SlideShare a Scribd company logo
1 of 18
Change into polar co-ordinates and then evaluate ∫
∞
∫
∞
𝐞−(𝐱𝟐+𝐲𝟐)𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑𝑦𝑑𝑥 is in correct form.
Given limits are 𝑦 ∶ 0 → ∞ , 𝑥 ∶ 0 → ∞
Equations are 𝑦 = 0 , 𝑦 = ∞ , 𝑥 = 0 , 𝑥 = ∞
Replacement:
ENGG MATHS-II
5.4 Change of variables in Double and Triple integrals:
Evaluation of double integrals by changing Cartesian to polar co- ordinates:
Working rule:
Step:1
Check the given order whether it is correct or not.
Step:2
Write the equations by using given limits.
Step:3
By using the equations sketch the region of integration.
Step:4
Replacement: put x = rcos𝜃 , y = rsin𝜃 , x2 + y2 = r2 and dxdy = rdrd𝜃
Step:5
Find r limits(draw radial strip inside the region) and θ limits and evaluate the
integral.
Example:
DOUBLE INTEGRATION
ENGG MATHS-II
Put x2 + y2 = r2 , dydx = rdrd𝜃
Limits:
r : 0→ ∞ , θ: 0 →
π
2
∞
e−r2
rdrdθ
π
∫
∞
∫
∞
e−(X2+y2)dydx = ∫2 ∫
0 0 0 0
Substitution: Put r2 = t , if r = 0 ⇒ t = 0, r = ∞ ⇒ t = ∞
2rdr = dt t: 0→ ∞
rdr =
𝑑𝑡
π
∫2 ∫
0 0 2
∞
e−t dt
dθ
π
2
∞
e−r2
rdrdθ = ∫2 ∫
0 0
1
2 −1 0
e−t ∞
π
0
= ∫2 [ ] dθ
= −∞ 0
+ e )dθ
π
∫2(−e
0
=
1
2
1
2
π
∫2(0 + 1)dθ
0
(∵ e−∞ = 0, e0 = 1)
1
2
π
= ∫2 dθ
0
2 0
π
=
1
(θ)2
=
1
(
π
− 0)
=
2 2
π
4
Example:
𝐱
𝐝𝐲𝐝𝐱
𝐲 𝐱𝟐+𝐲𝟐
Change into polar co-ordinates and then evaluate ∫
𝐚
∫
𝐚
𝟎
Solution:
Given order 𝑑𝑥𝑑𝑦 is in correct form.
DOUBLE INTEGRATION
ENGG MATHS-II
Given limits are x : y→ 𝑎 , y : 0→ 𝑎
Equations are x =y , x = 𝑎 , y = 0 , y = 𝑎
Replacement:
Put x = rcos𝜃 , 𝑥2 + 𝑦2 = 𝑟2 , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃
Limits: r : 0 →
𝑎
, 𝜃: 0 →
𝜋
𝑐𝑜𝑠𝜃 4
∫ ∫
𝑎 𝑎 𝑥
𝑥 +𝑦
2 2 𝑑𝑦𝑑𝑥 = ∫ ∫
0 𝑦 𝑟2 𝑟𝑑𝑟𝑑𝜃
𝑎
𝑟𝑐𝑜𝑠𝜃
𝜋
4 𝑐𝑜 𝑠
𝜃
0 0
0
𝑎
𝜋
= ∫4[𝑟𝑐𝑜𝑠𝜃]𝑐𝑜𝑠𝜃
𝑑𝜃
𝑎
𝑐𝑜𝑠
𝜃
0
𝜋
= ∫4 (
0
𝑐𝑜𝑠𝜃 − 0) 𝑑𝜃
𝜋
= 𝑎 ∫4 𝑑𝜃
0
0
𝜋
= 𝑎(𝜃)4
4
= 𝑎(
𝜋
− 0)
= 𝑎𝜋
4
Example:
𝐱𝟐
𝐲 √𝐱𝟐+𝐲𝟐
Evaluate ∫
𝐚
∫
𝐚
𝟎
𝐝𝐱𝐝𝐲 by changing into polar co-ordinates.
Solution:
Given order 𝑑𝑥𝑑𝑦 is in correct form.
Given limits are x : y→ 𝑎 , y : 0→ 𝑎
DOUBLE INTEGRATION
ENGG MATHS-II
Equations are x =y , x = 𝑎 , y = 0 , y = 𝑎
Replacement:
Put x2 = r2cos2𝜃 , 𝑥2 + 𝑦2 = 𝑟2 => 𝑟 = √𝑥2 + 𝑦2 , dxdy = rdrd𝜃
Limits: r : 0 →
𝑎
, 𝜃: 0 →
𝜋
𝑐𝑜𝑠𝜃 4
∫ ∫
𝑥2
√𝑥 +𝑦
2 2
𝑑𝑥𝑑𝑦 = ∫ ∫
𝑎 𝑎
0 𝑦 𝑟
𝑟𝑑𝑟𝑑𝜃
𝑎
𝑟2𝑐𝑜𝑠2𝜃
𝜋
4 𝑐 𝑜 𝑠
𝜃
0 0
3
3
𝜋
= ∫4 [𝑟
𝑎
𝑐𝑜𝑠2𝜃]
𝑐𝑜𝑠𝜃
𝑑𝜃
0
𝑎3
3
3𝑐𝑜𝑠 𝜃
2
0
𝜋
= ∫4 (
0
𝑐𝑜𝑠 𝜃 − 0) 𝑑𝜃
=
𝑎3 1
3
2
𝜋
∫4
3 0 𝑐𝑜𝑠 𝜃
𝑐𝑜𝑠 𝜃 𝑑𝜃
=
𝑎3 1
𝜋
3 0 𝑐𝑜𝑠𝜃
∫4 𝑑𝜃
=
𝜋
0
∫4 𝑠𝑒𝑐𝜃 𝑑𝜃
=
𝑎3
3
𝑎3
3 0
𝜋
(𝑙𝑜𝑔(𝑠𝑒𝑐𝜃 + 𝑡𝑎𝑛𝜃))4
= 𝑎3
[𝑙𝑜𝑔 (𝑠𝑒𝑐 𝜋
+ 𝑡𝑎𝑛 𝜋
) − 𝑙𝑜𝑔(𝑠𝑒𝑐0 + 𝑡𝑎𝑛0)]
3 4 4
3
=
𝑎3
[𝑙𝑜𝑔(√2 + 1) − 𝑙𝑜𝑔(1 − 0)]
3
=
𝑎3
𝑙𝑜𝑔(√2 + 1)
Note:
1. x2 + y2 = r2cos2θ + r2sin2θ = r2
2. ∫ cos
2
0
θdθ = ∫
2 2
π π
2
0
sin θdθ = ×
1 π
2 2
3. ∫ 4
cos θdθ = ∫
π
2
0
4
π
2
0
sin θdθ = × ×
3 1 π
4 2 2
4. ∫ 2 2
π
2
0
cos θsin θdθ = × ×
1 1 π
4 2 2
DOUBLE INTEGRATION
Example:
By changing into polar co-ordinates and evaluate ∫
𝟐𝐚
∫
√𝟐𝐚𝐱−𝐱𝟐
(𝐱𝟐 + 𝐲𝟐)𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑𝑦𝑑𝑥 is in correct form.
Given limits are y : 0→ √2𝑎𝑥 − 𝑥2 , x : 0→ 2𝑎
Equations are y = 0 , y = √2𝑎𝑥 − 𝑥2 , x = 0 , x = 2𝑎
y2 = 2ax − x2
x2 + y2 − 2ax = 0 is a circle with centre (a,0) and radius ‘a’.
Replacement:
Put x2 + y2 = r2 , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃
Limits: r : 0 → 2𝑎𝑐𝑜𝑠𝜃 , 𝜃: 0 →
𝜋
2
2𝑎𝑐𝑜𝑠𝜃
𝑟2 × 𝑟𝑑𝑟𝑑𝜃
𝜋
∫
2𝑎
∫
√2𝑎𝑥−𝑥2
(𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 = ∫2 ∫
0 0 0 0
3
𝑟 𝑑𝑟𝑑𝜃
2𝑎𝑐𝑜𝑠
𝜃
𝜋
= ∫2 ∫
0 0
4
]
0
r4 2acosθ
