SlideShare a Scribd company logo
Page | 1
VIVEKANANDA COLLEGE, TIRUVEDAKAM WEST
(Residential & Autonomous – A Gurukula Institute of Life-Training)
(Affiliated to Madurai Kamaraj University)
PART III: PHYSICS MAJOR – FOURTH SEMESTER-CORE SUBJECT PAPER-II
NUMERICAL METHODS – 06CT42
(For those who joined in June 2018 and after)
Reference Text Book: Numerical Methods – P.Kandasamy, K.Thilagavathy & K.Gunavathi,
S.Chand & Company Ltd., New Delhi, 2014.
UNIT – IV Numerical Differentiation and Integration
Numerical Differentiation
Introduction
We found the polynomial curve y = f (x), passing through the (n+1) ordered pairs (xi, yi), i=0, 1,
2…n. Now we are trying to find the derivative value of such curves at a given x = xk (say), whose x0 <
xk < xn.
To get derivative, we first find the curve y = f (x) through the points and then differentiate and get its
value at the required point.
If the values of x are equally spaced. We get the interpolating polynomial due to Newton-Gregory.
• If the derivative is required at a point nearer to the starting value in the table, we use
Newton’s forward interpolation formula.
• If we require the derivative at the end of the table, we use Newton’s backward interpolation
formula.
• If the value of derivative is required near the middle of the table value, we use one of the
central difference interpolation formulae.
Newton’s forward difference formula to get the derivative
Newton’s forward difference interpolation formula is
𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢 − 1)
2!
∆2
𝑦0 +
𝑢(𝑢 − 1)(𝑢 − 2)
3!
∆3
𝑦0 + ⋯
where 𝑦 (𝑥) is a polynomial of degree 𝑛 𝑖𝑛 𝑥 𝑎𝑛𝑑 𝑢 =
𝑥 − 𝑥0
ℎ
where ℎ 𝑖s interval of differencing
The values of first and second derivative at the starting value 𝑥 = 𝑥0 for given by
(
𝑑𝑦
𝑑𝑥
)
𝑥=𝑥0
=
1
ℎ
[∆ 𝑦0 −
1
2
∆2
𝑦0 +
1
3
∆3
𝑦0 − ⋯ ]
(
𝑑2
𝑦
𝑑𝑥2
)
𝑥=𝑥0
=
1
ℎ2
[∆2
𝑦0 − ∆3
𝑦0 +
11
12
∆4
𝑦0 − ⋯ ]
Page | 2
Problems:
1. The table given below revels the velocity v of a body during the time ‘t’ specified. find its
acceleration at t = 1.1
t : 1.0 1.1 1.2 1.3 1.4
v : 43.1 47.7 52.1 56.4 60.8
𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧. 𝑣 is dependent on time 𝑡 𝑖. 𝑒. , 𝑣 = 𝑣(𝑡). we require acceleration =
𝑑𝑣
𝑑𝑡
.
therefore, we have to find 𝑣′(1.1).
𝐴𝑠
𝑑𝑣
𝑑𝑡
𝑎𝑡 𝑡 = 1.1 is require, (nearer to beginning value), we use 𝑁𝑒𝑤𝑡𝑜𝑛 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎.
𝑣(𝑡) = 𝑣 (𝑥0 + 𝑢ℎ) = 𝑣0 + 𝑢∆𝑣0 +
𝑢(𝑢 − 1)
2!
∆2
𝑣0 +
𝑢(𝑢 − 1)(𝑢 − 2)
3!
∆3
𝑣0 + ⋯
𝑑𝑣
𝑑𝑡
=
1
ℎ
.
𝑑𝑣
𝑑𝑡
=
1
ℎ
[∆𝑣0 +
2𝑢 − 1
2
∆2
𝑣0 +
3𝑢2
− 6𝑢 + 2
6
∆3
𝑣0 + ⋯ ]
where 𝑢 =
𝑡 − 𝑡0
ℎ
=
1.1 − 1.0
0.1
= 1
(
𝑑𝑣
𝑑𝑡
)
𝑡=1.1
= (
𝑑𝑣
𝑑𝑡
)
𝑛=1
=
1
0.1
[4.6 +
1
2
(−0.2) +
1
6
(0.1) +
1
12
(0.1)]
= 10[4.6 − 0.1 − 0.0166 + 0.0083]
= 𝟒𝟒. 𝟗𝟏𝟕
t
1.0
1.1
1.2
1.3
1.4
v
43.1
47.7
52.1
56.4
60.8
∆𝑣
4.6
4.4
4.3
4.4
∆2
𝑣
-0.2
-0.1
0.1
∆3
𝑣
0.1
0.2
∆4
𝑣
0.1
Page | 3
2. Derive the Newton’s forward difference formula to get the derivative.
We are given (𝑛 + 1)ordered pairs (𝑥𝑖, 𝑦𝑖)𝑖 = 0, 1, … 𝑛. we want to find the derivative of
𝑦 = 𝑓(𝑥) passing through the (𝑛 + 1) points, at a point near to the startinng value 𝑥 = 𝑥0
Newton’s forward difference interpolation formula is
𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢 − 1)
2!
∆2
𝑦0 +
𝑢(𝑢 − 1)(𝑢 − 2)
3!
∆3
𝑦0 + ⋯ … (1)
where 𝑦 (𝑥) is a polynomial of degree 𝑛 𝑖𝑛 𝑥 𝑎𝑛𝑑 𝑢 =
𝑥 − 𝑥0
ℎ
Differentiating 𝑦(𝑥) w. r. t. 𝑥,
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
ℎ
.
𝑑𝑦
𝑑𝑢
𝑑𝑦
𝑑𝑥
=
1
ℎ
[∆𝑦0 +
2𝑢 − 1
2
∆2
𝑦0 +
3𝑢2
− 6𝑢 + 2
6
∆3
𝑦0 +
(4𝑢3
− 18𝑢2
+ 22𝑢 − 6)
24
∆4
𝑦0] … . (2)
Equation (2) gives the value of
𝑑𝑦
𝑑𝑥
at general 𝑥 which may be anywhere in the interval.
In special case like 𝑥 = 𝑥0, 𝑖. 𝑒. , 𝑢 = 0 𝑖𝑛 (2)
(
𝑑𝑦
𝑑𝑥
)
𝑥=𝑥0
= (
𝑑𝑦
𝑑𝑥
)
𝑢=0
=
1
ℎ
[∆𝑦0 +
1
2
∆2
𝑦0 +
1
3
∆3
𝑦0 −
1
4
∆4
𝑦0 + ⋯ ] … (3)
Differentiating (2) again w. r. t. 𝑥,
𝑑2
𝑦
𝑑𝑥2
=
𝑑
𝑑𝑢
(
𝑑𝑦
𝑑𝑥
) .
𝑑𝑢
𝑑𝑥
=
𝑑
𝑑𝑢
(
𝑑𝑦
𝑑𝑥
) .
1
ℎ
𝑑2
𝑦
𝑑𝑥2
=
1
ℎ2
[∆2
𝑦0 + (𝑢 − 1)∆3
𝑦0 +
(6𝑢2
− 18𝑢 + 11)
12
∆4
𝑦0 + ⋯ ] … (4)
Equation (4) give the second derivative value at 𝑥 = 𝑥.
setting 𝑥 = 𝑥0 𝑖. 𝑒. , 𝑢 = 0 𝑖𝑛 (4)
(
𝑑2
𝑦
𝑑𝑥2
)
𝑥=𝑥0
=
1
ℎ2
[∆2
𝑦0 − ∆3
𝑦0 +
11
12
∆4
𝑦0 + ⋯ ] … (5)
This equation (5) give the value of second derivative at the starting value 𝑥 = 𝑥0
3. 𝐓𝐡𝐞 𝐭𝐚𝐛𝐥𝐞 𝐛𝐞𝐥𝐨𝐰 𝐠𝐢𝐯𝐞𝐬 𝐭𝐡𝐞 𝐫𝐞𝐬𝐮𝐥𝐭𝐬 𝐨𝐟 𝐚𝐧 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧: 𝛉 𝐢𝐬 𝐭𝐡𝐞 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 𝐢𝐧
𝐝𝐞𝐠𝐫𝐞𝐞𝐬 𝐜𝐞𝐧𝐭𝐫𝐢𝐠𝐫𝐚𝐝𝐞 𝐨𝐟𝐚 𝐯𝐞𝐬𝐬𝐞𝐥 𝐨𝐟 𝐜𝐨𝐨𝐥𝐢𝐧𝐠 𝐰𝐚𝐭𝐞𝐫; 𝐭 𝐢𝐬 𝐭𝐡𝐞 𝐭𝐢𝐦𝐞 𝐢𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞
𝐛𝐞𝐠𝐢𝐧𝐧𝐢𝐧𝐠 𝐨𝐟 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧.
𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐚𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐫𝐚𝐭𝐞 𝐨𝐟 𝐜𝐨𝐨𝐥𝐢𝐧𝐠 𝐚𝐭 𝒕 = 𝟑 𝒂𝒏𝒅 𝟑. 𝟓
t :
𝜽 :
1
85.3
3
74.5
5
67.0
7
60.5
9
54.3
Page | 4
Solution. we form below the difference table
t
1
3
5
7
9
𝜃
85.3
74.5
67.0
60.5
54.3
∆𝜃
-10.8
-7.5
-6.5
-6.2
∆2
𝜃
3.3
1.0
0.3
∆3
𝜃
-2.3
-0.7
∆4
𝜃
1.6
𝑑𝜃
𝑑𝑡
represents the rate of cooling
𝑢 =
𝑡 − 𝑡0
ℎ
=
𝑡 − 1
2
𝐴𝑡 𝑡 = 3, 𝑢 = 1 𝐴𝑡 𝑡 = 3.5, 𝑢 = 1.25 ℎ = 2
(i) Putting 𝑢 = 1 𝑖𝑛
𝑑𝑦
𝑑𝑥
(
𝑑𝜃
𝑑𝑡
)
𝑡=3
= (
𝑑𝜃
𝑑𝑡
)
𝑢=1
=
1
2
[−10.8 −
1
2
(3.3) −
1
6
(−2.3) +
1
12
(1.6)]
=
1
2
[−10.8 + 1.65 + 0.38333 + 0.13333]
= −𝟒. 𝟑𝟏𝟔𝟔𝟕
(ii)Putting 𝑢 = 1.25 𝑖𝑛
𝑑𝑦
𝑑𝑥
(
𝑑𝜃
𝑑𝑡
)
𝑡=3.5
= (
𝑑𝜃
𝑑𝑡
)
𝑢=1.25
=
1
2
[−10.8 + 0.75(3.3) − (0.1354)(−2.3) + (0.04948)(1.6)]
=
1
2
[−10.8 + 2.475 + 0.31142 + 0.079168]
= −𝟑. 𝟗𝟔𝟕𝟏𝟖
Newton’s backward difference formula to compute the derivative
Consider Newton’s backward difference interpolation formula.
𝑦(𝑥) = 𝑦 (𝑥0 + 𝑣ℎ) = 𝑦𝑛 + 𝑣∆𝑦𝑛 +
𝑣(𝑣 + 1)
2!
∇2
𝑦𝑛 +
𝑣(𝑣 + 1)(𝑣 + 2)
3!
∇3
𝑦𝑛 + ⋯
Page | 5
where 𝑣 =
𝑥 − 𝑥0
ℎ
h is interval of differencing.
The value of first and second derivative at the ending value 𝑥 = 𝑥 𝑛 given by
