
3sin x − cos x dx
2

Integrate term by term

Back

1
−3cos x − sin x + c
2

Quit

Next
Calculus

∫

Integrate

Revision

2
x − 3 dx
x

→

Straight line form

→

2
3

Back

3
2

∫

→

Quit

−3

x − 2 x dx

−2

2x
x −
+c
−2

1
2

2
3

3
2

x + x −2 + c

Next
Calculus

Integrate

∫

Revision

1
x +
dx
x
3

→

Straight line form

4

1
2

x
x
→
+ 1 +c
4
2
Back

∫

→

Quit

x +x
3

1
4

−

1
2

dx
1
2

x4 + 2x + c

Next
Calculus

∫

Integrate

∫

x
x

3
1
2

−

Revision

x − 5x
dx
x
3

5x
x

1
2

→

dx

→
Back

Straight line form

2
7

Quit

x

7
2

∫

x

5
2

10
−
x
3

1
2

− 5 x dx
3
2

+c

Next
Calculus
Revision

∫

Integrate

→

∫

1
2

3
2

Split into separate fractions

4x − x
dx
2 x

→

→

1
2

2x − x dx

Back

Quit

∫ 2x

4x

4
3

3
2

1
2

−

x

3
2

2x

1
2

1
4

dx

x − x2 + c

Next
Calculus
Revision
Find

∫

2

( 2 x + 1)

3

 ( 2 x + 1)
→ 
 4× 2


4

Use standard Integral

dx

(from chain rule)

1

 54   34 
→  ÷−  ÷
8 8

Back

2



1


 ( 4 + 1) 4   ( 2 + 1) 4 
→
÷− 
÷
 4× 2 ÷  4× 2 ÷

 


→ 68

Quit

Next
Calculus
Revision
Find

∫

π

sin 2 x − cos  3 x − ÷ dx
4


π

1
1
− cos 2 x − sin  3 x −
2
3
4


Back

Quit


÷+ c


Next
Calculus
Revision
Find

∫

2
sin t dt
7

2
− cos t + c
7

Back

Quit

Next
Calculus

∫

Integrate

1

0

dx

( 3x + 1)

∫

Straight line form
2
→ 
3

1
2

1

( 3x + 1)

−

1
2

dx

0

1


( 3x + 1) 
0

2
 2 
→ 
4 ÷−  1 ÷
3
 3 

Back

Revision

2
→ 
3

 ( 3 x + 1)
→  1

×3
 2

 2
( 3 + 1) ÷− 
 3

4 2
→  ÷−  ÷
3 3

Quit

1
2

1




0

( 0 + 1) 
÷


2
→
3

Next
Calculus
Given the acceleration a is:

1
Revision
a = 2(4 − t ) 2 , 0 ≤ t ≤ 4

a=

dv
dt

If it starts at rest, find an expression for the velocity v
3
where
3
1
2(4 − t ) 2
4
dv
→ v= 3
+c
→ v = − (4 − t ) 2 + c
= 2(4 − t ) 2
3
× ( −1)
dt
2

4
→ v=−
3

(

4
→ 0=−
3

( 4)

Back

4−t
3

)

3

+c

+c

Quit

Starts at rest, so

4
→ 0=−
3

( 4)

3

+c

v = 0, when t = 0
32
→ 0= − +c
3
3
4
32
→ v = − (4 − t ) 2 +
3
3
32
→ c=
3
Next
Calculus

(

Revision
dy
= 3sin(2 x) passes through the point
A curve for
dx
which
3
y = − cos(2 x) + c
Find y in terms of x.

5
π,
12

3

2

Use the point
→

3=−

3
2

(

5
π,
12

5
cos( π ) + c
6

4 3 3 3
→
−
=c
4
4

Back

3

)

3
2

3 = − cos(2 ×
→

3=−

3
→ c=
4

Quit

5
π)+c
12

3
3
−
÷+ c
2 2 

3
2

→

3=

y = − cos(2 x) +

3 3
+c
4

3
4

Next

)
Calculus
Integrate

∫

(x

2

Revision

− 2) ( x + 2)
2

x

2

dx, x ≠ 0
→

Multiply out brackets
Split into

→

separate fractions

∫

x4 4
− 2 dx
2
x
x

x 3 4 x −1
→
−
+c
3
−1

Back

∫

Quit

x4 − 4
dx
2
x
→

→

∫
1
3

x 2 − 4 x −2 dx

4
x + +c
x
3

Next
Calculus
Revision
passes through the point

f ′( x) = sin(3 x)
y = f ( x)

If

f ( x) =
1=

→



7
6

=c

Back

)

, 1

express y in terms of x.