π
= ∫2 [
0
dθ
4
π
24a4cos4θ
= ∫2(
0
− 0) dθ
π
0
= 4a4 ∫2 cos4θdθ
ENGG MATHS-II
DOUBLE INTEGRATION
= 4a4 × 3
× 1
× π
4 2 2
(∵ ∫ 4
π
2
0
cos θdθ = × ×
3 1 π
4 2 2
)
=
3πa4
4
Example:
𝐱
𝐱𝟐+𝐲𝟐
𝐝𝐱𝐝𝐲
By changing into polar co-ordinates and evaluate∫
𝟐
∫
√𝟐𝐱−𝐱𝟐
𝟎 𝟎
Solution:
Given order 𝑑𝑥𝑑𝑦 is in incorrect form.
X
X2+y2
dydx
The correct form is 𝑑𝑦𝑑𝑥 ⇒ ∫
2
∫
√2X−X2
0 0
Given limits are y : 0→ √2𝑥 − 𝑥2 , x : 0→ 2
Equations are y = 0 , y = √2𝑥 − 𝑥2 , x = 0 , x = 2
y2 = 2x − x2
x2 + y2 − 2x = 0 is a circle with centre (1,0) and radius ‘1’.
Replacement:
Put x = rcos𝜃, 𝑥2 + 𝑦2 = 𝑟2 , dxdy = rdrd𝜃
Limits: r : 0 → 2𝑐𝑜𝑠𝜃 , 𝜃: 0 →
𝜋
2
𝑥 +𝑦
2 2
𝑑𝑦𝑑𝑥 = ∫ ∫
2 √2𝑥−𝑥2 𝑥
∫0∫0 𝑟2
2𝑐𝑜𝑠𝜃 𝑟𝑐𝑜𝑠𝜃
× 𝑟𝑑𝑟𝑑𝜃
𝜋
2
0 0
0
𝜋
0
=∫2[𝑟𝑐𝑜𝑠𝜃]2𝑐𝑜𝑠𝜃 𝑑𝜃
𝜋
0
= ∫2(2𝑐𝑜𝑠2𝜃 − 0)𝑑𝜃
ENGG MATHS-II
DOUBLE INTEGRATION
𝜋
0
= 2 ∫2 𝑐𝑜𝑠2𝜃 𝑑𝜃
= 2 ×
1
×
𝜋
2 2
(∵ ∫ 2
𝜋
2
0
1 𝜋
2 2
𝑐𝑜𝑠 𝜃𝑑𝜃 = × )
=
𝜋
2
Example:
By changing into polar co-ordinates and evaluate∫
𝐚
∫
√𝐚𝟐−𝐱𝟐
√𝐱𝟐 + 𝐲𝟐𝐝𝐲𝐝𝐱
𝟎 𝟎
Solution:
Given order 𝑑𝑥𝑑𝑦 is in correct form.
Given limits are y : 0→ √𝑎2 − 𝑥2 , x : 0→ 𝑎
Equations are y = 0 , y = √𝑎2 − 𝑥2 , x = 0 , x = 𝑎
y2 = a2 − x2
x2 + y2 = a2 is a circle with centre (0,0) and radius ‘a’.
Replacement:
Put x2 + y2 = r2 ⇒ r = √x2 + y2 , 𝑑𝑦𝑑𝑥 = 𝑟𝑑𝑟𝑑𝜃
Limits: r : 0 → 𝑎 , 𝜃: 0 →
𝜋
a
r × rdrdθ
2
π
∫
a
∫
√a2−X2
√x2 + y2dydx = ∫2 ∫
0 0 0 0
a
r2drdθ
π
= ∫2 ∫
0 0
3
π
r3 a
= ∫2 [
0
] dθ
0
ENGG MATHS-II
DOUBLE INTEGRATION
a3
3
π
= ∫2 (
0
− 0)dθ
=
a3
3
π
∫2 dθ
0
a3
3 0
π
= (θ)2
3 2
=
a3
(
π
− 0)
=
πa3
6
Example:
𝐱𝟐+𝐲𝟐
Evaluate ∬
𝐱𝟐𝐲𝟐
𝐝𝐱𝐝𝐲 over the annular region between the circles x2 + y2 = a2
and
x2 + y2 = b2 (b>a) by transforming into polar co-ordinates.
Solution:
𝑥2+𝑦2 𝑟2
Replacement:
Put x2 = r2cos2θ,y2 = r2sin2θ
x2 + y2 = r2, 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃
Given the region is between the circles x2 + y2 = a2 and x2 + y2 = b2
Limits: r : 𝑎 → 𝑏 , 𝜃: 0 → 2𝜋
∴ ∬
𝑥2𝑦2
𝑑𝑥𝑑𝑦 = ∫
2𝜋
∫
𝑏 𝑟2𝑐𝑜𝑠2𝜃×𝑟2𝑠𝑖𝑛2𝜃
× 𝑟𝑑𝑟𝑑𝜃
0 𝑎
ENGG MATHS-II
DOUBLE INTEGRATION
r2
0 a
ENGG MATHS-II
= ∫
2π
∫
b r5cos2θ×sin2θ
× drdθ
= ∫
2π
∫
b
r3cos2θ × sin2θ drdθ
0 a
4 a
r4 b
2π 2 2
= ∫0 [ ] cos θ × sin θ dθ
4 0
= 1
∫
2π
(b4 − a4) cos2θ × sin2θ dθ
4
= (b4−a4)
∫
2π
cos2θ × sin2θ dθ
0
=
4 4
(b −a )
4 × ∫
π
2
4 0
2π
0
cos2θ × sin2θ dθ (∵ ∫ = 4∫ )
π
2
0
π
= ( b4 − a4) × ∫2 cos2θ × sin2θ dθ
0
4 2 2
= ( b4 − a4) × 1
× 1
× π
(∵ ∫ 2 2
π
2
0
1 1 π
4 2 2
cos θsin θdθ = × × )
=
π(b4−a4)
16
Example:
𝟎 𝟎
Evaluate ∫
𝐚
∫
√𝐚𝟐−𝐱𝟐
√𝐚𝟐 − 𝐱𝟐 − 𝐲𝟐 𝐝𝐲𝐝𝐱 by transforming into polar co-ordinates.
Solution:
Given order 𝑑𝑦𝑑𝑥 is in correct form.
Given limits are y : 0→ √𝑎2 − 𝑥2 , x : 0→ 𝑎
Equations are y = 0 , y = √𝑎2 − 𝑥2 , x = 0 , x = 𝑎
𝑦2 = 𝑎2 − 𝑥2
x2 + y2 = a2 is a circle with centre (0,0) and radius ‘a’.
DOUBLE INTEGRATION
ENGG MATHS-II
Replacement:
Put a2 − x2 − y2 = a2 − (x2 + y2) = a2 − r2 , 𝑑𝑦𝑑𝑥 = 𝑟𝑑𝑟𝑑𝜃
∴ √a2 − x2 − y2 = √a2 − r2
Limits: r : 0 → 𝑎 , 𝜃: 0 →
𝜋
2
𝑎
√𝑎2 − 𝑟2 𝑟𝑑𝑟𝑑𝜃
𝜋
∫
𝑎
∫
√𝑎2−𝑥2
√𝑎2 − 𝑥2 − 𝑦2 𝑑𝑦𝑑𝑥 = ∫2 ∫
0 0 0 0
= 2 2
− 𝑟 𝑟𝑑𝑟)𝑑𝜃
𝑎
𝜋
∫2(∫ √𝑎
0 0
Substitution:
Put a2 − r2 = t
−2rdr = dt
if r = 0 ⇒ t = a2
if r = a ⇒ t = 0
rdr = −
dt
2
∴ t ∶ a2 → 0
2 2
a
π
∫2(∫ √a − r
0 0
−dt
2
0
π
rdr)dθ = ∫2[∫ 2 √t( )]dθ
0 a
2
−1 0
π
= ∫2[∫ 2 √tdt]dθ
0 a
=
−1
2
1
0
π
∫2[∫ 2 t2dt]dθ
0 a
=
−1
2
∫
t
3
2
3
2 a2
0
π
2
0
[ ] dθ
= − ×
1 2
2 3
π 3 0
0 a2
∫2 [t2] dθ
1
3
3
2
π
= − ∫2(0 − (a )2)dθ
= −
1
3
∫
0
π
3
− (a ) dθ
2
0
=
a3
3
π
∫2 dθ
0
a3
3 0
π
= (θ)2
DOUBLE INTEGRATION
3 2
=