(
𝑑𝑦
𝑑𝑥
)
𝑥=𝑥 𝑛
=
1
ℎ
[∇𝑦𝑛 +
1
2
∇2
𝑦𝑛 +
1
3
∇3
𝑦𝑛 +
1
4
∇4
𝑦𝑛 + ⋯ ]
(
𝑑2
𝑦
𝑑𝑥2
)
𝑥=𝑥 𝑛
=
1
ℎ2
[∇2
𝑦𝑛 + ∇3
𝑦𝑛 +
11
12
∇4
𝑦𝑛 + ⋯ ]
4. 𝐀 𝐫𝐨𝐝 𝐢𝐬 𝐫𝐨𝐭𝐚𝐭𝐢𝐧𝐠 𝐢𝐧 𝐚 𝐩𝐥𝐚𝐧𝐞. 𝐓𝐡𝐞 𝐟𝐨𝐥𝐥𝐨𝐰𝐢𝐧𝐧𝐠 𝐭𝐚𝐛𝐥𝐞 𝐠𝐢𝐯𝐞𝐬 𝐭𝐡𝐞 𝐚𝐧𝐠𝐥𝐞 𝛉 (𝐢𝐧 𝐫𝐚𝐝𝐢𝐚𝐧𝐬) 𝐭𝐡𝐫𝐨𝐮𝐠𝐡
𝐰𝐡𝐢𝐜𝐡 𝐭𝐡𝐞 𝐫𝐨𝐝 𝐡𝐚𝐬 𝐭𝐮𝐫𝐧𝐞𝐝 𝐟𝐨𝐫 𝐯𝐚𝐫𝐢𝐨𝐮𝐬 𝐯𝐚𝐥𝐮𝐞𝐬 𝐨𝐟 𝐭𝐢𝐦𝐞 𝐭 (𝐬𝐞𝐜𝐨𝐧𝐝𝐬). 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐭𝐡𝐞 𝐚𝐧𝐠𝐮𝐥𝐚𝐫
𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝐚𝐧𝐝 𝐚𝐧𝐠𝐮𝐥𝐚𝐫 𝐚𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐨𝐝 𝐚𝐭 = 𝟎. 𝟔 𝐬𝐞𝐜𝐨𝐧𝐝𝐬.
t : 0 0.2 0.4 0.6 0.8 1.0
𝜽 : 0 0.12 0.49 1.12 2.02 3.20
Solution. We form the difference table below:
t
0
0.2
0.4
0.6
0.8
1.0
𝜃
0
0.12
0.49
1.12
2.02
3.20
∇𝜃
0.12
0.37
0.63
0.90
1.18
∇2
𝜃
0.25
0.26
0.27
0.28
∇3
𝜃
0.01
0.01
0.01
∇4
𝜃
0
0
𝑥 = 0.6 is toward the end, we will use backward difference formula. ℎ = 0.2
(
𝑑𝑦
𝑑𝑥
)
𝑥
=
1
ℎ
[∆𝑦𝑛 +
2𝑣 +
2
∇2
𝑦𝑛 +
3𝑣2
+ 6𝑣 + 2
6
∇3
𝑦𝑛 +
4𝑣3
+ 18𝑣2
+ 22𝑣 + 6
24
∇4
𝑦𝑛 + ⋯ ] … (1)
𝐻𝑒𝑟𝑒 𝑣 =
𝑥 − 𝑥 𝑛
ℎ
=
0.6 − 1.0
0.2
= −2
Using in (1),
𝑑𝜃
𝑑𝑡
represents the angular velocity
Page | 6
(
𝑑𝜃
𝑑𝑡
)
𝑡=0.6
=
1
0.2
[1.18 −
3
2
(0.28) +
1
3
(0.01)]
= 5[1.18 − 0.42 + 0.00333]
= 𝟑. 𝟖𝟏𝟔𝟔𝟓
𝒓𝒂𝒅
𝒔𝒆𝒄
𝑑2
𝜃
𝑑𝑡2
represents the angular acceleration
Also, (
𝑑2
𝑦
𝑑𝑡2
) =
1
ℎ2
[∇2
𝑦𝑛 + (v + 1)∇3
𝑦𝑛 + ⋯ ]
(
𝑑2
𝜃
𝑑𝑡2
)
𝑡=0.6
=
1
0.04
[0.28 − 0.01]
= 𝟔. 𝟕𝟓
𝒓𝒂𝒅
𝒔𝒆𝒄 𝟐
5. 𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐭𝐰𝐨 𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐞𝐬 𝐨𝐟 (𝒙)
𝟏
𝟑 𝒂𝒕 𝒙 = 𝟓𝟎 𝐚𝐧𝐝 𝒙 = 𝟓𝟔 𝐠𝐢𝐯𝐞𝐧 𝐭𝐡𝐞 𝐭𝐚𝐛𝐥𝐞 𝐛𝐞𝐥𝐨𝐰
x : 50 51 52 53 54 55 56
y =(𝒙)
𝟏
𝟑 :
3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259
Solution.
We require 𝑓′(𝑥) 𝑎𝑡 𝑥 = 50 we use 𝑁𝑒𝑤𝑡𝑜𝑛′
𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 and
𝑡o get 𝑓′(𝑥) 𝑎𝑡 𝑥 = 56 we use 𝑁𝑒𝑤𝑡𝑜𝑛′
𝑠 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎.
By 𝑁𝑒𝑤𝑡𝑜𝑛′
𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎,
ℎ = 1 𝑢 =
𝑥 − 𝑥0
ℎ
=
50 − 50
1
= 0
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐓𝐚𝐛𝐥𝐞
x
50
51
52
53
54
55
56
y
3.6840
3.7084
3.7325
3.7563
3.7798
3.8030
3.8259
∆𝑦
0.0244
0.0241
0.0238
0.0235
0.0232
0.0229
∆2
𝑦
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
∆3
𝑦
0
0
0
0
Page | 7
(
𝑑𝑦
𝑑𝑥
)
𝑥=𝑥0
= (
𝑑𝑦
𝑑𝑥
)
𝑢=0
=
1
ℎ
[∆ 𝑦0 −
1
2
∆2
𝑦0 +
1
3
∆3
𝑦0 − ⋯ ]
=
1
1
[0.0244 −
1
2
(−0.0003) +
1
3
(0)]
= 𝟎. 𝟎𝟐𝟒𝟓𝟓
(
𝑑2
𝑦
𝑑𝑥2
)
𝑥=50
= (
𝑑2
𝑦
𝑑𝑥2
)
𝑢=0
=
1
ℎ2
[∆2
𝑦0 − ∆3
𝑦0 + ⋯ ]
= 1[−0.0003]
= −𝟎. 𝟎𝟎𝟎𝟑.
𝐵𝑦 𝑁𝑒𝑤𝑡𝑜𝑛′
𝑠 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎,
(
𝑑𝑦
𝑑𝑥
)
𝑥=𝑥 𝑛
= (
𝑑𝑦
𝑑𝑥
)
𝑣=0
=
1
ℎ
[∇𝑦𝑛 +
1
2
∇2
𝑦𝑛 +
1
3
∇3
𝑦𝑛 + ⋯ ]
(
𝑑𝑦
𝑑𝑥
)
𝑥=56
=
1
1
[0.0229 +
1
2
(−0.0003) + 0 ]
= 𝟎. 𝟎𝟐𝟐𝟕𝟓
(
𝑑2
𝑦
𝑑𝑥2
)
𝑥=𝑥 𝑛
=
1
ℎ2
[∇2
𝑦𝑛 + ∇3
𝑦𝑛 + ⋯ ]
=
1
1
[−0.0003]
= −𝟎. 𝟎𝟎𝟎𝟑
NUMERICAL INTEGRATION
Introduction
We know that ∫ 𝑓(𝑥)𝑑𝑥 represents the area between 𝑦 = 𝑓(𝑥), 𝑥 − axis and the
𝑏
𝑎
ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏. This integration is possible only if the 𝑓(𝑥)is explicitly given and
if it is integrable. The problem of numerical integration can be stated as follows: Given a
set of (𝑛 + 1) paird values (𝑥𝑖, 𝑦𝑖), 𝑖 = 0, 1, 2, … 𝑛 𝑜f the function 𝑦 = 𝑓(𝑥), where 𝑓(𝑥) is
not known explicitly, it is required to compute ∫ 𝑦 𝑑𝑥.
𝑥 𝑛
𝑥0
As we did in the case of interpolation
or numerical differentation, we replace 𝑓(𝑥) by an interpolating polynomial 𝑃𝑛(𝑥) 𝑎nd obtain
∫ 𝑃𝑛(𝑥)𝑑𝑥 which is approximately taken as the value for ∫ 𝑓(𝑥)𝑑𝑥.
𝑥 𝑛
𝑥0
𝑥0
𝑥 𝑛
Page | 8
A general quadrature formula for equidistant ordinates ( or Newton-Cote’s formula)
For equally spaced intervals, we have Newton’s forward difference formula as
𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢 − 1)
2!
∆2
𝑦0 +
𝑢(𝑢 − 1)(𝑢 − 2)
3!
∆3
𝑦0 + ⋯
Here, 𝑢 =
𝑥 − 𝑥0
ℎ
where h is interval of differencing
𝑠ince 𝑥 𝑛 = 𝑥0 + 𝑛ℎ and , 𝑢 =
𝑥 − 𝑥0
ℎ
we have
𝑥 − 𝑥0
ℎ
= 𝑛 = 𝑢.
∫ 𝑓(𝑥) 𝑑𝑥 ≈ ℎ[
𝑥 𝑛
𝑥0
𝑛𝑦0 +
𝑛2
2
∆𝑦0 +
1
2
(
𝑛3
3
−
𝑛2
2
) ∆2
𝑦0 +
1
6
(
𝑛4
4
− 𝑛3
+ 𝑛2
) ∆3
𝑦0 + ⋯
Above the equation is called 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′
𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 and is a general
𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎. Giving various values for 𝑛, we get a number of special formula.
Trapezoidal rule
𝐵𝑦 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑛 = 1, 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′
𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 (𝑖. 𝑒. , 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑛𝑙𝑦 𝑡𝑤𝑜
𝑝𝑎𝑖𝑟𝑒𝑑𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟).
∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥
𝑥0+𝑛ℎ
𝑥0+(𝑛−1)ℎ
𝑥0+2ℎ
𝑥0+ℎ
𝑥0+ℎ
𝑥0
𝑥0+𝑛ℎ
𝑥0
𝑥 𝑛
𝑥0
=
ℎ
2
[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 + 𝑦3 + ⋯ + 𝑦 𝑛−1)]
=
ℎ
2
[(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
+ 2(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
This is known as Trapezoidal Rule.
Simpson’s one-third rule
Setting n =2 in Newton-Cotes quadrature formula,
∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥
𝑥 𝑛
𝑥 𝑛−2
𝑥4
𝑥2
𝑥2
𝑥0
𝑥 𝑛
𝑥0
=
ℎ
3
[(𝑦0 + 𝑦𝑛) + 2(𝑦2 + 𝑦4 + ⋯ ) + 4(𝑦1 + 𝑦3 + ⋯ )]
=
ℎ
3
[𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
+ 2(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑑𝑑 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 4(𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)]
Page | 9
Simpson’s three-eighths rule
Putting n = 3 in Newton-Cote’s quadrature formula,
𝐼𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3
∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥
𝑥0+𝑛ℎ
𝑥0+(𝑛−3)ℎ
𝑥0+6ℎ
𝑥0+3ℎ
𝑥0+3ℎ
𝑥0
𝑥0+𝑛ℎ
𝑥0
=
3ℎ
8
[(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + ⋯ + 𝑦 𝑛−1) + 2(𝑦3 + 𝑦6 + 𝑦9 + ⋯ + 𝑦𝑛)]
