1) The document presents a wavelet collocation method for numerically solving nth order Volterra integro-differential equations. It expands the unknown function as a series of Chebyshev wavelets of the second kind with unknown coefficients.
2) It states and proves a uniform convergence theorem that establishes the convergence of approximating the solution using truncated Chebyshev wavelet series expansions.
3) The paper demonstrates the validity and applicability of the proposed method through some illustrative examples of solving integro-differential equations using the Chebyshev wavelet collocation approach.