a3
(
π
− 0)
=
πa3
6
Exercise:
Evaluate the following by changing into polar co-ordinates.
1. ∫
2𝑎
∫
√2𝑥−𝑥2
𝑑𝑦𝑑𝑥
0 0
Ans:
𝜋𝑎2
2
2. ∫
𝑎
∫
√𝑎2−𝑥2
(𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥
0 0
Ans:
𝜋𝑎4
8
𝑥2
3. ∫
1
∫
2−𝑥
𝑥𝑦 𝑑𝑥𝑑𝑦
0
Ans:
3
8
𝑥
𝑑𝑥𝑑𝑦
𝑦 𝑥2+𝑦2
4. ∫
𝑎
∫
𝑎
0
Ans:
𝜋𝑎
4
𝑥2+𝑦2
𝑑𝑥𝑑𝑦
5. ∫
2𝑎
∫
√2𝑎𝑥−𝑥2 𝑥
0 0
Ans:
𝜋𝑎
2
6. ∫
𝑎
∫
√𝑎2−𝑥2
(𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥
−𝑎 0
Ans:
𝜋𝑎4
4
7. ∫
𝑎
∫
√𝑎2−𝑥2
(𝑥2𝑦 + 𝑦3)𝑑𝑥𝑑𝑦
0 0
Ans:
𝑎5
5
8. ∫
1
∫
√2𝑥−𝑥2
(𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥
0 0 8
Ans:
3𝜋
− 1
X2+y2
9. ∬
X2y2
dxdy over the annular region between the circles x2 + y2 = 16 and x2 + y2 = 4
Ans:15π
10.∬
Xy
X2+y2
dxdy over the positive quadrant of the circle x2 + y2 = a2 Ans:
a3
6
Change of Variables in Triple Integral
Change of variables from Cartesian co- ordinates to cylindrical co – ordinates.
To convert from Cartesian to cylindrical polar coordinates system we have the following
transformation.
𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 𝑧 = 𝑧
J = ∂(X ,y,z)
= r
∂(r ,θ,z)
Hence the integral becomes
ENGG MATHS-II
DOUBLE INTEGRATION
ENGG MATHS-II
∭ f(x , y, z) dzdydx = ∭ f(r , θ, z) dzdrdθ
Example:
Find the volume of a solid bounded by the spherical surface 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟒𝐚𝟐 and
the cylinder 𝐱𝟐 + 𝐲𝟐 − 𝟐𝐚𝐲 = 𝟎.
Solution:
Cylindrical co – ordinates
x = r cos θ
y = r sin θ
z = z
The equation of the sphere x2 + y2 + z2 = 4a2
r2cos2 θ + r2 sin2 θ + z2 = 4a2
r2 + z2 = 4a2
And the cylinder x2 + y2 − 2ay = 0
x2 + y2 = 2ay
r2cos2 θ + r2 sin2 θ = 2a r sin θ
r2 = 2arsin θ
r = 2asin θ
Hence, the required volume,
DOUBLE INTEGRATION
∫
√4a2− r2
r dz dr dθ
0
r√4a2 − r2 dr dθ
Volume = ∫ ∫ ∫ dx dy dz
= ∫ ∫ ∫ r dθ dr dz
= 4 ∫
π⁄2
∫
2a sin θ
0 0
= 4 ∫
π⁄2
∫
2a sin θ
0 0
3 0
= 4 ∫
π⁄2
[− 1
(4a2 − r2)3⁄2]
2a sin θ
dθ
0
3 0
= 4
∫
π⁄2
[−(4a2 − 4a2 sin2 θ)3⁄2 + 8a3] dθ
= 4
3
∫
π⁄2
(−8a3 cos3 θ + 8a3) dθ
0
3
= 4
8a3 ∫
π⁄2
(1 − cos3 θ) dθ
0
3 2 3
=
32 a3
[
π
−
2
] cubic units
Example:
Find the volume of the portion of the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟏 intercepted between the
plane 𝐱 = 𝟎 and the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝟒 − 𝐳.
Solution:
Cylindrical co – ordinates
𝑥 = 𝑟 𝑐𝑜𝑠 𝜃
𝑦 = 𝑟 𝑠𝑖𝑛 𝜃
𝑧 = 𝑧
Given x2 + y2 = 1
r2cos2 θ + r2 sin2 θ = 1
r2 = 1
r = ±1
Given x2 + y2 = 4 − z
r2cos2 θ + r2 sin2 θ = 4 − z
r2 = 4 − z
z = 4 − r2
ENGG MATHS-II
DOUBLE INTEGRATION
ENGG MATHS-II
Hence the required volume
Volume = ∫ ∫ ∫ r dz dr dθ
∫
4− r2
r dz dr dθ
4− r
0
2
dr dθ
r (4 − r2) dr dθ
(4r − r3) dr dθ
= ∫
2π
∫
1
0 0 0
= ∫
2π
∫
1
r [z]
0 0
= ∫
2π
∫
1
0 0
= ∫
2π
∫
1
0 0
2
r4
− 4
] dθ
2π
[4r2
= ∫0
4
[(2 −
1
) − (0 − 0)] dθ
= ∫
2π
0
4
7
dθ
= ∫
2π
0
4 0
=
7
[θ] 2π
=
7
[2π − 0]
4 2
=
7
π cubic.units
Example:
Find the volume bounded by the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝐚𝐳, and the cylinder
𝐱𝟐 + 𝐲𝟐 = 𝟐𝐚𝐲 and the plane 𝐳 = 𝟎
Solution:
Cylindrical co – ordinates
x = r cos θ
y = r sin θ
z = z
The equation of the sphere x2 + y2+= az
r2cos2 θ + r2 sin2 θ = az
r2 = az
And the cylinder x2 + y2 = 2ay
r2cos2 θ + r2 sin2 θ = 2a r sin θ
r2 = 2arsin θ
DOUBLE INTEGRATION
r = 2asin θ
Hence, the required volume,
Volume = ∫ ∫ ∫ dx dy dz
= ∫ ∫ ∫ r dθ dr dz
r2
0
π 2a sin θ
=∫
0 ∫
0 ∫ a r dz dr dθ
0
r2
[z]a
rdrdθ
∫
2a sin θ
=∫
π
0 0
r3
[ a
] drdθ
π 2a sin θ
=∫0 ∫0
