03/07/15 Prof.Satheesh MB, INA, Ezhimala
Operational-Amplifier
and its Applications
Course: 90 INAC-L&X
AT-15
Prof.Satheesh Monikandan B
sathy24@gmail.com
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Outline
• Introduction
• The 741 Op-Amp Circuit
• The ideal Op Amp
• The inverting configuration
• The non-inverting configuration
• Integrator and differentiator
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Introduction
• Analog ICs include operational amplifiers, PLL,
etc.
• A complete op amp is realized by combining
analog circuit building blocks.
• The bipolar op-amp has the general purpose
variety and is designed to fit a wide range of
specifications.
• The terminal characteristics is nearly ideal.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The 741 Op-Amp Circuit
• General description
• The input stage
• The intermediate stage
• The output stage
• The biasing circuits
• Device parameters
03/07/15 Prof.Satheesh MB, INA, Ezhimala
BLOCK DIAGRAM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
General Description
• 20 transistors, few resistors and only one
capacitor
• Two power supplies
• Short-circuit protection
03/07/15 Prof.Satheesh MB, INA, Ezhimala
PIN DIAGRAM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
ARCHITECTURE
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Ideal Op Amplifier
Symbol for the op amp
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Ideal Op Amplifier
The op amp shown connected to dc power supplies.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Characteristics of the Ideal Op
Amplifier
• Differential input resistance is infinite.
• Differential voltage gain is infinite.
• CMRR is infinite.
• Bandwidth is infinite.
• Output resistance is zero.
• Offset voltage and current is zero.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Equivalent Circuit of the Ideal Op
Amp
03/07/15 Prof.Satheesh MB, INA, Ezhimala
FREQUENCY RESPONSE
03/07/15 Prof.Satheesh MB, INA, Ezhimala
TRANSFER CHARACTERISTICS
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Inverting Configuration
The inverting closed-loop configuration.
Virtual ground.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Inverting Configuration
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Inverting Configuration
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Inverting Configuration
• Shunt-shunt negative feedback
• Closed-loop gain depends entirely on passive
components and is independent of the op
amplifier.
• Engineer can make the closed-loop gain as
accurate as he wants as long as the passive
components are accurate.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
I/O WAVEFORM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Non-inverting Configuration
The non-inverting configuration.
Series-shunt negative feedback.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Non-inverting Configuration
03/07/15 Prof.Satheesh MB, INA, Ezhimala
I/O WAVEFORM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Voltage follower
(a) The unity-gain buffer or follower amplifier.
(b) Its equivalent circuit model.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
I/O WAVEFORM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Weighted Summer
03/07/15 Prof.Satheesh MB, INA, Ezhimala
A Single Op-Amp Difference
Amplifier
Linear amplifier.
Theorem of linear
Superposition.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
A Single Op-Amp Difference
Amplifier
Application of superposition
Inverting configuration
vo1=−
R2
R1
vI1
03/07/15 Prof.Satheesh MB, INA, Ezhimala
A Single Op-Amp Difference
Amplifier
Application of superposition.
Non-inverting configuration.
vo2=(1+
R2
R1
)(
R4
R4 +R3
v) I2
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Integrators
The inverting configuration with general impedances in
the feedback and the feed-in paths.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The Inverting Integrators
The Miller or inverting integrator.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Frequency Response of the
integrator
03/07/15 Prof.Satheesh MB, INA, Ezhimala
I/O WAVEFORM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The op-amp Differentiator
03/07/15 Prof.Satheesh MB, INA, Ezhimala
The op-amp Differentiator
Frequency response of a differentiator with a time-constant CR.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
I/O WAVEFORM
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Bistable Circuit
The bistable circuit (positive
feedback loop)
The negative input terminal of the op
amp connected to an input signal vI.
v+ =vo
R1
R1 +R2
=vo β
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Bistable Circuit
The transfer characteristic of
the circuit in (a) for increasing vI.
Positive saturation L+ and
negative saturation L-
VTH =L+ β
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Bistable Circuit
The transfer characteristic
for decreasing vI.
VTL=L− β
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Bistable Circuit
The complete transfer characteristics.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Application of Bistable Circuit as a
Comparator
• Comparator is an analog-circuit building block
used in a variety applications.