Above the equation is called 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡𝑠𝑠 𝑟𝑢𝑙𝑒 which is applicable only when
𝑛 𝑖s multiple of 3.
6. Evaluate ∫ 𝒙 𝟒
𝒅𝒙 𝐮𝐬𝐢𝐧𝐠 𝐢) 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝐢𝐢) 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′
𝐬 𝐫𝐮𝐥𝐞
𝟑
−𝟑
Solution. Here 𝑦(𝑥) = 𝑥4
. Interval length (𝑏 − 𝑎) = 6. So, we divide 6 equal intervals with
ℎ =
3 − (−3)
6
=
6
6
= 1. we form below the table
x -3 -2 -1 0 1 2 3
y 81 16 1 0 1 16 81
i) By Trapezoidal rule,
∫ 𝑥4
𝑑𝑥 ≈
ℎ
2
[(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
3
−3
≈
1
2
[(81 + 81) + 2(16 + 1 + 0 + 1 + 16)
≈ 𝟏𝟏𝟓
𝑖𝑖) 𝐵𝑦 𝑠𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒
∫ 𝑦 𝑑𝑥 ≈
1
3
[(81 + 81) + 2(1 + 1) + 4(16 + 0 + 16)]
3
−3
≈ 𝟗𝟖
𝑖𝑖𝑖) 𝑆𝑖𝑛𝑐𝑒 𝑛 = 6, (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒), we can also use 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒.
∫ 𝑦 𝑑𝑥 ≈
3
8
[(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0)] ≈ 𝟗𝟗.
3
−3
7. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 ∫
𝐝𝐱
𝟏+𝐱
𝐮𝐬𝐢𝐧𝐠 𝐢) 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝐢𝐢) 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′
𝐬 𝐫𝐮𝐥𝐞
𝟔
𝟎
Solution. Take the number of intervals as 6
Page | 10
ℎ =
6 − 0
6
= 1
x 0 1 2 3 4 5 6
𝑦 =
1
1 + 𝑥
1 0.5 1/3 1/4 1/5 1/6 1/7
𝑖) 𝐵𝑦 𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝑟𝑢𝑙𝑒,
∫
𝑑𝑥
1 + 𝑥
6
0
=
ℎ
2
[(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
=
1
2
[(1 +
1
7
) + 2 (0.5 +
1
3
+
1
4
+
1
5
+
1
6
)]
= 𝟐. 𝟎𝟐𝟏𝟒𝟐𝟖𝟓𝟕
𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒,
𝐼 =
1
3
[(1 +
1
7
) + 2 (
1
3
+
1
5
) + 4 (
1
2
+
1
4
+
1
6
)]
=
1
3
(1 +
1
7
+
16
15
+
22
6
) = 𝟏. 𝟗𝟓𝟖𝟕𝟑𝟎𝟏𝟔
𝑖𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒,
𝐼 =
3
8
[(1 +
1
7
) + 3 (0.5 +
1
3
+
1
5
+
1
6
) + 2 (
1
4
)]
= 𝟏. 𝟗𝟔𝟔𝟎𝟕𝟏𝟒𝟑
8. 𝐀 𝐫𝐢𝐯𝐞𝐫 𝐢𝐬 𝟖𝟎 𝐦𝐞𝐭𝐫𝐞𝐬 𝐰𝐢𝐝𝐞. 𝐓𝐡𝐞 𝐝𝐞𝐩𝐭𝐡 ′d'𝐢𝐧 𝐦𝐞𝐭𝐫𝐞𝐬𝐚𝐭 𝐚 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝒙 𝒎𝒆𝒕𝒓𝒆𝒔 𝐟𝐫𝐨𝐦 𝐨𝐧𝐞 𝐛𝐚𝐧𝐤 𝐢𝐬
𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 𝐭𝐡𝐞 𝐟𝐨𝐥𝐥𝐨𝐰𝐢𝐧𝐠 𝐭𝐚𝐛𝐥𝐞. 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐭𝐡𝐞 𝐚𝐫𝐞𝐚 𝐨𝐟 𝐜𝐫𝐨𝐬𝐬 𝐬𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐢𝐯𝐞𝐫 𝐮𝐬𝐢𝐧𝐠
𝐒𝐢𝐦𝐩𝐬𝐨𝐧′
𝐬 𝐫𝐮𝐥𝐞.
x : 0 10 20 30 40 50 60 70 80
d : 0 4 7 9 12 15 14 8 3
Solution. Here h =10. Area of cross section is ∫ 𝑦 𝑑𝑥
80
0
𝐴 =
10
3
[(0 + 3) + 2(7 + 12 + 14) + 4(4 + 9 + 15 + 8)]
=
10
3
[3 + 66 + 144]
= 𝟕𝟏𝟎 𝒔𝒒. 𝒎𝒆𝒕𝒓𝒆𝒔
Page | 11
9. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 ∫
𝒅𝒙
𝟏+𝒙 𝟐 𝐮𝐬𝐢𝐧𝐠 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝒘𝒊𝒕𝒉 𝒉 = 𝟎. 𝟐. 𝐇𝐞𝐧𝐜𝐞 𝐨𝐛𝐭𝐚𝐢𝐧 𝐚𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝝅.
𝟏
𝟎
𝐂𝐚𝐧 𝐲𝐨𝐮 𝐮𝐬𝐞 𝐨𝐭𝐡𝐞𝐫 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐞 𝐢𝐧 𝐭𝐡𝐢𝐬 𝐜𝐚𝐬𝐞.
Solution. 𝐿𝑒𝑡 𝑦(𝑥) =
𝑑𝑥
1+𝑥2
Interval is (1 − 0) = 1 ℎ = 0.2
x 0 0.2 0.4 0.6 0.8 1.0
𝑦 =
𝑑𝑥
1 + 𝑥2
1 0.96154 0.86207 0.73529 0.60976 0.50000
∫
𝑑𝑥
1 + 𝑥2
1
0
=
ℎ
2
[(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
=
0.2
2
[(1 + 0.5) + 2(0.96154 + 0.86207 + 0.73529 + 0.60976)
= (0.1)[1.5 + 6.33732]
= 𝟎. 𝟕𝟖𝟑𝟕𝟑𝟐
𝐵𝑦 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛,
∫
𝑑𝑥
1 + 𝑥2
= (tan−1
𝑥)0
1
=
𝜋
4
1
0
∴
𝜋
4
≈ 0.783732
∴ 𝜋 ≈ 𝟑. 𝟏𝟑𝟒𝟗𝟑 (𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝒍𝒚)
10. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 𝐭𝐡𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥 𝑰 = ∫ 𝒍𝒐𝒈 𝒆 𝒙 𝒅𝒙 𝐮𝐬𝐢𝐧𝐠 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐚𝐧𝐝 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′
𝐬 𝐫𝐮𝐥𝐞𝐬
𝟓.𝟐
𝟒
Solution. Here b - a = 5.2 – 4 = 1.2
Hence, ℎ =
1.2
6
= 0.2
x : 4 4.2 4.4 4.6 4.8 5.0 5.2
𝑓(𝑥)
= 𝑙𝑜𝑔 𝑒 𝑥:
1.3862944 1.4350845 1.4816045 1.5260563 1.5686159 1.6094379 1.6486586
𝑖) 𝐵𝑦 𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝑟𝑢𝑙𝑒,
∫ 𝑙𝑜𝑔 𝑒 𝑥 𝑑𝑥 =
0.2
2
[(1.3862944 + 1.6486586
5.2
4
+ 2(1.4350845 + 1.4816045 + 1.5260563 + 1.5686159 + 1.6094379)]
= 𝟏. 𝟖𝟐𝟕𝟔𝟓𝟓𝟏𝟐
Page | 12
ii) Since n = 6, we can use Simpson′
s rule
𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′
𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒
𝐼 =
0.2
3
[(1.3862944 + 1.6486586 + 2(1.4816045 + 1.5686159)
+ 4(1.4350845 + 1.5260563)]
= 𝟏. 𝟖𝟐𝟕𝟖𝟒𝟕𝟐𝟒
𝑖𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑜𝑛𝑠𝑜𝑛′
𝑠 𝑡ℎ𝑖𝑟𝑑 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒,
𝐼 =
3(0.2)
8
[(1.3862944 + 1.6486586)
+ 3(1.4350845 + 1.4816045 + 1.5686159 + 1.6094379 + 2(1.5260563)]
= 𝟏. 𝟖𝟐𝟕𝟖𝟒𝟕𝟐𝟒
Short Answer:
1. Write down the Newton-Cote’s quadrature formula.
∫ 𝑓(𝑥) 𝑑𝑥 ≈ ℎ [𝑛𝑦0 +
𝑛2
2
∆𝑦0 +
1
2
(
𝑛3
3
−
𝑛2
2
) ∆2
𝑦0 +
1
6
(
𝑛4
4
− 𝑛3
+ 𝑛2
) ∆3
𝑦0 + ⋯ ]
𝑥 𝑛
𝑥0
This equation is called 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′
𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎.
2. What is the nature of y (x) in the case of trapezoidal rule?
In trapezoidal rule, y (x) is a linear function of x.
3. State the nature of y (x) and number of intervals in the case of Simpson’s one-third rule?
In Simpson’s one-third rule, y (x) is a polynomial of degree two. To apply this rule n, the number of
intervals must be even.
4. What is the nature of y (x) in the case of Simpson’s three-eighths rule and when it is
applicable?
In Simpson’s third-eighths rule, y (x) is a polynomial of degree three. This rule is applicable if n, the
number of intervals is a multiple of 3.
5. Differentiate between Simpson’s one-third rule and Simpson’s three-eighths rule.
S.No Simpson’s one-third rule Simpson’s three-eighths rule
1 y (x) is a polynomial of degree two y (x) is a polynomial of degree three
2 The number of intervals must be even. The number of intervals is a multiple of 3.