= 1
∫
a 4 0
r4 2a sin θ
π
0 [ ] dθ
a 4
0
= 1
∫
π 16a4sin4θ
dθ
π
2
= 4a3 × 2 ∫
⁄
sin4θdθ
0
= 4a3 × 2
3 1 π
= 3πa3
4 2 2 2
Change of variables from Cartesian Co – ordinates to spherical Polar Co – ordinates
To convert from Cartesian to spherical polar co-ordinates system we have the
following transformation
𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 y = rsinθsinφ z = rcosθ
J =
∂(r ,θ,φ )
∂(X ,y,z)
= r2sinθ
Hence the integral becomes
∭ f(x , y, z) dzdydx = ∭ f(r , θ, z)r2sinθdrdθdφ
Example:
Evaluate ∫ ∫ ∫
𝟏
√𝟏− 𝐱𝟐− 𝐲𝟐− 𝐳𝟐
𝐝𝐱 𝐝𝐲 𝐝𝐳 over the region bounded by the sphere
𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏.
Solution:
Let us transform this integral in spherical polar co – ordinates by taking
ENGG MATHS-II
DOUBLE INTEGRATION
x = r sin θ cos ϕ
y = r sin θ sin ϕ
z = r cos θ
dx dy dz = (r2 sin θ) dr dθ dϕ
Hence ϕ varies from 0 to 2π
ϕ varies from 0 to π
ϕ varies from 0 to 1
r2 sin θ dr dθ d ϕ
0 √1− r2
= ∫
2π
∫
π
∫
1 1
0 0
0 0
r2
= [∫
2π
dϕ ] [∫
π
sin θ dθ] [∫
1
0 √1− r2
dr]
0 0
r2
dr
= [ϕ] 2π [– cosθ] π ∫
1
0 √1 − r2
r2
dr
= (2π − 0) ( 1 + 1) ∫
1
0 √1 − r2
r2
= 4π ∫
1
dr
0 √1 − r2
Put r = sint ; dr = cost dt
r = 0 ⇒ t = 0
r = 1 ⇒ t =
π
2
sin2 t
√1 − sin2t
cost dt
= 4π ∫
π⁄2
0
√ cos2t
= 4π ∫
π⁄2 sin2 t
cost dt
0
cost
= 4π ∫
π⁄2 sin2 t
cos t dt
0
= 4π ∫
π⁄2
sin2 t dt
0
2 2
= 4π
1 π
= π2
Example:
∫√𝐱𝟐+𝐲𝟐
𝐝𝐳 𝐝𝐲 𝐝𝐱
√𝐱𝟐+ 𝐲𝟐+ 𝐳𝟐
𝟏 √𝟏− 𝐱𝟐 𝟏
Evaluate ∫𝟎 ∫𝟎
Solution:
ENGG MATHS-II
DOUBLE INTEGRATION
Given 𝑥 varies from 0 to 1
y varies from 0 to √1 − x2
z varies from √x2 + y2 to 1
Let us transform this integral into spherical polar co – ordinates by using
x = r sin θ cos ϕ
y = r sin θ sin ϕ
z = r cos θ
dx dy dz = (r2 sin θ) dr dθ dϕ
Let z = √x2 + y2
⇒ z2 = x2 + y2
⇒ r2 cos2 θ = r2 sin2θ cos2ϕ + r2 sin2θ sin2ϕ
⇒ cos2 θ = sin2 θ [∵ cos2ϕ + sin2ϕ = 1 ]
⇒ θ =
π
4
Let 𝑧 = 1
⇒ 𝑟 𝑐𝑜𝑠 𝜃 = 1
⇒ 𝑟 =
1
𝑐𝑜𝑠
𝜃
⇒ 𝑟 = 𝑠𝑒𝑐 𝜃
The region of integration is common to the cone z2 = x2 + y2 and the cylinder
x2 + y2 = 1 bounded by the plane z = 1 in the positive octant.
r = 0 to r = sec θ
θ = 0 to θ =
π
4
Limits of r ∶
Limits of θ ∶
Limits of ϕ ∶ ϕ = 0 to ϕ =
π
2
r
= ∫
π⁄2
∫
π⁄4
∫
sec θ 1
r2 sin θ dr dθ dϕ
0 0 0
= ∫
π⁄2
∫
π⁄4
∫
sec θ
r sin θ dr dθ dϕ
0 0 0
r2 sec θ
π⁄2 π⁄4
= ∫0 ∫0 [sin θ 2
]
0
dθ dϕ
2
π⁄2 π⁄4 sec2θ sin θ−0
= ∫0 ∫0 [ ] dθ dϕ
2
0 0
= ∫
π⁄2
∫
π⁄4 1
sec θ tan θ dθ dϕ
2 0 0
= [1
∫
π⁄2
dϕ ] [∫
π⁄4
sec θ tan θ dθ ]
ENGG MATHS-II
DOUBLE INTEGRATION
2 0 0
=
1
[ θ ] π⁄2
[secθ] π⁄4
2 2
=
1
[
π
− 0] [√2 − 1]
4
=
π
(√2 − 1)
Example:
Evaluate ∫ ∫ ∫ (𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 )𝐝𝐱 𝐝𝐲 𝐝𝐳 taken over the region bounded by the
volume enclosed by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏.
Solution:
Let us convert the given integral into spherical polar co – ordinates.
x = r sin θ cos ϕ ⇒ x2 = r2 sin2 θ cos2 ϕ
y = r sin θ sin ϕ ⇒ y2 = r2 sin2 θ sin2 ϕ
z = r cos θ ⇒ z2 = r2 cos2 θ
dx dy dz = (r2 sin θ) dr dθ dϕ
∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫
π
∫
2π
∫
1
r2 (r2 sin θ dθ dϕ dr)
0 0 0
Limits of r ∶
Limits of θ ∶
Limits of ϕ ∶
r = 0 to r = 1
θ = 0 to θ = π
ϕ = 0 to ϕ = 2π
∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫
π
∫
2π
∫
1
r2 (r2 sin θ dθ dϕ dr)
0 0 0
= [∫
1
r4 dr] [∫
π
sin θ dθ] [∫
2π
dϕ]
0 0 0
r5 1
0
π
= [ 5
]
0
[– cos θ] [ϕ]2π
0
5
= (
1
− 0) (1 + 1) (2π − 0)
= (
1
) (2) (2π) =
4π
5 5
ENGG MATHS-II
DOUBLE INTEGRATION