1
− cos(3 x) + c
3

 π
1
− cos  3 ×
3
9

(

π
9


÷+ c


Use the point

→ 1=

π
1
− cos 
3
3

1
3

y = − cos(3x ) +

Quit



(


÷+ c


π
9

)

, 1

→ 1=

1 1
− ×
3 2

7
6

Next

+c
Calculus
Integrate

∫
∫

Revision

1
dx
2
(7 − 3 x)

Straight line form

(7 − 3 x) −1
→
+c
( −1) × ( −3 )

−2

(7 − 3 x) dx

→

Back

Quit

1
(7 − 3 x) −1
3

+c

Next
Calculus
Revision
The graph of y = g ( x ) passes through the point (1, 2).
If

dy
1 1
3
=x + 2−
dx
x 4

dy
1
3
−2
=x +x −
dx
4

express y in terms of x.

x 4 x −1 1
→ y= +
− x+c
4 −1 4

4

x 1 1
y = − − x+c
4 x 4
Evaluate c
Back

Use the point

c=3

Quit

( 1)
2=

simplify

4

1 1
−
− ( 1) + c
4
( 1) 4

1 1
→ y = x − − x+3
x 4
1
4

4

Next
Calculus

∫

Integrate

→

→

x2

∫x
x

3
2

3
2

−

3
2

−

x −5
dx
x x
2

5x

Back

5
x
−

1
−
2

3
2

1
2

dx

+c

Revision

→

Straight line form

→

∫
→

Quit

1
2

x − 5x

2
3

3
2

−

3
2

x + 10 x

∫

x2 − 5
x

3
2

dx

−

1
2

+c

Next

dx
Calculus
Revision
dy
= 6 x 2 − 2 x passes through the point (–1, 2).
A curve for which
dx
Express y in terms of x.

6 x3 2 x 2
y=
−
+c
3
2
Use the point

→ y = 2 x3 − x 2 + c

→ 2 = 2(−1)3 − (−1) 2 + c

→ c=5
→ y = 2 x3 − x 2 + 5

Back

Quit

Next
Calculus
Evaluate

∫

2

1

2

 2 1
 x +  dx
x


Revision
→

→

→

2

1
→  x5 + x 2 − x −1 
5
1

(

+ 4−

Back

1
2

) ()
−

1
5

→

64
10

∫

x 2 + x −1

)

2

dx

2

x 4 + 2 x + x −2 dx

1

So multiply out

32
5

∫(
1

Cannot use standard integral

→

2

+

(

40
10

−

1
5

25 + 2 2 −

20
10

Quit

−

2
10

1
2

) (
−

1 5
1
5

→

82
10

+ 12 −

1
1

)

→ 81
5

Next
Calculus
Evaluate

∫

Revision

4

x dx

Straight line form

1

4

2 
→  x 
3

1
3
2

→

2

3

3  2
4 ÷− 
 3

( )

→

∫

x

1
2

1

4

→

 16   2 
 ÷−  ÷
 3   3

14
→
3
→

Back

dx

 2 ( x)3
3
1

3
1 ÷


( )

→

4

Quit

4

Next

2
3
Calculus
Evaluate

∫

Revision

0

(2 x + 3) 2 dx

Use standard Integral

−3

(from chain rule)
0

 (2 x + 3) 
→ 
3 × 2  −3


3

 27   −27 
→  ÷− 
÷
 6   6 

Back

 (2(0) + 3)3   (2( −3) + 3)3 
→ 
÷− 
÷
6
6

 

27 27
→
+
6
6

Quit

54
→
6

→

9

Next
Calculus
Revision
π 
,1
The curve y = f ( x) passes through the point  12 ÷



f ′( x) = cos 2 x
→ f ( x) =
→ 1=

→ 1=

Find

1
sin 2 x
2

1
π
sin 2 ×
2
12

1 1
×
2 2

Back

+c

f(x)