More Related Content

What's hot

trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
hitarth shah
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
Bhavik Vashi
 
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATIONLINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
Touhidul Shawan
 
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Prashant Goad
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
Deep Dalsania
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
Meet Patel
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
Riyandika Jastin
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek1
 
Rolles theorem
Rolles theoremRolles theorem
Derivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 ruleDerivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 rule
HapPy SumOn
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
sumanmathews
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Rai University
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
Rai University
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
zahid6
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
Meenakshisundaram N
 
Finite difference Matlab Code
Finite difference Matlab CodeFinite difference Matlab Code
Finite difference Matlab Code
Taimoor Muzaffar Gondal
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
Divyansh Verma
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
Dr. Nirav Vyas
 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
Manikanta satyala
 
Taylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simpleTaylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simple
Nikhilkumar Patel
 

What's hot (20)

trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATIONLINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
LINEAR DIFFERENTIAL EQUATION & BERNOULLI`S EQUATION
 
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Derivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 ruleDerivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 rule
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Finite difference Matlab Code
Finite difference Matlab CodeFinite difference Matlab Code
Finite difference Matlab Code
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
 
Taylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simpleTaylor's & Maclaurin's series simple
Taylor's & Maclaurin's series simple
 

Similar to Study Material Numerical Differentiation and Integration

Interpolation
InterpolationInterpolation
Interpolation
Santhanam Krishnan
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
Meenakshisundaram N
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
AnuBajpai5
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
MANISH KUMAR
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Santhanam Krishnan
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
jyotidighole2
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
Abu Kaisar
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Rai University
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
Pratik P Chougule
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Rai University
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
Rai University
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
Rai University
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
MAY NURHAYATI
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Rai University
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Lossian Barbosa Bacelar Miranda
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Raymundo Raymund
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Santhanam Krishnan
 
A05330107
A05330107A05330107
A05330107
IOSR-JEN
 

Similar to Study Material Numerical Differentiation and Integration (20)