More Related Content

Similar to Double Integration examples of double integration with substitution.pptx

Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
 
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007
Semana 18  inecuaciones polinomicas ii  álgebra uni ccesa007Semana 18  inecuaciones polinomicas ii  álgebra uni ccesa007
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007Demetrio Ccesa Rayme
 
Calculus’ problem soulution
Calculus’ problem soulutionCalculus’ problem soulution
Calculus’ problem soulutionAkash Patel
 
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualElementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualMiriamKennedys
 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinatesHarishRagav10
 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distributionNadeem Uddin
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulasEr Deepak Sharma
 

Similar to Double Integration examples of double integration with substitution.pptx (20)

Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007
Semana 18  inecuaciones polinomicas ii  álgebra uni ccesa007Semana 18  inecuaciones polinomicas ii  álgebra uni ccesa007
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007
 
Calculus’ problem soulution
Calculus’ problem soulutionCalculus’ problem soulution
Calculus’ problem soulution
 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
 
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualElementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions Manual
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinates
 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distribution
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Matrix.pptx
Matrix.pptxMatrix.pptx
Matrix.pptx
 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
 

More from jyotidighole2

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxjyotidighole2
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxjyotidighole2
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
 

More from jyotidighole2 (7)

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docx
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptx
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
 

Recently uploaded

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 

Recently uploaded (20)