+c

use the given point

→ 1=

+c

→ c=

3
4

Quit

1
π
sin
2
6

→ f ( x) =

π 
 ,1 ÷
 12 

+ c sin π = 1
6
2
1
sin 2 x
2

Next

+

3
4
Calculus
Revision
Integrate

∫

(6 x 2 − x + cos x) dx

Integrate term by term

Back

6 x3 x 2
→
− + sin x + c
3
2

Quit

Next
Calculus
Integrate

∫

Revision

3 x + 4 x dx
3

4

Integrate term by term

3x
4x
→
+
+c
4
2
→

Back

2

Quit

3
4

x + 2x + c
4

2

Next
Calculus
Revision

1

∫0

Evaluate


 ( 1 + 3x )
→
 3 ×3
 2

2
→ 
9
→

(

3
2

)

Back

→

1




0

3

∫0 ( 1 + 3x )
1

3
2

→  ( 1 + 3x ) 2 
9
0

 2
1 + 3(1) ÷ − 
 9

16 2
−
9
9

dx

1 + 3x

1

(

→

)


1 + 3(0) ÷

3

14
9

Quit

2
→ 
9

2
→ 
9
→

1
2

1

( )

dx

(

)

 2
4 ÷− 
 9
3

1


1 + 3x 
0
3

( )

5
9

Next


1 ÷

3
C P D
www.maths4scotland.co.uk

© CPD 2004

Quit

More Related Content

What's hot

Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
Matthew McKenzie
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomialstimschmitz
 
Higher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric FunctionsHigher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functionstimschmitz
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
Lawrence De Vera
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
Hanini Hamsan
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
Kartikey Rohila
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
MARCELOCHAVEZ23
 
2 3 Bzca5e
2 3 Bzca5e2 3 Bzca5e
2 3 Bzca5esilvia
 
Class 9
Class 9Class 9
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
Fatini Adnan
 
Area between curves
Area between curvesArea between curves
Area between curves
Shaun Wilson
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Gautham Rajesh
 

What's hot (15)

Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
 
Higher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric FunctionsHigher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functions
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
Circles
CirclesCircles
Circles
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
2 3 Bzca5e
2 3 Bzca5e2 3 Bzca5e
2 3 Bzca5e
 
Class 9
Class 9Class 9
Class 9
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Area between curves
Area between curvesArea between curves
Area between curves
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
 

Similar to Integration

Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Nur Kamila
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
dionesioable
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
dionesioable
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Vine Gonzales
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
Bright Minds
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
Dr. Jennifer Chang Wathall
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
Hanifa Zulfitri
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
Juan Miguel Palero
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
AlfredoLabador
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Chit Laplana
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2larasati06
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
Edrian Gustin Camacho
 

Similar to Integration (20)

Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
add math form 4/5
add math form 4/5add math form 4/5
add math form 4/5
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
Derivatives
DerivativesDerivatives
Derivatives
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2
 
The integral
The integralThe integral
The integral
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 

Recently uploaded

Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 

Recently uploaded (20)

Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 

Integration

  • 1. Higher Unit 2 www.mathsrevision.com Higher Higher Outcome 2 What is Integration The Process of Integration Integration & Area of a Curve Exam Type Questions www.mathsrevision.com
  • 2. Integration Higher www.mathsrevision.com Part 1 Outcome 2 Anti-Differentiation Integration can be thought of as the opposite of differentiation (just as subtraction is the opposite of addition). In general: Differentiating d n ( x ) = nx n −1 dx Confusing? Integrating x n +1 x n dx = +C ∫ n +1 Is there any easier way?
  • 3. Integration Outcome 2 www.mathsrevision.com Higher Differentiation x n multiply by power decrease power by 1 divide by new power increase power by 1 x n +1 x n dx = +C ∫ n +1 Where does this + C come from? Integration
  • 4. Integration Outcome 2 Higher www.mathsrevision.com Integrating is the opposite of differentiating, so: f ( x) differentiate integrate But: f ( x) = 3x + 1 f ( x) = 3 x 2 + 4 f ( x) = 3 x 2 − 10 2 differentiate 6x integrate Integrating f ′( x) = f ′( x)   = g ′( x)  = h′( x)  6x….......which function do we get back to?
  • 5. Integration Outcome 2 www.mathsrevision.com Higher Solution: When you integrate a function remember to add the Constant of Integration……………+ C
  • 6. Integration www.mathsrevision.com Higher Notation ∫ 6x dx ∫ f ( x) dx ∫ Outcome 2 means “integrate 6x with respect to x” means “integrate f(x) with respect to x” This notation was “invented” by Gottfried Wilhelm von Leibniz
  • 7. Integration Outcome 2 Higher www.mathsrevision.com Examples: x dx ∫ 7 3x − 2 x + 1 dx ∫ 2 3 8 x ⇒ +C 8 2 x x ⇒3 −2 + x 3 2 ⇒ x − x + x+C 3 2
  • 8. Just Integration like we differentiation, www.mathsrevision.com Higher Outcome 2must arrange the function as a series of powers of x before 1  2 1    3x −  dx 2 ∫ 4 + x  we integrate.    3 x   ⇒ ∫ (12 x − 4 x 2 − 2 3 3 2 −2 + 3 x − x )dx 1 3 5 2 x3 x x x −1 ⇒ 12 − 4 1 + 3 5 − 3 −1 3 2 1 3 5 2 −1 ⇒ 4 x − 12 x + x + x + C 3 6 5
  • 9. Integration Outcome 2 www.mathsrevision.com Higher If F '( x) = 3 x 2 + 4 x − 1 and F (2) = 11, find F ( x). To get the function F(x) from the derivative F’(x) we do the opposite, i.e. we integrate. F ( x) = ∫ (3x 2 + 4 x − 1)dx Hence : F (2) = 11 ⇒ 23 + 2.22 − 2 + C = 11 ⇒ 8 + 8 − 2 + C = 11 x x =3 +4 − x+C 3 2 ⇒ C = −3 3 2 = x + 2x − x + C 3 2 F ( x) = x + 2 x − x − 3 3 2
  • 11. Area under a Curve Outcome 2 www.mathsrevision.com Higher The integral of a function can be used to determine the area between the x-axis and the graph of the function. y y = f ( x) b Area = ∫ f ( x) dx a a If b ∫ f ( x) dx = F ( x) x then b ∫a f ( x) dx = F (b) − F (a) NB: this is a definite integral. It has lower limit a and an upper limit b.
  • 12. Area under a Curve Outcome 2 Higher www.mathsrevision.com Examples: ∫ 5 1 (3 + x) dx F ( x) = ∫ (3 + x) dx x2 ⇒ F ( x) = 3 x + 2 ( +c) 25 1 30 + 25 − 6 − 1 (3 + x) dx = F (5) − F (1) = 15 +  −  3 +  = = 48 ∫1     2   2 2  5 ∫ 2 −2 ( x − 2) dx 2 F ( x) = ∫ ( x − 2) dx 2 x3 ⇒ F ( x) = − 2 x ( + c) 3 16 −8 8   −8  ∫−2 ( x − 2) dx = F (2) − F (−2) =  3 − 4  −  3 + 4  = 3 − 8 = 3     2 2