Interpolation
InterpolationInterpolation
Interpolation
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
A05330107
A05330107A05330107
A05330107
 

More from Meenakshisundaram N

CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and ReasoningCSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
Meenakshisundaram N
 
Multiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical MethodsMultiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical Methods
Meenakshisundaram N
 
So You Want to Be A Physicist
So You Want to Be A Physicist So You Want to Be A Physicist
So You Want to Be A Physicist
Meenakshisundaram N
 
Wave Properties of Particles
Wave Properties of ParticlesWave Properties of Particles
Wave Properties of Particles
Meenakshisundaram N
 
Particle Properties of Waves
Particle Properties of Waves Particle Properties of Waves
Particle Properties of Waves
Meenakshisundaram N
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
Meenakshisundaram N
 
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical SciencesTips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Meenakshisundaram N
 

More from Meenakshisundaram N (7)

CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and ReasoningCSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
 
Multiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical MethodsMultiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical Methods
 
So You Want to Be A Physicist
So You Want to Be A Physicist So You Want to Be A Physicist
So You Want to Be A Physicist
 
Wave Properties of Particles
Wave Properties of ParticlesWave Properties of Particles
Wave Properties of Particles
 
Particle Properties of Waves
Particle Properties of Waves Particle Properties of Waves
Particle Properties of Waves
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
 
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical SciencesTips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
 

Recently uploaded

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
Cherry
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
Michel Dumontier
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 

Recently uploaded (20)