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 

Double Integration examples of double integration with substitution.pptx

  • 1. Change into polar co-ordinates and then evaluate ∫ ∞ ∫ ∞ 𝐞−(𝐱𝟐+𝐲𝟐)𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑𝑦𝑑𝑥 is in correct form. Given limits are 𝑦 ∶ 0 → ∞ , 𝑥 ∶ 0 → ∞ Equations are 𝑦 = 0 , 𝑦 = ∞ , 𝑥 = 0 , 𝑥 = ∞ Replacement: ENGG MATHS-II 5.4 Change of variables in Double and Triple integrals: Evaluation of double integrals by changing Cartesian to polar co- ordinates: Working rule: Step:1 Check the given order whether it is correct or not. Step:2 Write the equations by using given limits. Step:3 By using the equations sketch the region of integration. Step:4 Replacement: put x = rcos𝜃 , y = rsin𝜃 , x2 + y2 = r2 and dxdy = rdrd𝜃 Step:5 Find r limits(draw radial strip inside the region) and θ limits and evaluate the integral. Example: DOUBLE INTEGRATION
  • 2. ENGG MATHS-II Put x2 + y2 = r2 , dydx = rdrd𝜃 Limits: r : 0→ ∞ , θ: 0 → π 2 ∞ e−r2 rdrdθ π ∫ ∞ ∫ ∞ e−(X2+y2)dydx = ∫2 ∫ 0 0 0 0 Substitution: Put r2 = t , if r = 0 ⇒ t = 0, r = ∞ ⇒ t = ∞ 2rdr = dt t: 0→ ∞ rdr = 𝑑𝑡 π ∫2 ∫ 0 0 2 ∞ e−t dt dθ π 2 ∞ e−r2 rdrdθ = ∫2 ∫ 0 0 1 2 −1 0 e−t ∞ π 0 = ∫2 [ ] dθ = −∞ 0 + e )dθ π ∫2(−e 0 = 1 2 1 2 π ∫2(0 + 1)dθ 0 (∵ e−∞ = 0, e0 = 1) 1 2 π = ∫2 dθ 0 2 0 π = 1 (θ)2 = 1 ( π − 0) = 2 2 π 4 Example: 𝐱 𝐝𝐲𝐝𝐱 𝐲 𝐱𝟐+𝐲𝟐 Change into polar co-ordinates and then evaluate ∫ 𝐚 ∫ 𝐚 𝟎 Solution: Given order 𝑑𝑥𝑑𝑦 is in correct form. DOUBLE INTEGRATION
  • 3. ENGG MATHS-II Given limits are x : y→ 𝑎 , y : 0→ 𝑎 Equations are x =y , x = 𝑎 , y = 0 , y = 𝑎 Replacement: Put x = rcos𝜃 , 𝑥2 + 𝑦2 = 𝑟2 , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 Limits: r : 0 → 𝑎 , 𝜃: 0 → 𝜋 𝑐𝑜𝑠𝜃 4 ∫ ∫ 𝑎 𝑎 𝑥 𝑥 +𝑦 2 2 𝑑𝑦𝑑𝑥 = ∫ ∫ 0 𝑦 𝑟2 𝑟𝑑𝑟𝑑𝜃 𝑎 𝑟𝑐𝑜𝑠𝜃 𝜋 4 𝑐𝑜 𝑠 𝜃 0 0 0 𝑎 𝜋 = ∫4[𝑟𝑐𝑜𝑠𝜃]𝑐𝑜𝑠𝜃 𝑑𝜃 𝑎 𝑐𝑜𝑠 𝜃 0 𝜋 = ∫4 ( 0 𝑐𝑜𝑠𝜃 − 0) 𝑑𝜃 𝜋 = 𝑎 ∫4 𝑑𝜃 0 0 𝜋 = 𝑎(𝜃)4 4 = 𝑎( 𝜋 − 0) = 𝑎𝜋 4 Example: 𝐱𝟐 𝐲 √𝐱𝟐+𝐲𝟐 Evaluate ∫ 𝐚 ∫ 𝐚 𝟎 𝐝𝐱𝐝𝐲 by changing into polar co-ordinates. Solution: Given order 𝑑𝑥𝑑𝑦 is in correct form. Given limits are x : y→ 𝑎 , y : 0→ 𝑎 DOUBLE INTEGRATION
  • 4. ENGG MATHS-II Equations are x =y , x = 𝑎 , y = 0 , y = 𝑎 Replacement: Put x2 = r2cos2𝜃 , 𝑥2 + 𝑦2 = 𝑟2 => 𝑟 = √𝑥2 + 𝑦2 , dxdy = rdrd𝜃 Limits: r : 0 → 𝑎 , 𝜃: 0 → 𝜋 𝑐𝑜𝑠𝜃 4 ∫ ∫ 𝑥2 √𝑥 +𝑦 2 2 𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑎 𝑎 0 𝑦 𝑟 𝑟𝑑𝑟𝑑𝜃 𝑎 𝑟2𝑐𝑜𝑠2𝜃 𝜋 4 𝑐 𝑜 𝑠 𝜃 0 0 3 3 𝜋 = ∫4 [𝑟 𝑎 𝑐𝑜𝑠2𝜃] 𝑐𝑜𝑠𝜃 𝑑𝜃 0 𝑎3 3 3𝑐𝑜𝑠 𝜃 2 0 𝜋 = ∫4 ( 0 𝑐𝑜𝑠 𝜃 − 0) 𝑑𝜃 = 𝑎3 1 3 2 𝜋 ∫4 3 0 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃 𝑑𝜃 = 𝑎3 1 𝜋 3 0 𝑐𝑜𝑠𝜃 ∫4 𝑑𝜃 = 𝜋 0 ∫4 𝑠𝑒𝑐𝜃 𝑑𝜃 = 𝑎3 3 𝑎3 3 0 𝜋 (𝑙𝑜𝑔(𝑠𝑒𝑐𝜃 + 𝑡𝑎𝑛𝜃))4 = 𝑎3 [𝑙𝑜𝑔 (𝑠𝑒𝑐 𝜋 + 𝑡𝑎𝑛 𝜋 ) − 𝑙𝑜𝑔(𝑠𝑒𝑐0 + 𝑡𝑎𝑛0)] 3 4 4 3 = 𝑎3 [𝑙𝑜𝑔(√2 + 1) − 𝑙𝑜𝑔(1 − 0)] 3 = 𝑎3 𝑙𝑜𝑔(√2 + 1) Note: 1. x2 + y2 = r2cos2θ + r2sin2θ = r2 2. ∫ cos 2 0 θdθ = ∫ 2 2 π π 2 0 sin θdθ = × 1 π 2 2 3. ∫ 4 cos θdθ = ∫ π 2 0 4 π 2 0 sin θdθ = × × 3 1 π 4 2 2 4. ∫ 2 2 π 2 0 cos θsin θdθ = × × 1 1 π 4 2 2 DOUBLE INTEGRATION
  • 5. Example: By changing into polar co-ordinates and evaluate ∫ 𝟐𝐚 ∫ √𝟐𝐚𝐱−𝐱𝟐 (𝐱𝟐 + 𝐲𝟐)𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑𝑦𝑑𝑥 is in correct form. Given limits are y : 0→ √2𝑎𝑥 − 𝑥2 , x : 0→ 2𝑎 Equations are y = 0 , y = √2𝑎𝑥 − 𝑥2 , x = 0 , x = 2𝑎 y2 = 2ax − x2 x2 + y2 − 2ax = 0 is a circle with centre (a,0) and radius ‘a’. Replacement: Put x2 + y2 = r2 , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 Limits: r : 0 → 2𝑎𝑐𝑜𝑠𝜃 , 𝜃: 0 → 𝜋 2 2𝑎𝑐𝑜𝑠𝜃 𝑟2 × 𝑟𝑑𝑟𝑑𝜃 𝜋 ∫ 2𝑎 ∫ √2𝑎𝑥−𝑥2 (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 = ∫2 ∫ 0 0 0 0 3 𝑟 𝑑𝑟𝑑𝜃 2𝑎𝑐𝑜𝑠 𝜃 𝜋 = ∫2 ∫ 0 0 4 ] 0 r4 2acosθ π = ∫2 [ 0 dθ 4 π 24a4cos4θ = ∫2( 0 − 0) dθ π 0 = 4a4 ∫2 cos4θdθ ENGG MATHS-II DOUBLE INTEGRATION
  • 6. = 4a4 × 3 × 1 × π 4 2 2 (∵ ∫ 4 π 2 0 cos θdθ = × × 3 1 π 4 2 2 ) = 3πa4 4 Example: 𝐱 𝐱𝟐+𝐲𝟐 𝐝𝐱𝐝𝐲 By changing into polar co-ordinates and evaluate∫ 𝟐 ∫ √𝟐𝐱−𝐱𝟐 𝟎 𝟎 Solution: Given order 𝑑𝑥𝑑𝑦 is in incorrect form. X X2+y2 dydx The correct form is 𝑑𝑦𝑑𝑥 ⇒ ∫ 2 ∫ √2X−X2 0 0 Given limits are y : 0→ √2𝑥 − 𝑥2 , x : 0→ 2 Equations are y = 0 , y = √2𝑥 − 𝑥2 , x = 0 , x = 2 y2 = 2x − x2 x2 + y2 − 2x = 0 is a circle with centre (1,0) and radius ‘1’. Replacement: Put x = rcos𝜃, 𝑥2 + 𝑦2 = 𝑟2 , dxdy = rdrd𝜃 Limits: r : 0 → 2𝑐𝑜𝑠𝜃 , 𝜃: 0 → 𝜋 2 𝑥 +𝑦 2 2 𝑑𝑦𝑑𝑥 = ∫ ∫ 2 √2𝑥−𝑥2 𝑥 ∫0∫0 𝑟2 2𝑐𝑜𝑠𝜃 𝑟𝑐𝑜𝑠𝜃 × 𝑟𝑑𝑟𝑑𝜃 𝜋 2 0 0 0 𝜋 0 =∫2[𝑟𝑐𝑜𝑠𝜃]2𝑐𝑜𝑠𝜃 𝑑𝜃 𝜋 0 = ∫2(2𝑐𝑜𝑠2𝜃 − 0)𝑑𝜃 ENGG MATHS-II DOUBLE INTEGRATION