  • 13. Area under a Curve Outcome 2 Higher www.mathsrevision.com b From the definition of ∫ f ( x) dx it follows that: a b ∫ f ( x) dx a a = − ∫ f ( x) dx b F (b) − F (a ) = − ( F (a ) − F (b) ) Conventionally, the lower limit of a definite integral is always less then its upper limit.
  • 14. Area under a Curve Outcome 2 www.mathsrevision.com Higher y=f(x) a b a d When calculating integrals: areas above the x-axis are positive d b ∫ c Very Important Note: f ( x) dx > 0 ∫ f ( x) dx < 0 areas below the x-axis are negative c When calculating the area between a curve and the x-axis: • make a sketch • calculate areas above and below the x-axis separately • ignore the negative signs and add
  • 15. Area under a Curve Outcome 2 Higher www.mathsrevision.com The Area Between Two Curves To find the area between two curves we evaluate: Area = ∫ (top curve − bottom curve) y = f ( x) a y = g ( x) b b Area = ∫ ( f ( x) − g ( x) dx a
  • 16. Area under a Curve Higher Example: Outcome 2 www.mathsrevision.com Calculate the area enclosed by the lines x = 2, x = 4 and the curves y = x 2 and y = 4 − x 2 y 4 y = x2 4 Area = ∫ [ x − (4 − x )] dx = ∫ (2 x 2 − 4) dx 2 2 2 2 x3 ∫ (2 x − 4) dx = F ( x) = 3 − 4 x x=4 2 x x=2 Area = F (4) − F (2) 128 16 − 16) − ( − 8) 3 3 112 = −8 3 88 = 3 =( y = 4 − x2 2
  • 17. Area under a Curve www.mathsrevision.com Higher Complicated Example: Outcome 2 The cargo space of a small bulk carrier is 60m long. The shaded part of the diagram represents the uniform cross-section of this space. x2 It is shaped like a parabola with y = , − 6 ≤ x ≤ 6, 4 between lines y = 1 and y = 9. Find the area of this crosssection and hence find the volume of cargo that this ship can carry. 9 1
  • 18. Area under a Curve y www.mathsrevision.com y=9 Higher y= y = 1 −t The shape is symmetrical about the y-axis. So we calculate the area of one of the light shaded rectangles and one of the dark shaded wings. The area is then double their sum. 2 x 4 −s s t x The rectangle: let its width be s The wing: extends from x = s to x = t s2 y =1= 4 ⇒ s=2 t2 y=9= 4 ⇒ t =6 t The area of a wing (W ) is given by: x2 W = ∫ (9 − ) dx 4 s
  • 19. Area under a Curve Outcome 2 Higher www.mathsrevision.com 6 x2 W = ∫ (9 − ) dx 4 2 F (6) = (9.6 − x2 x3 ∫ (9 − 4 ) dx = F ( x) = (9 x − 12 ) 6.6.6 ) = 54 − 18 = 36 12 W = F (6) − F (2) = 36 − 18 + 2 = 3 F (2) = (9.2 − 2.2.2 2 ) = 18 − 12 3 56 3 The area of a rectangle is given by: R = (9 − 1) s = 16 The area of the complete shaded area is given by: A = 2(16 + 56 48 + 56 )=2 = 3 3 The cargo volume is: A = 2( R + W ) 208 3 60 A = 60. 208 = 20.208 = 4160m3 3
  • 20. Exam Type Questions www.mathsrevision.com Higher Outcome 2 At this stage in the course we can only do Polynomial integration questions. In Unit 3 we will tackle trigonometry integration
  • 22. Calculus Integrate ∫x Revision 2 − 4 x + 3 dx 3 Integrate term by term simplif y Back 2 x 4x − + 3x + c 3 2 1 3 2 x − 2 x + 3x + c 3 Quit Next
  • 24. Calculus Revision Integrate ∫ (3x − 1)( x + 5) dx Multiply out brackets Integrate term by term simplify Back ∫ 3x 2 + 14 x − 5 dx 3x 3 14 x 2 + − 5x + c 3 2 x + 7 x − 5x + c 3 Quit 2 Next