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 

Study Material Numerical Differentiation and Integration

  • 1. Page | 1 VIVEKANANDA COLLEGE, TIRUVEDAKAM WEST (Residential & Autonomous – A Gurukula Institute of Life-Training) (Affiliated to Madurai Kamaraj University) PART III: PHYSICS MAJOR – FOURTH SEMESTER-CORE SUBJECT PAPER-II NUMERICAL METHODS – 06CT42 (For those who joined in June 2018 and after) Reference Text Book: Numerical Methods – P.Kandasamy, K.Thilagavathy & K.Gunavathi, S.Chand & Company Ltd., New Delhi, 2014. UNIT – IV Numerical Differentiation and Integration Numerical Differentiation Introduction We found the polynomial curve y = f (x), passing through the (n+1) ordered pairs (xi, yi), i=0, 1, 2…n. Now we are trying to find the derivative value of such curves at a given x = xk (say), whose x0 < xk < xn. To get derivative, we first find the curve y = f (x) through the points and then differentiate and get its value at the required point. If the values of x are equally spaced. We get the interpolating polynomial due to Newton-Gregory. • If the derivative is required at a point nearer to the starting value in the table, we use Newton’s forward interpolation formula. • If we require the derivative at the end of the table, we use Newton’s backward interpolation formula. • If the value of derivative is required near the middle of the table value, we use one of the central difference interpolation formulae. Newton’s forward difference formula to get the derivative Newton’s forward difference interpolation formula is 𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 + 𝑢(𝑢 − 1) 2! ∆2 𝑦0 + 𝑢(𝑢 − 1)(𝑢 − 2) 3! ∆3 𝑦0 + ⋯ where 𝑦 (𝑥) is a polynomial of degree 𝑛 𝑖𝑛 𝑥 𝑎𝑛𝑑 𝑢 = 𝑥 − 𝑥0 ℎ where ℎ 𝑖s interval of differencing The values of first and second derivative at the starting value 𝑥 = 𝑥0 for given by ( 𝑑𝑦 𝑑𝑥 ) 𝑥=𝑥0 = 1 ℎ [∆ 𝑦0 − 1 2 ∆2 𝑦0 + 1 3 ∆3 𝑦0 − ⋯ ] ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑥=𝑥0 = 1 ℎ2 [∆2 𝑦0 − ∆3 𝑦0 + 11 12 ∆4 𝑦0 − ⋯ ]
  • 2. Page | 2 Problems: 1. The table given below revels the velocity v of a body during the time ‘t’ specified. find its acceleration at t = 1.1 t : 1.0 1.1 1.2 1.3 1.4 v : 43.1 47.7 52.1 56.4 60.8 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧. 𝑣 is dependent on time 𝑡 𝑖. 𝑒. , 𝑣 = 𝑣(𝑡). we require acceleration = 𝑑𝑣 𝑑𝑡 . therefore, we have to find 𝑣′(1.1). 𝐴𝑠 𝑑𝑣 𝑑𝑡 𝑎𝑡 𝑡 = 1.1 is require, (nearer to beginning value), we use 𝑁𝑒𝑤𝑡𝑜𝑛 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎. 𝑣(𝑡) = 𝑣 (𝑥0 + 𝑢ℎ) = 𝑣0 + 𝑢∆𝑣0 + 𝑢(𝑢 − 1) 2! ∆2 𝑣0 + 𝑢(𝑢 − 1)(𝑢 − 2) 3! ∆3 𝑣0 + ⋯ 𝑑𝑣 𝑑𝑡 = 1 ℎ . 𝑑𝑣 𝑑𝑡 = 1 ℎ [∆𝑣0 + 2𝑢 − 1 2 ∆2 𝑣0 + 3𝑢2 − 6𝑢 + 2 6 ∆3 𝑣0 + ⋯ ] where 𝑢 = 𝑡 − 𝑡0 ℎ = 1.1 − 1.0 0.1 = 1 ( 𝑑𝑣 𝑑𝑡 ) 𝑡=1.1 = ( 𝑑𝑣 𝑑𝑡 ) 𝑛=1 = 1 0.1 [4.6 + 1 2 (−0.2) + 1 6 (0.1) + 1 12 (0.1)] = 10[4.6 − 0.1 − 0.0166 + 0.0083] = 𝟒𝟒. 𝟗𝟏𝟕 t 1.0 1.1 1.2 1.3 1.4 v 43.1 47.7 52.1 56.4 60.8 ∆𝑣 4.6 4.4 4.3 4.4 ∆2 𝑣 -0.2 -0.1 0.1 ∆3 𝑣 0.1 0.2 ∆4 𝑣 0.1
  • 3. Page | 3 2. Derive the Newton’s forward difference formula to get the derivative. We are given (𝑛 + 1)ordered pairs (𝑥𝑖, 𝑦𝑖)𝑖 = 0, 1, … 𝑛. we want to find the derivative of 𝑦 = 𝑓(𝑥) passing through the (𝑛 + 1) points, at a point near to the startinng value 𝑥 = 𝑥0 Newton’s forward difference interpolation formula is 𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 + 𝑢(𝑢 − 1) 2! ∆2 𝑦0 + 𝑢(𝑢 − 1)(𝑢 − 2) 3! ∆3 𝑦0 + ⋯ … (1) where 𝑦 (𝑥) is a polynomial of degree 𝑛 𝑖𝑛 𝑥 𝑎𝑛𝑑 𝑢 = 𝑥 − 𝑥0 ℎ Differentiating 𝑦(𝑥) w. r. t. 𝑥, 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑢 . 𝑑𝑢 𝑑𝑥 = 1 ℎ . 𝑑𝑦 𝑑𝑢 𝑑𝑦 𝑑𝑥 = 1 ℎ [∆𝑦0 + 2𝑢 − 1 2 ∆2 𝑦0 + 3𝑢2 − 6𝑢 + 2 6 ∆3 𝑦0 + (4𝑢3 − 18𝑢2 + 22𝑢 − 6) 24 ∆4 𝑦0] … . (2) Equation (2) gives the value of 𝑑𝑦 𝑑𝑥 at general 𝑥 which may be anywhere in the interval. In special case like 𝑥 = 𝑥0, 𝑖. 𝑒. , 𝑢 = 0 𝑖𝑛 (2) ( 𝑑𝑦 𝑑𝑥 ) 𝑥=𝑥0 = ( 𝑑𝑦 𝑑𝑥 ) 𝑢=0 = 1 ℎ [∆𝑦0 + 1 2 ∆2 𝑦0 + 1 3 ∆3 𝑦0 − 1 4 ∆4 𝑦0 + ⋯ ] … (3) Differentiating (2) again w. r. t. 𝑥, 𝑑2 𝑦 𝑑𝑥2 = 𝑑 𝑑𝑢 ( 𝑑𝑦 𝑑𝑥 ) . 𝑑𝑢 𝑑𝑥 = 𝑑 𝑑𝑢 ( 𝑑𝑦 𝑑𝑥 ) . 1 ℎ 𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 [∆2 𝑦0 + (𝑢 − 1)∆3 𝑦0 + (6𝑢2 − 18𝑢 + 11) 12 ∆4 𝑦0 + ⋯ ] … (4) Equation (4) give the second derivative value at 𝑥 = 𝑥. setting 𝑥 = 𝑥0 𝑖. 𝑒. , 𝑢 = 0 𝑖𝑛 (4) ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑥=𝑥0 = 1 ℎ2 [∆2 𝑦0 − ∆3 𝑦0 + 11 12 ∆4 𝑦0 + ⋯ ] … (5) This equation (5) give the value of second derivative at the starting value 𝑥 = 𝑥0 3. 𝐓𝐡𝐞 𝐭𝐚𝐛𝐥𝐞 𝐛𝐞𝐥𝐨𝐰 𝐠𝐢𝐯𝐞𝐬 𝐭𝐡𝐞 𝐫𝐞𝐬𝐮𝐥𝐭𝐬 𝐨𝐟 𝐚𝐧 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧: 𝛉 𝐢𝐬 𝐭𝐡𝐞 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 𝐢𝐧 𝐝𝐞𝐠𝐫𝐞𝐞𝐬 𝐜𝐞𝐧𝐭𝐫𝐢𝐠𝐫𝐚𝐝𝐞 𝐨𝐟𝐚 𝐯𝐞𝐬𝐬𝐞𝐥 𝐨𝐟 𝐜𝐨𝐨𝐥𝐢𝐧𝐠 𝐰𝐚𝐭𝐞𝐫; 𝐭 𝐢𝐬 𝐭𝐡𝐞 𝐭𝐢𝐦𝐞 𝐢𝐧 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐛𝐞𝐠𝐢𝐧𝐧𝐢𝐧𝐠 𝐨𝐟 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧. 𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐚𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐫𝐚𝐭𝐞 𝐨𝐟 𝐜𝐨𝐨𝐥𝐢𝐧𝐠 𝐚𝐭 𝒕 = 𝟑 𝒂𝒏𝒅 𝟑. 𝟓 t : 𝜽 : 1 85.3 3 74.5 5 67.0 7 60.5 9 54.3
  • 4. Page | 4 Solution. we form below the difference table t 1 3 5 7 9 𝜃 85.3 74.5 67.0 60.5 54.3 ∆𝜃 -10.8 -7.5 -6.5 -6.2 ∆2 𝜃 3.3 1.0 0.3 ∆3 𝜃 -2.3 -0.7 ∆4 𝜃 1.6 𝑑𝜃 𝑑𝑡 represents the rate of cooling 𝑢 = 𝑡 − 𝑡0 ℎ = 𝑡 − 1 2 𝐴𝑡 𝑡 = 3, 𝑢 = 1 𝐴𝑡 𝑡 = 3.5, 𝑢 = 1.25 ℎ = 2 (i) Putting 𝑢 = 1 𝑖𝑛 𝑑𝑦 𝑑𝑥 ( 𝑑𝜃 𝑑𝑡 ) 𝑡=3 = ( 𝑑𝜃 𝑑𝑡 ) 𝑢=1 = 1 2 [−10.8 − 1 2 (3.3) − 1 6 (−2.3) + 1 12 (1.6)] = 1 2 [−10.8 + 1.65 + 0.38333 + 0.13333] = −𝟒. 𝟑𝟏𝟔𝟔𝟕 (ii)Putting 𝑢 = 1.25 𝑖𝑛 𝑑𝑦 𝑑𝑥 ( 𝑑𝜃 𝑑𝑡 ) 𝑡=3.5 = ( 𝑑𝜃 𝑑𝑡 ) 𝑢=1.25 = 1 2 [−10.8 + 0.75(3.3) − (0.1354)(−2.3) + (0.04948)(1.6)] = 1 2 [−10.8 + 2.475 + 0.31142 + 0.079168] = −𝟑. 𝟗𝟔𝟕𝟏𝟖 Newton’s backward difference formula to compute the derivative Consider Newton’s backward difference interpolation formula. 𝑦(𝑥) = 𝑦 (𝑥0 + 𝑣ℎ) = 𝑦𝑛 + 𝑣∆𝑦𝑛 + 𝑣(𝑣 + 1) 2! ∇2 𝑦𝑛 + 𝑣(𝑣 + 1)(𝑣 + 2) 3! ∇3 𝑦𝑛 + ⋯