  • 7. 𝜋 0 = 2 ∫2 𝑐𝑜𝑠2𝜃 𝑑𝜃 = 2 × 1 × 𝜋 2 2 (∵ ∫ 2 𝜋 2 0 1 𝜋 2 2 𝑐𝑜𝑠 𝜃𝑑𝜃 = × ) = 𝜋 2 Example: By changing into polar co-ordinates and evaluate∫ 𝐚 ∫ √𝐚𝟐−𝐱𝟐 √𝐱𝟐 + 𝐲𝟐𝐝𝐲𝐝𝐱 𝟎 𝟎 Solution: Given order 𝑑𝑥𝑑𝑦 is in correct form. Given limits are y : 0→ √𝑎2 − 𝑥2 , x : 0→ 𝑎 Equations are y = 0 , y = √𝑎2 − 𝑥2 , x = 0 , x = 𝑎 y2 = a2 − x2 x2 + y2 = a2 is a circle with centre (0,0) and radius ‘a’. Replacement: Put x2 + y2 = r2 ⇒ r = √x2 + y2 , 𝑑𝑦𝑑𝑥 = 𝑟𝑑𝑟𝑑𝜃 Limits: r : 0 → 𝑎 , 𝜃: 0 → 𝜋 a r × rdrdθ 2 π ∫ a ∫ √a2−X2 √x2 + y2dydx = ∫2 ∫ 0 0 0 0 a r2drdθ π = ∫2 ∫ 0 0 3 π r3 a = ∫2 [ 0 ] dθ 0 ENGG MATHS-II DOUBLE INTEGRATION
  • 8. a3 3 π = ∫2 ( 0 − 0)dθ = a3 3 π ∫2 dθ 0 a3 3 0 π = (θ)2 3 2 = a3 ( π − 0) = πa3 6 Example: 𝐱𝟐+𝐲𝟐 Evaluate ∬ 𝐱𝟐𝐲𝟐 𝐝𝐱𝐝𝐲 over the annular region between the circles x2 + y2 = a2 and x2 + y2 = b2 (b>a) by transforming into polar co-ordinates. Solution: 𝑥2+𝑦2 𝑟2 Replacement: Put x2 = r2cos2θ,y2 = r2sin2θ x2 + y2 = r2, 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 Given the region is between the circles x2 + y2 = a2 and x2 + y2 = b2 Limits: r : 𝑎 → 𝑏 , 𝜃: 0 → 2𝜋 ∴ ∬ 𝑥2𝑦2 𝑑𝑥𝑑𝑦 = ∫ 2𝜋 ∫ 𝑏 𝑟2𝑐𝑜𝑠2𝜃×𝑟2𝑠𝑖𝑛2𝜃 × 𝑟𝑑𝑟𝑑𝜃 0 𝑎 ENGG MATHS-II DOUBLE INTEGRATION
  • 9. r2 0 a ENGG MATHS-II = ∫ 2π ∫ b r5cos2θ×sin2θ × drdθ = ∫ 2π ∫ b r3cos2θ × sin2θ drdθ 0 a 4 a r4 b 2π 2 2 = ∫0 [ ] cos θ × sin θ dθ 4 0 = 1 ∫ 2π (b4 − a4) cos2θ × sin2θ dθ 4 = (b4−a4) ∫ 2π cos2θ × sin2θ dθ 0 = 4 4 (b −a ) 4 × ∫ π 2 4 0 2π 0 cos2θ × sin2θ dθ (∵ ∫ = 4∫ ) π 2 0 π = ( b4 − a4) × ∫2 cos2θ × sin2θ dθ 0 4 2 2 = ( b4 − a4) × 1 × 1 × π (∵ ∫ 2 2 π 2 0 1 1 π 4 2 2 cos θsin θdθ = × × ) = π(b4−a4) 16 Example: 𝟎 𝟎 Evaluate ∫ 𝐚 ∫ √𝐚𝟐−𝐱𝟐 √𝐚𝟐 − 𝐱𝟐 − 𝐲𝟐 𝐝𝐲𝐝𝐱 by transforming into polar co-ordinates. Solution: Given order 𝑑𝑦𝑑𝑥 is in correct form. Given limits are y : 0→ √𝑎2 − 𝑥2 , x : 0→ 𝑎 Equations are y = 0 , y = √𝑎2 − 𝑥2 , x = 0 , x = 𝑎 𝑦2 = 𝑎2 − 𝑥2 x2 + y2 = a2 is a circle with centre (0,0) and radius ‘a’. DOUBLE INTEGRATION
  • 10. ENGG MATHS-II Replacement: Put a2 − x2 − y2 = a2 − (x2 + y2) = a2 − r2 , 𝑑𝑦𝑑𝑥 = 𝑟𝑑𝑟𝑑𝜃 ∴ √a2 − x2 − y2 = √a2 − r2 Limits: r : 0 → 𝑎 , 𝜃: 0 → 𝜋 2 𝑎 √𝑎2 − 𝑟2 𝑟𝑑𝑟𝑑𝜃 𝜋 ∫ 𝑎 ∫ √𝑎2−𝑥2 √𝑎2 − 𝑥2 − 𝑦2 𝑑𝑦𝑑𝑥 = ∫2 ∫ 0 0 0 0 = 2 2 − 𝑟 𝑟𝑑𝑟)𝑑𝜃 𝑎 𝜋 ∫2(∫ √𝑎 0 0 Substitution: Put a2 − r2 = t −2rdr = dt if r = 0 ⇒ t = a2 if r = a ⇒ t = 0 rdr = − dt 2 ∴ t ∶ a2 → 0 2 2 a π ∫2(∫ √a − r 0 0 −dt 2 0 π rdr)dθ = ∫2[∫ 2 √t( )]dθ 0 a 2 −1 0 π = ∫2[∫ 2 √tdt]dθ 0 a = −1 2 1 0 π ∫2[∫ 2 t2dt]dθ 0 a = −1 2 ∫ t 3 2 3 2 a2 0 π 2 0 [ ] dθ = − × 1 2 2 3 π 3 0 0 a2 ∫2 [t2] dθ 1 3 3 2 π = − ∫2(0 − (a )2)dθ = − 1 3 ∫ 0 π 3 − (a ) dθ 2 0 = a3 3 π ∫2 dθ 0 a3 3 0 π = (θ)2 DOUBLE INTEGRATION
  • 11. 3 2 = a3 ( π − 0) = πa3 6 Exercise: Evaluate the following by changing into polar co-ordinates. 1. ∫ 2𝑎 ∫ √2𝑥−𝑥2 𝑑𝑦𝑑𝑥 0 0 Ans: 𝜋𝑎2 2 2. ∫ 𝑎 ∫ √𝑎2−𝑥2 (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 0 0 Ans: 𝜋𝑎4 8 𝑥2 3. ∫ 1 ∫ 2−𝑥 𝑥𝑦 𝑑𝑥𝑑𝑦 0 Ans: 3 8 𝑥 𝑑𝑥𝑑𝑦 𝑦 𝑥2+𝑦2 4. ∫ 𝑎 ∫ 𝑎 0 Ans: 𝜋𝑎 4 𝑥2+𝑦2 𝑑𝑥𝑑𝑦 5. ∫ 2𝑎 ∫ √2𝑎𝑥−𝑥2 𝑥 0 0 Ans: 𝜋𝑎 2 6. ∫ 𝑎 ∫ √𝑎2−𝑥2 (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 −𝑎 0 Ans: 𝜋𝑎4 4 7. ∫ 𝑎 ∫ √𝑎2−𝑥2 (𝑥2𝑦 + 𝑦3)𝑑𝑥𝑑𝑦 0 0 Ans: 𝑎5 5 8. ∫ 1 ∫ √2𝑥−𝑥2 (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 0 0 8 Ans: 3𝜋 − 1 X2+y2 9. ∬ X2y2 dxdy over the annular region between the circles x2 + y2 = 16 and x2 + y2 = 4 Ans:15π 10.∬ Xy X2+y2 dxdy over the positive quadrant of the circle x2 + y2 = a2 Ans: a3 6 Change of Variables in Triple Integral Change of variables from Cartesian co- ordinates to cylindrical co – ordinates. To convert from Cartesian to cylindrical polar coordinates system we have the following transformation. 𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 𝑧 = 𝑧 J = ∂(X ,y,z) = r ∂(r ,θ,z) Hence the integral becomes ENGG MATHS-II DOUBLE INTEGRATION
  • 12. ENGG MATHS-II ∭ f(x , y, z) dzdydx = ∭ f(r , θ, z) dzdrdθ Example: Find the volume of a solid bounded by the spherical surface 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟒𝐚𝟐 and the cylinder 𝐱𝟐 + 𝐲𝟐 − 𝟐𝐚𝐲 = 𝟎. Solution: Cylindrical co – ordinates x = r cos θ y = r sin θ z = z The equation of the sphere x2 + y2 + z2 = 4a2 r2cos2 θ + r2 sin2 θ + z2 = 4a2 r2 + z2 = 4a2 And the cylinder x2 + y2 − 2ay = 0 x2 + y2 = 2ay r2cos2 θ + r2 sin2 θ = 2a r sin θ r2 = 2arsin θ r = 2asin θ Hence, the required volume, DOUBLE INTEGRATION
  • 13. ∫ √4a2− r2 r dz dr dθ 0 r√4a2 − r2 dr dθ Volume = ∫ ∫ ∫ dx dy dz = ∫ ∫ ∫ r dθ dr dz = 4 ∫ π⁄2 ∫ 2a sin θ 0 0 = 4 ∫ π⁄2 ∫ 2a sin θ 0 0 3 0 = 4 ∫ π⁄2 [− 1 (4a2 − r2)3⁄2] 2a sin θ dθ 0 3 0 = 4 ∫ π⁄2 [−(4a2 − 4a2 sin2 θ)3⁄2 + 8a3] dθ = 4 3 ∫ π⁄2 (−8a3 cos3 θ + 8a3) dθ 0 3 = 4 8a3 ∫ π⁄2 (1 − cos3 θ) dθ 0 3 2 3 = 32 a3 [ π − 2 ] cubic units Example: Find the volume of the portion of the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟏 intercepted between the plane 𝐱 = 𝟎 and the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝟒 − 𝐳. Solution: Cylindrical co – ordinates 𝑥 = 𝑟 𝑐𝑜𝑠 𝜃 𝑦 = 𝑟 𝑠𝑖𝑛 𝜃 𝑧 = 𝑧 Given x2 + y2 = 1 r2cos2 θ + r2 sin2 θ = 1 r2 = 1 r = ±1 Given x2 + y2 = 4 − z r2cos2 θ + r2 sin2 θ = 4 − z r2 = 4 − z z = 4 − r2 ENGG MATHS-II DOUBLE INTEGRATION