  • 25. Calculus Revision Find ∫ −2sin θ dθ 2 cos θ + c Back Quit Next
  • 26. Calculus Integrate ∫ Revision (5 + 3 x) 2 dx (5 + 3x) +c 3× 3 3 Standard Integral (from Chain Rule) 1 3 (5 + 3 x) 9 Back Quit +c Next
  • 27. Calculus ∫ Find p, given Revision p x dx = 42 1 ∫ p x 1 2 dx = 42 1 → → 2 3 p3 p3 − 2 3 p 2  →  x  = 42 → 3  1 3 2 → 2 = 42 p3 2 3 3 2 p − 2 (1) 3 1 12 3 Quit = 42 − 2 = 126 → p 3 = 642 = 212 → p = ( 2 = 64 Back 3 2 ) Next = 16
  • 28. Calculus Revision Evaluate ∫ 2 1 dx 2 x → Straight line form → − x   1 → ( −2  1 →  − ÷+ 1  2 ∫ 2 x −2 dx 1 1 → 2 −1 2 Back Quit −1 ) − ( −1 ) −1 Next
  • 29. Calculus Revision Find ∫ 1 (2 x + 3) dx (from chain rule) 0 1  (2 x + 3)  →  7 × 2 0   7  57   37  →  ÷−  ÷  14   14  Back Use standard Integral 6  (2 + 3) 7   (0 + 3) 7  →  ÷−  ÷  14   14  → 5580.36 − 156.21 Quit → 5424 Next (4sf)
  • 30. Calculus Revision Find ∫ 1 3sin x − cos x dx 2 Integrate term by term Back 1 −3cos x − sin x + c 2 Quit Next
  • 31. Calculus ∫ Integrate Revision 2 x − 3 dx x → Straight line form → 2 3 Back 3 2 ∫ → Quit −3 x − 2 x dx −2 2x x − +c −2 1 2 2 3 3 2 x + x −2 + c Next
  • 32. Calculus Integrate ∫ Revision 1 x + dx x 3 → Straight line form 4 1 2 x x → + 1 +c 4 2 Back ∫ → Quit x +x 3 1 4 − 1 2 dx 1 2 x4 + 2x + c Next
  • 33. Calculus ∫ Integrate ∫ x x 3 1 2 − Revision x − 5x dx x 3 5x x 1 2 → dx → Back Straight line form 2 7 Quit x 7 2 ∫ x 5 2 10 − x 3 1 2 − 5 x dx 3 2 +c Next
  • 34. Calculus Revision ∫ Integrate → ∫ 1 2 3 2 Split into separate fractions 4x − x dx 2 x → → 1 2 2x − x dx Back Quit ∫ 2x 4x 4 3 3 2 1 2 − x 3 2 2x 1 2 1 4 dx x − x2 + c Next
  • 35. Calculus Revision Find ∫ 2 ( 2 x + 1) 3  ( 2 x + 1) →   4× 2  4 Use standard Integral dx (from chain rule) 1  54   34  →  ÷−  ÷ 8 8 Back 2   1   ( 4 + 1) 4   ( 2 + 1) 4  → ÷−  ÷  4× 2 ÷  4× 2 ÷     → 68 Quit Next
  • 36. Calculus Revision Find ∫ π  sin 2 x − cos  3 x − ÷ dx 4  π  1 1 − cos 2 x − sin  3 x − 2 3 4  Back Quit  ÷+ c  Next
  • 37. Calculus Revision Find ∫ 2 sin t dt 7 2 − cos t + c 7 Back Quit Next
  • 38. Calculus ∫ Integrate 1 0 dx ( 3x + 1) ∫ Straight line form 2 →  3 1 2 1 ( 3x + 1) − 1 2 dx 0 1  ( 3x + 1)  0 2  2  →  4 ÷−  1 ÷ 3  3  Back Revision 2 →  3  ( 3 x + 1) →  1  ×3  2  2 ( 3 + 1) ÷−   3 4 2 →  ÷−  ÷ 3 3 Quit 1 2 1    0 ( 0 + 1)  ÷  2 → 3 Next
  • 39. Calculus Given the acceleration a is: 1 Revision a = 2(4 − t ) 2 , 0 ≤ t ≤ 4 a= dv dt If it starts at rest, find an expression for the velocity v 3 where 3 1 2(4 − t ) 2 4 dv → v= 3 +c → v = − (4 − t ) 2 + c = 2(4 − t ) 2 3 × ( −1) dt 2 4 → v=− 3 ( 4 → 0=− 3 ( 4) Back 4−t 3 ) 3 +c +c Quit Starts at rest, so 4 → 0=− 3 ( 4) 3 +c v = 0, when t = 0 32 → 0= − +c 3 3 4 32 → v = − (4 − t ) 2 + 3 3 32 → c= 3 Next
  • 40. Calculus ( Revision dy = 3sin(2 x) passes through the point A curve for dx which 3 y = − cos(2 x) + c Find y in terms of x. 5 π, 12 3 2 Use the point → 3=− 3 2 ( 5 π, 12 5 cos( π ) + c 6 4 3 3 3 → − =c 4 4 Back 3 ) 3 2 3 = − cos(2 × → 3=− 3 → c= 4 Quit 5 π)+c 12 3 3 − ÷+ c 2 2  3 2 → 3= y = − cos(2 x) + 3 3 +c 4 3 4 Next )