  • 5. Page | 5 where 𝑣 = 𝑥 − 𝑥0 ℎ h is interval of differencing. The value of first and second derivative at the ending value 𝑥 = 𝑥 𝑛 given by ( 𝑑𝑦 𝑑𝑥 ) 𝑥=𝑥 𝑛 = 1 ℎ [∇𝑦𝑛 + 1 2 ∇2 𝑦𝑛 + 1 3 ∇3 𝑦𝑛 + 1 4 ∇4 𝑦𝑛 + ⋯ ] ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑥=𝑥 𝑛 = 1 ℎ2 [∇2 𝑦𝑛 + ∇3 𝑦𝑛 + 11 12 ∇4 𝑦𝑛 + ⋯ ] 4. 𝐀 𝐫𝐨𝐝 𝐢𝐬 𝐫𝐨𝐭𝐚𝐭𝐢𝐧𝐠 𝐢𝐧 𝐚 𝐩𝐥𝐚𝐧𝐞. 𝐓𝐡𝐞 𝐟𝐨𝐥𝐥𝐨𝐰𝐢𝐧𝐧𝐠 𝐭𝐚𝐛𝐥𝐞 𝐠𝐢𝐯𝐞𝐬 𝐭𝐡𝐞 𝐚𝐧𝐠𝐥𝐞 𝛉 (𝐢𝐧 𝐫𝐚𝐝𝐢𝐚𝐧𝐬) 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝐰𝐡𝐢𝐜𝐡 𝐭𝐡𝐞 𝐫𝐨𝐝 𝐡𝐚𝐬 𝐭𝐮𝐫𝐧𝐞𝐝 𝐟𝐨𝐫 𝐯𝐚𝐫𝐢𝐨𝐮𝐬 𝐯𝐚𝐥𝐮𝐞𝐬 𝐨𝐟 𝐭𝐢𝐦𝐞 𝐭 (𝐬𝐞𝐜𝐨𝐧𝐝𝐬). 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐭𝐡𝐞 𝐚𝐧𝐠𝐮𝐥𝐚𝐫 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝐚𝐧𝐝 𝐚𝐧𝐠𝐮𝐥𝐚𝐫 𝐚𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐨𝐝 𝐚𝐭 = 𝟎. 𝟔 𝐬𝐞𝐜𝐨𝐧𝐝𝐬. t : 0 0.2 0.4 0.6 0.8 1.0 𝜽 : 0 0.12 0.49 1.12 2.02 3.20 Solution. We form the difference table below: t 0 0.2 0.4 0.6 0.8 1.0 𝜃 0 0.12 0.49 1.12 2.02 3.20 ∇𝜃 0.12 0.37 0.63 0.90 1.18 ∇2 𝜃 0.25 0.26 0.27 0.28 ∇3 𝜃 0.01 0.01 0.01 ∇4 𝜃 0 0 𝑥 = 0.6 is toward the end, we will use backward difference formula. ℎ = 0.2 ( 𝑑𝑦 𝑑𝑥 ) 𝑥 = 1 ℎ [∆𝑦𝑛 + 2𝑣 + 2 ∇2 𝑦𝑛 + 3𝑣2 + 6𝑣 + 2 6 ∇3 𝑦𝑛 + 4𝑣3 + 18𝑣2 + 22𝑣 + 6 24 ∇4 𝑦𝑛 + ⋯ ] … (1) 𝐻𝑒𝑟𝑒 𝑣 = 𝑥 − 𝑥 𝑛 ℎ = 0.6 − 1.0 0.2 = −2 Using in (1), 𝑑𝜃 𝑑𝑡 represents the angular velocity
  • 6. Page | 6 ( 𝑑𝜃 𝑑𝑡 ) 𝑡=0.6 = 1 0.2 [1.18 − 3 2 (0.28) + 1 3 (0.01)] = 5[1.18 − 0.42 + 0.00333] = 𝟑. 𝟖𝟏𝟔𝟔𝟓 𝒓𝒂𝒅 𝒔𝒆𝒄 𝑑2 𝜃 𝑑𝑡2 represents the angular acceleration Also, ( 𝑑2 𝑦 𝑑𝑡2 ) = 1 ℎ2 [∇2 𝑦𝑛 + (v + 1)∇3 𝑦𝑛 + ⋯ ] ( 𝑑2 𝜃 𝑑𝑡2 ) 𝑡=0.6 = 1 0.04 [0.28 − 0.01] = 𝟔. 𝟕𝟓 𝒓𝒂𝒅 𝒔𝒆𝒄 𝟐 5. 𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐭𝐰𝐨 𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐞𝐬 𝐨𝐟 (𝒙) 𝟏 𝟑 𝒂𝒕 𝒙 = 𝟓𝟎 𝐚𝐧𝐝 𝒙 = 𝟓𝟔 𝐠𝐢𝐯𝐞𝐧 𝐭𝐡𝐞 𝐭𝐚𝐛𝐥𝐞 𝐛𝐞𝐥𝐨𝐰 x : 50 51 52 53 54 55 56 y =(𝒙) 𝟏 𝟑 : 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 Solution. We require 𝑓′(𝑥) 𝑎𝑡 𝑥 = 50 we use 𝑁𝑒𝑤𝑡𝑜𝑛′ 𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 and 𝑡o get 𝑓′(𝑥) 𝑎𝑡 𝑥 = 56 we use 𝑁𝑒𝑤𝑡𝑜𝑛′ 𝑠 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎. By 𝑁𝑒𝑤𝑡𝑜𝑛′ 𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎, ℎ = 1 𝑢 = 𝑥 − 𝑥0 ℎ = 50 − 50 1 = 0 𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐓𝐚𝐛𝐥𝐞 x 50 51 52 53 54 55 56 y 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 ∆𝑦 0.0244 0.0241 0.0238 0.0235 0.0232 0.0229 ∆2 𝑦 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 ∆3 𝑦 0 0 0 0
  • 7. Page | 7 ( 𝑑𝑦 𝑑𝑥 ) 𝑥=𝑥0 = ( 𝑑𝑦 𝑑𝑥 ) 𝑢=0 = 1 ℎ [∆ 𝑦0 − 1 2 ∆2 𝑦0 + 1 3 ∆3 𝑦0 − ⋯ ] = 1 1 [0.0244 − 1 2 (−0.0003) + 1 3 (0)] = 𝟎. 𝟎𝟐𝟒𝟓𝟓 ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑥=50 = ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑢=0 = 1 ℎ2 [∆2 𝑦0 − ∆3 𝑦0 + ⋯ ] = 1[−0.0003] = −𝟎. 𝟎𝟎𝟎𝟑. 𝐵𝑦 𝑁𝑒𝑤𝑡𝑜𝑛′ 𝑠 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎, ( 𝑑𝑦 𝑑𝑥 ) 𝑥=𝑥 𝑛 = ( 𝑑𝑦 𝑑𝑥 ) 𝑣=0 = 1 ℎ [∇𝑦𝑛 + 1 2 ∇2 𝑦𝑛 + 1 3 ∇3 𝑦𝑛 + ⋯ ] ( 𝑑𝑦 𝑑𝑥 ) 𝑥=56 = 1 1 [0.0229 + 1 2 (−0.0003) + 0 ] = 𝟎. 𝟎𝟐𝟐𝟕𝟓 ( 𝑑2 𝑦 𝑑𝑥2 ) 𝑥=𝑥 𝑛 = 1 ℎ2 [∇2 𝑦𝑛 + ∇3 𝑦𝑛 + ⋯ ] = 1 1 [−0.0003] = −𝟎. 𝟎𝟎𝟎𝟑 NUMERICAL INTEGRATION Introduction We know that ∫ 𝑓(𝑥)𝑑𝑥 represents the area between 𝑦 = 𝑓(𝑥), 𝑥 − axis and the 𝑏 𝑎 ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏. This integration is possible only if the 𝑓(𝑥)is explicitly given and if it is integrable. The problem of numerical integration can be stated as follows: Given a set of (𝑛 + 1) paird values (𝑥𝑖, 𝑦𝑖), 𝑖 = 0, 1, 2, … 𝑛 𝑜f the function 𝑦 = 𝑓(𝑥), where 𝑓(𝑥) is not known explicitly, it is required to compute ∫ 𝑦 𝑑𝑥. 𝑥 𝑛 𝑥0 As we did in the case of interpolation or numerical differentation, we replace 𝑓(𝑥) by an interpolating polynomial 𝑃𝑛(𝑥) 𝑎nd obtain ∫ 𝑃𝑛(𝑥)𝑑𝑥 which is approximately taken as the value for ∫ 𝑓(𝑥)𝑑𝑥. 𝑥 𝑛 𝑥0 𝑥0 𝑥 𝑛
  • 8. Page | 8 A general quadrature formula for equidistant ordinates ( or Newton-Cote’s formula) For equally spaced intervals, we have Newton’s forward difference formula as 𝑦 (𝑥0 + 𝑢ℎ) = 𝑦𝑢 = 𝑦0 + 𝑢∆𝑦0 + 𝑢(𝑢 − 1) 2! ∆2 𝑦0 + 𝑢(𝑢 − 1)(𝑢 − 2) 3! ∆3 𝑦0 + ⋯ Here, 𝑢 = 𝑥 − 𝑥0 ℎ where h is interval of differencing 𝑠ince 𝑥 𝑛 = 𝑥0 + 𝑛ℎ and , 𝑢 = 𝑥 − 𝑥0 ℎ we have 𝑥 − 𝑥0 ℎ = 𝑛 = 𝑢. ∫ 𝑓(𝑥) 𝑑𝑥 ≈ ℎ[ 𝑥 𝑛 𝑥0 𝑛𝑦0 + 𝑛2 2 ∆𝑦0 + 1 2 ( 𝑛3 3 − 𝑛2 2 ) ∆2 𝑦0 + 1 6 ( 𝑛4 4 − 𝑛3 + 𝑛2 ) ∆3 𝑦0 + ⋯ Above the equation is called 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′ 𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 and is a general 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎. Giving various values for 𝑛, we get a number of special formula. Trapezoidal rule 𝐵𝑦 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑛 = 1, 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′ 𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 (𝑖. 𝑒. , 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑛𝑙𝑦 𝑡𝑤𝑜 𝑝𝑎𝑖𝑟𝑒𝑑𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟). ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥 𝑥0+𝑛ℎ 𝑥0+(𝑛−1)ℎ 𝑥0+2ℎ 𝑥0+ℎ 𝑥0+ℎ 𝑥0 𝑥0+𝑛ℎ 𝑥0 𝑥 𝑛 𝑥0 = ℎ 2 [(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 + 𝑦3 + ⋯ + 𝑦 𝑛−1)] = ℎ 2 [(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) + 2(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) This is known as Trapezoidal Rule. Simpson’s one-third rule Setting n =2 in Newton-Cotes quadrature formula, ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥 𝑥 𝑛 𝑥 𝑛−2 𝑥4 𝑥2 𝑥2 𝑥0 𝑥 𝑛 𝑥0 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 2(𝑦2 + 𝑦4 + ⋯ ) + 4(𝑦1 + 𝑦3 + ⋯ )] = ℎ 3 [𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑑𝑑 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 4(𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)]