  • 14. ENGG MATHS-II Hence the required volume Volume = ∫ ∫ ∫ r dz dr dθ ∫ 4− r2 r dz dr dθ 4− r 0 2 dr dθ r (4 − r2) dr dθ (4r − r3) dr dθ = ∫ 2π ∫ 1 0 0 0 = ∫ 2π ∫ 1 r [z] 0 0 = ∫ 2π ∫ 1 0 0 = ∫ 2π ∫ 1 0 0 2 r4 − 4 ] dθ 2π [4r2 = ∫0 4 [(2 − 1 ) − (0 − 0)] dθ = ∫ 2π 0 4 7 dθ = ∫ 2π 0 4 0 = 7 [θ] 2π = 7 [2π − 0] 4 2 = 7 π cubic.units Example: Find the volume bounded by the paraboloid 𝐱𝟐 + 𝐲𝟐 = 𝐚𝐳, and the cylinder 𝐱𝟐 + 𝐲𝟐 = 𝟐𝐚𝐲 and the plane 𝐳 = 𝟎 Solution: Cylindrical co – ordinates x = r cos θ y = r sin θ z = z The equation of the sphere x2 + y2+= az r2cos2 θ + r2 sin2 θ = az r2 = az And the cylinder x2 + y2 = 2ay r2cos2 θ + r2 sin2 θ = 2a r sin θ r2 = 2arsin θ DOUBLE INTEGRATION
  • 15. r = 2asin θ Hence, the required volume, Volume = ∫ ∫ ∫ dx dy dz = ∫ ∫ ∫ r dθ dr dz r2 0 π 2a sin θ =∫ 0 ∫ 0 ∫ a r dz dr dθ 0 r2 [z]a rdrdθ ∫ 2a sin θ =∫ π 0 0 r3 [ a ] drdθ π 2a sin θ =∫0 ∫0 = 1 ∫ a 4 0 r4 2a sin θ π 0 [ ] dθ a 4 0 = 1 ∫ π 16a4sin4θ dθ π 2 = 4a3 × 2 ∫ ⁄ sin4θdθ 0 = 4a3 × 2 3 1 π = 3πa3 4 2 2 2 Change of variables from Cartesian Co – ordinates to spherical Polar Co – ordinates To convert from Cartesian to spherical polar co-ordinates system we have the following transformation 𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 y = rsinθsinφ z = rcosθ J = ∂(r ,θ,φ ) ∂(X ,y,z) = r2sinθ Hence the integral becomes ∭ f(x , y, z) dzdydx = ∭ f(r , θ, z)r2sinθdrdθdφ Example: Evaluate ∫ ∫ ∫ 𝟏 √𝟏− 𝐱𝟐− 𝐲𝟐− 𝐳𝟐 𝐝𝐱 𝐝𝐲 𝐝𝐳 over the region bounded by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏. Solution: Let us transform this integral in spherical polar co – ordinates by taking ENGG MATHS-II DOUBLE INTEGRATION
  • 16. x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ dx dy dz = (r2 sin θ) dr dθ dϕ Hence ϕ varies from 0 to 2π ϕ varies from 0 to π ϕ varies from 0 to 1 r2 sin θ dr dθ d ϕ 0 √1− r2 = ∫ 2π ∫ π ∫ 1 1 0 0 0 0 r2 = [∫ 2π dϕ ] [∫ π sin θ dθ] [∫ 1 0 √1− r2 dr] 0 0 r2 dr = [ϕ] 2π [– cosθ] π ∫ 1 0 √1 − r2 r2 dr = (2π − 0) ( 1 + 1) ∫ 1 0 √1 − r2 r2 = 4π ∫ 1 dr 0 √1 − r2 Put r = sint ; dr = cost dt r = 0 ⇒ t = 0 r = 1 ⇒ t = π 2 sin2 t √1 − sin2t cost dt = 4π ∫ π⁄2 0 √ cos2t = 4π ∫ π⁄2 sin2 t cost dt 0 cost = 4π ∫ π⁄2 sin2 t cos t dt 0 = 4π ∫ π⁄2 sin2 t dt 0 2 2 = 4π 1 π = π2 Example: ∫√𝐱𝟐+𝐲𝟐 𝐝𝐳 𝐝𝐲 𝐝𝐱 √𝐱𝟐+ 𝐲𝟐+ 𝐳𝟐 𝟏 √𝟏− 𝐱𝟐 𝟏 Evaluate ∫𝟎 ∫𝟎 Solution: ENGG MATHS-II DOUBLE INTEGRATION
  • 17. Given 𝑥 varies from 0 to 1 y varies from 0 to √1 − x2 z varies from √x2 + y2 to 1 Let us transform this integral into spherical polar co – ordinates by using x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ dx dy dz = (r2 sin θ) dr dθ dϕ Let z = √x2 + y2 ⇒ z2 = x2 + y2 ⇒ r2 cos2 θ = r2 sin2θ cos2ϕ + r2 sin2θ sin2ϕ ⇒ cos2 θ = sin2 θ [∵ cos2ϕ + sin2ϕ = 1 ] ⇒ θ = π 4 Let 𝑧 = 1 ⇒ 𝑟 𝑐𝑜𝑠 𝜃 = 1 ⇒ 𝑟 = 1 𝑐𝑜𝑠 𝜃 ⇒ 𝑟 = 𝑠𝑒𝑐 𝜃 The region of integration is common to the cone z2 = x2 + y2 and the cylinder x2 + y2 = 1 bounded by the plane z = 1 in the positive octant. r = 0 to r = sec θ θ = 0 to θ = π 4 Limits of r ∶ Limits of θ ∶ Limits of ϕ ∶ ϕ = 0 to ϕ = π 2 r = ∫ π⁄2 ∫ π⁄4 ∫ sec θ 1 r2 sin θ dr dθ dϕ 0 0 0 = ∫ π⁄2 ∫ π⁄4 ∫ sec θ r sin θ dr dθ dϕ 0 0 0 r2 sec θ π⁄2 π⁄4 = ∫0 ∫0 [sin θ 2 ] 0 dθ dϕ 2 π⁄2 π⁄4 sec2θ sin θ−0 = ∫0 ∫0 [ ] dθ dϕ 2 0 0 = ∫ π⁄2 ∫ π⁄4 1 sec θ tan θ dθ dϕ 2 0 0 = [1 ∫ π⁄2 dϕ ] [∫ π⁄4 sec θ tan θ dθ ] ENGG MATHS-II DOUBLE INTEGRATION
  • 18. 2 0 0 = 1 [ θ ] π⁄2 [secθ] π⁄4 2 2 = 1 [ π − 0] [√2 − 1] 4 = π (√2 − 1) Example: Evaluate ∫ ∫ ∫ (𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 )𝐝𝐱 𝐝𝐲 𝐝𝐳 taken over the region bounded by the volume enclosed by the sphere 𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐 = 𝟏. Solution: Let us convert the given integral into spherical polar co – ordinates. x = r sin θ cos ϕ ⇒ x2 = r2 sin2 θ cos2 ϕ y = r sin θ sin ϕ ⇒ y2 = r2 sin2 θ sin2 ϕ z = r cos θ ⇒ z2 = r2 cos2 θ dx dy dz = (r2 sin θ) dr dθ dϕ ∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫ π ∫ 2π ∫ 1 r2 (r2 sin θ dθ dϕ dr) 0 0 0 Limits of r ∶ Limits of θ ∶ Limits of ϕ ∶ r = 0 to r = 1 θ = 0 to θ = π ϕ = 0 to ϕ = 2π ∫ ∫ ∫ (x2 + y2 + z2 )dx dy dz = ∫ π ∫ 2π ∫ 1 r2 (r2 sin θ dθ dϕ dr) 0 0 0 = [∫ 1 r4 dr] [∫ π sin θ dθ] [∫ 2π dϕ] 0 0 0 r5 1 0 π = [ 5 ] 0 [– cos θ] [ϕ]2π 0 5 = ( 1 − 0) (1 + 1) (2π − 0) = ( 1 ) (2) (2π) = 4π 5 5 ENGG MATHS-II DOUBLE INTEGRATION