  • 41. Calculus Integrate ∫ (x 2 Revision − 2) ( x + 2) 2 x 2 dx, x ≠ 0 → Multiply out brackets Split into → separate fractions ∫ x4 4 − 2 dx 2 x x x 3 4 x −1 → − +c 3 −1 Back ∫ Quit x4 − 4 dx 2 x → → ∫ 1 3 x 2 − 4 x −2 dx 4 x + +c x 3 Next
  • 42. Calculus Revision passes through the point f ′( x) = sin(3 x) y = f ( x) If f ( x) = 1= →  7 6 =c Back ) , 1 express y in terms of x. 1 − cos(3 x) + c 3  π 1 − cos  3 × 3 9 ( π 9  ÷+ c  Use the point → 1= π 1 − cos  3 3 1 3 y = − cos(3x ) + Quit  (  ÷+ c  π 9 ) , 1 → 1= 1 1 − × 3 2 7 6 Next +c
  • 43. Calculus Integrate ∫ ∫ Revision 1 dx 2 (7 − 3 x) Straight line form (7 − 3 x) −1 → +c ( −1) × ( −3 ) −2 (7 − 3 x) dx → Back Quit 1 (7 − 3 x) −1 3 +c Next
  • 44. Calculus Revision The graph of y = g ( x ) passes through the point (1, 2). If dy 1 1 3 =x + 2− dx x 4 dy 1 3 −2 =x +x − dx 4 express y in terms of x. x 4 x −1 1 → y= + − x+c 4 −1 4 4 x 1 1 y = − − x+c 4 x 4 Evaluate c Back Use the point c=3 Quit ( 1) 2= simplify 4 1 1 − − ( 1) + c 4 ( 1) 4 1 1 → y = x − − x+3 x 4 1 4 4 Next
  • 45. Calculus ∫ Integrate → → x2 ∫x x 3 2 3 2 − 3 2 − x −5 dx x x 2 5x Back 5 x − 1 − 2 3 2 1 2 dx +c Revision → Straight line form → ∫ → Quit 1 2 x − 5x 2 3 3 2 − 3 2 x + 10 x ∫ x2 − 5 x 3 2 dx − 1 2 +c Next dx
  • 46. Calculus Revision dy = 6 x 2 − 2 x passes through the point (–1, 2). A curve for which dx Express y in terms of x. 6 x3 2 x 2 y= − +c 3 2 Use the point → y = 2 x3 − x 2 + c → 2 = 2(−1)3 − (−1) 2 + c → c=5 → y = 2 x3 − x 2 + 5 Back Quit Next
  • 47. Calculus Evaluate ∫ 2 1 2  2 1  x +  dx x  Revision → → → 2 1 →  x5 + x 2 − x −1  5 1 ( + 4− Back 1 2 ) () − 1 5 → 64 10 ∫ x 2 + x −1 ) 2 dx 2 x 4 + 2 x + x −2 dx 1 So multiply out 32 5 ∫( 1 Cannot use standard integral → 2 + ( 40 10 − 1 5 25 + 2 2 − 20 10 Quit − 2 10 1 2 ) ( − 1 5 1 5 → 82 10 + 12 − 1 1 ) → 81 5 Next
  • 48. Calculus Evaluate ∫ Revision 4 x dx Straight line form 1 4 2  →  x  3  1 3 2 → 2  3 3  2 4 ÷−   3 ( ) → ∫ x 1 2 1 4 →  16   2   ÷−  ÷  3   3 14 → 3 → Back dx  2 ( x)3 3 1 3 1 ÷  ( ) → 4 Quit 4 Next 2 3
  • 49. Calculus Evaluate ∫ Revision 0 (2 x + 3) 2 dx Use standard Integral −3 (from chain rule) 0  (2 x + 3)  →  3 × 2  −3   3  27   −27  →  ÷−  ÷  6   6  Back  (2(0) + 3)3   (2( −3) + 3)3  →  ÷−  ÷ 6 6     27 27 → + 6 6 Quit 54 → 6 → 9 Next
  • 50. Calculus Revision π  ,1 The curve y = f ( x) passes through the point  12 ÷   f ′( x) = cos 2 x → f ( x) = → 1= → 1= Find 1 sin 2 x 2 1 π sin 2 × 2 12 1 1 × 2 2 Back +c f(x) +c use the given point → 1= +c → c= 3 4 Quit 1 π sin 2 6 → f ( x) = π   ,1 ÷  12  + c sin π = 1 6 2 1 sin 2 x 2 Next + 3 4
  • 51. Calculus Revision Integrate ∫ (6 x 2 − x + cos x) dx Integrate term by term Back 6 x3 x 2 → − + sin x + c 3 2 Quit Next
  • 52. Calculus Integrate ∫ Revision 3 x + 4 x dx 3 4 Integrate term by term 3x 4x → + +c 4 2 → Back 2 Quit 3 4 x + 2x + c 4 2 Next
  • 53. Calculus Revision 1 ∫0 Evaluate   ( 1 + 3x ) →  3 ×3  2  2 →  9 → ( 3 2 ) Back → 1    0  3 ∫0 ( 1 + 3x ) 1 3 2  →  ( 1 + 3x ) 2  9 0  2 1 + 3(1) ÷ −   9 16 2 − 9 9 dx 1 + 3x 1 ( → )  1 + 3(0) ÷  3 14 9 Quit 2 →  9 2 →  9 → 1 2 1 ( ) dx ( )  2 4 ÷−   9 3 1  1 + 3x  0 3 ( ) 5 9 Next  1 ÷  3