  • 9. Page | 9 Simpson’s three-eighths rule Putting n = 3 in Newton-Cote’s quadrature formula, 𝐼𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3 ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ + ∫ 𝑓(𝑥) 𝑑𝑥 𝑥0+𝑛ℎ 𝑥0+(𝑛−3)ℎ 𝑥0+6ℎ 𝑥0+3ℎ 𝑥0+3ℎ 𝑥0 𝑥0+𝑛ℎ 𝑥0 = 3ℎ 8 [(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + ⋯ + 𝑦 𝑛−1) + 2(𝑦3 + 𝑦6 + 𝑦9 + ⋯ + 𝑦𝑛)] Above the equation is called 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡𝑠𝑠 𝑟𝑢𝑙𝑒 which is applicable only when 𝑛 𝑖s multiple of 3. 6. Evaluate ∫ 𝒙 𝟒 𝒅𝒙 𝐮𝐬𝐢𝐧𝐠 𝐢) 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝐢𝐢) 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′ 𝐬 𝐫𝐮𝐥𝐞 𝟑 −𝟑 Solution. Here 𝑦(𝑥) = 𝑥4 . Interval length (𝑏 − 𝑎) = 6. So, we divide 6 equal intervals with ℎ = 3 − (−3) 6 = 6 6 = 1. we form below the table x -3 -2 -1 0 1 2 3 y 81 16 1 0 1 16 81 i) By Trapezoidal rule, ∫ 𝑥4 𝑑𝑥 ≈ ℎ 2 [(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) 3 −3 ≈ 1 2 [(81 + 81) + 2(16 + 1 + 0 + 1 + 16) ≈ 𝟏𝟏𝟓 𝑖𝑖) 𝐵𝑦 𝑠𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒 ∫ 𝑦 𝑑𝑥 ≈ 1 3 [(81 + 81) + 2(1 + 1) + 4(16 + 0 + 16)] 3 −3 ≈ 𝟗𝟖 𝑖𝑖𝑖) 𝑆𝑖𝑛𝑐𝑒 𝑛 = 6, (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒), we can also use 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒. ∫ 𝑦 𝑑𝑥 ≈ 3 8 [(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0)] ≈ 𝟗𝟗. 3 −3 7. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 ∫ 𝐝𝐱 𝟏+𝐱 𝐮𝐬𝐢𝐧𝐠 𝐢) 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝐢𝐢) 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′ 𝐬 𝐫𝐮𝐥𝐞 𝟔 𝟎 Solution. Take the number of intervals as 6
  • 10. Page | 10 ℎ = 6 − 0 6 = 1 x 0 1 2 3 4 5 6 𝑦 = 1 1 + 𝑥 1 0.5 1/3 1/4 1/5 1/6 1/7 𝑖) 𝐵𝑦 𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝑟𝑢𝑙𝑒, ∫ 𝑑𝑥 1 + 𝑥 6 0 = ℎ 2 [(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) = 1 2 [(1 + 1 7 ) + 2 (0.5 + 1 3 + 1 4 + 1 5 + 1 6 )] = 𝟐. 𝟎𝟐𝟏𝟒𝟐𝟖𝟓𝟕 𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒, 𝐼 = 1 3 [(1 + 1 7 ) + 2 ( 1 3 + 1 5 ) + 4 ( 1 2 + 1 4 + 1 6 )] = 1 3 (1 + 1 7 + 16 15 + 22 6 ) = 𝟏. 𝟗𝟓𝟖𝟕𝟑𝟎𝟏𝟔 𝑖𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑡ℎ𝑟𝑒𝑒 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒, 𝐼 = 3 8 [(1 + 1 7 ) + 3 (0.5 + 1 3 + 1 5 + 1 6 ) + 2 ( 1 4 )] = 𝟏. 𝟗𝟔𝟔𝟎𝟕𝟏𝟒𝟑 8. 𝐀 𝐫𝐢𝐯𝐞𝐫 𝐢𝐬 𝟖𝟎 𝐦𝐞𝐭𝐫𝐞𝐬 𝐰𝐢𝐝𝐞. 𝐓𝐡𝐞 𝐝𝐞𝐩𝐭𝐡 ′d'𝐢𝐧 𝐦𝐞𝐭𝐫𝐞𝐬𝐚𝐭 𝐚 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝒙 𝒎𝒆𝒕𝒓𝒆𝒔 𝐟𝐫𝐨𝐦 𝐨𝐧𝐞 𝐛𝐚𝐧𝐤 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 𝐭𝐡𝐞 𝐟𝐨𝐥𝐥𝐨𝐰𝐢𝐧𝐠 𝐭𝐚𝐛𝐥𝐞. 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐭𝐡𝐞 𝐚𝐫𝐞𝐚 𝐨𝐟 𝐜𝐫𝐨𝐬𝐬 𝐬𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐢𝐯𝐞𝐫 𝐮𝐬𝐢𝐧𝐠 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′ 𝐬 𝐫𝐮𝐥𝐞. x : 0 10 20 30 40 50 60 70 80 d : 0 4 7 9 12 15 14 8 3 Solution. Here h =10. Area of cross section is ∫ 𝑦 𝑑𝑥 80 0 𝐴 = 10 3 [(0 + 3) + 2(7 + 12 + 14) + 4(4 + 9 + 15 + 8)] = 10 3 [3 + 66 + 144] = 𝟕𝟏𝟎 𝒔𝒒. 𝒎𝒆𝒕𝒓𝒆𝒔
  • 11. Page | 11 9. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 ∫ 𝒅𝒙 𝟏+𝒙 𝟐 𝐮𝐬𝐢𝐧𝐠 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐫𝐮𝐥𝐞 𝒘𝒊𝒕𝒉 𝒉 = 𝟎. 𝟐. 𝐇𝐞𝐧𝐜𝐞 𝐨𝐛𝐭𝐚𝐢𝐧 𝐚𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝝅. 𝟏 𝟎 𝐂𝐚𝐧 𝐲𝐨𝐮 𝐮𝐬𝐞 𝐨𝐭𝐡𝐞𝐫 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐞 𝐢𝐧 𝐭𝐡𝐢𝐬 𝐜𝐚𝐬𝐞. Solution. 𝐿𝑒𝑡 𝑦(𝑥) = 𝑑𝑥 1+𝑥2 Interval is (1 − 0) = 1 ℎ = 0.2 x 0 0.2 0.4 0.6 0.8 1.0 𝑦 = 𝑑𝑥 1 + 𝑥2 1 0.96154 0.86207 0.73529 0.60976 0.50000 ∫ 𝑑𝑥 1 + 𝑥2 1 0 = ℎ 2 [(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 + 2(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) = 0.2 2 [(1 + 0.5) + 2(0.96154 + 0.86207 + 0.73529 + 0.60976) = (0.1)[1.5 + 6.33732] = 𝟎. 𝟕𝟖𝟑𝟕𝟑𝟐 𝐵𝑦 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛, ∫ 𝑑𝑥 1 + 𝑥2 = (tan−1 𝑥)0 1 = 𝜋 4 1 0 ∴ 𝜋 4 ≈ 0.783732 ∴ 𝜋 ≈ 𝟑. 𝟏𝟑𝟒𝟗𝟑 (𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝒍𝒚) 10. 𝐄𝐯𝐚𝐥𝐮𝐭𝐞 𝐭𝐡𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥 𝑰 = ∫ 𝒍𝒐𝒈 𝒆 𝒙 𝒅𝒙 𝐮𝐬𝐢𝐧𝐠 𝐓𝐫𝐚𝐩𝐞𝐳𝐨𝐢𝐝𝐚𝐥 𝐚𝐧𝐝 𝐒𝐢𝐦𝐩𝐬𝐨𝐧′ 𝐬 𝐫𝐮𝐥𝐞𝐬 𝟓.𝟐 𝟒 Solution. Here b - a = 5.2 – 4 = 1.2 Hence, ℎ = 1.2 6 = 0.2 x : 4 4.2 4.4 4.6 4.8 5.0 5.2 𝑓(𝑥) = 𝑙𝑜𝑔 𝑒 𝑥: 1.3862944 1.4350845 1.4816045 1.5260563 1.5686159 1.6094379 1.6486586 𝑖) 𝐵𝑦 𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝑟𝑢𝑙𝑒, ∫ 𝑙𝑜𝑔 𝑒 𝑥 𝑑𝑥 = 0.2 2 [(1.3862944 + 1.6486586 5.2 4 + 2(1.4350845 + 1.4816045 + 1.5260563 + 1.5686159 + 1.6094379)] = 𝟏. 𝟖𝟐𝟕𝟔𝟓𝟓𝟏𝟐
  • 12. Page | 12 ii) Since n = 6, we can use Simpson′ s rule 𝐵𝑦 𝑆𝑖𝑚𝑝𝑠𝑜𝑛′ 𝑠 𝑜𝑛𝑒 − 𝑡ℎ𝑖𝑟𝑑 𝑟𝑢𝑙𝑒 𝐼 = 0.2 3 [(1.3862944 + 1.6486586 + 2(1.4816045 + 1.5686159) + 4(1.4350845 + 1.5260563)] = 𝟏. 𝟖𝟐𝟕𝟖𝟒𝟕𝟐𝟒 𝑖𝑖𝑖) 𝐵𝑦 𝑆𝑖𝑚𝑝𝑜𝑛𝑠𝑜𝑛′ 𝑠 𝑡ℎ𝑖𝑟𝑑 − 𝑒𝑖𝑔ℎ𝑡ℎ𝑠 𝑟𝑢𝑙𝑒, 𝐼 = 3(0.2) 8 [(1.3862944 + 1.6486586) + 3(1.4350845 + 1.4816045 + 1.5686159 + 1.6094379 + 2(1.5260563)] = 𝟏. 𝟖𝟐𝟕𝟖𝟒𝟕𝟐𝟒 Short Answer: 1. Write down the Newton-Cote’s quadrature formula. ∫ 𝑓(𝑥) 𝑑𝑥 ≈ ℎ [𝑛𝑦0 + 𝑛2 2 ∆𝑦0 + 1 2 ( 𝑛3 3 − 𝑛2 2 ) ∆2 𝑦0 + 1 6 ( 𝑛4 4 − 𝑛3 + 𝑛2 ) ∆3 𝑦0 + ⋯ ] 𝑥 𝑛 𝑥0 This equation is called 𝑁𝑒𝑤𝑡𝑜𝑛 − 𝐶𝑜𝑡𝑒′ 𝑠 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎. 2. What is the nature of y (x) in the case of trapezoidal rule? In trapezoidal rule, y (x) is a linear function of x. 3. State the nature of y (x) and number of intervals in the case of Simpson’s one-third rule? In Simpson’s one-third rule, y (x) is a polynomial of degree two. To apply this rule n, the number of intervals must be even. 4. What is the nature of y (x) in the case of Simpson’s three-eighths rule and when it is applicable? In Simpson’s third-eighths rule, y (x) is a polynomial of degree three. This rule is applicable if n, the number of intervals is a multiple of 3. 5. Differentiate between Simpson’s one-third rule and Simpson’s three-eighths rule. S.No Simpson’s one-third rule Simpson’s three-eighths rule 1 y (x) is a polynomial of degree two y (x) is a polynomial of degree three 2 The number of intervals must be even. The number of intervals is a multiple of 3.