• To detect the level of an input signal relative to a
preset threshold value.
• To design A/D converter.
• Include single threshold value and two threshold
values.
• Hysteresis comparator can reject the interference.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Application of Bistable Circuit as a
Comparator
Block diagram representation and transfer characteristic for a
comparator having a reference, or threshold, voltage VR.
Comparator characteristic with hysteresis.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Application of Bistable Circuit as a
Comparator
Illustrating the use of
hysteresis in the
comparator
characteristics as a
means of rejecting
interference.
03/07/15 Prof.Satheesh MB, INA, Ezhimala
Generation of Square Waveforms
The circuit obtained when the bistable multi-vibrator is
implemented with the positive feedback loop circuit.

1.Operational Amplifier

  • 1.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Operational-Amplifier and its Applications Course: 90 INAC-L&X AT-15 Prof.Satheesh Monikandan B sathy24@gmail.com
  • 2.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Outline • Introduction • The 741 Op-Amp Circuit • The ideal Op Amp • The inverting configuration • The non-inverting configuration • Integrator and differentiator
  • 3.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Introduction • Analog ICs include operational amplifiers, PLL, etc. • A complete op amp is realized by combining analog circuit building blocks. • The bipolar op-amp has the general purpose variety and is designed to fit a wide range of specifications. • The terminal characteristics is nearly ideal.
  • 4.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The 741 Op-Amp Circuit • General description • The input stage • The intermediate stage • The output stage • The biasing circuits • Device parameters
  • 5.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala BLOCK DIAGRAM
  • 6.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala General Description • 20 transistors, few resistors and only one capacitor • Two power supplies • Short-circuit protection
  • 7.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala PIN DIAGRAM
  • 8.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala ARCHITECTURE
  • 9.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Ideal Op Amplifier Symbol for the op amp
  • 10.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Ideal Op Amplifier The op amp shown connected to dc power supplies.
  • 11.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Characteristics of the Ideal Op Amplifier • Differential input resistance is infinite. • Differential voltage gain is infinite. • CMRR is infinite. • Bandwidth is infinite. • Output resistance is zero. • Offset voltage and current is zero.
  • 12.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Equivalent Circuit of the Ideal Op Amp
  • 13.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala FREQUENCY RESPONSE
  • 14.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala TRANSFER CHARACTERISTICS
  • 15.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Inverting Configuration The inverting closed-loop configuration. Virtual ground.
  • 16.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Inverting Configuration
  • 17.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Inverting Configuration
  • 18.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Inverting Configuration • Shunt-shunt negative feedback • Closed-loop gain depends entirely on passive components and is independent of the op amplifier. • Engineer can make the closed-loop gain as accurate as he wants as long as the passive components are accurate.
  • 19.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala I/O WAVEFORM
  • 20.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Non-inverting Configuration The non-inverting configuration. Series-shunt negative feedback.
  • 21.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Non-inverting Configuration
  • 22.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala I/O WAVEFORM
  • 23.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Voltage follower (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.
  • 24.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala I/O WAVEFORM
  • 25.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Weighted Summer
  • 26.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala A Single Op-Amp Difference Amplifier Linear amplifier. Theorem of linear Superposition.
  • 27.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala A Single Op-Amp Difference Amplifier Application of superposition Inverting configuration vo1=− R2 R1 vI1
  • 28.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala A Single Op-Amp Difference Amplifier Application of superposition. Non-inverting configuration. vo2=(1+ R2 R1 )( R4 R4 +R3 v) I2
  • 29.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Integrators The inverting configuration with general impedances in the feedback and the feed-in paths.
  • 30.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The Inverting Integrators The Miller or inverting integrator.
  • 31.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Frequency Response of the integrator
  • 32.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala I/O WAVEFORM
  • 33.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The op-amp Differentiator
  • 34.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala The op-amp Differentiator Frequency response of a differentiator with a time-constant CR.
  • 35.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala I/O WAVEFORM
  • 36.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Bistable Circuit The bistable circuit (positive feedback loop) The negative input terminal of the op amp connected to an input signal vI. v+ =vo R1 R1 +R2 =vo β
  • 37.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Bistable Circuit The transfer characteristic of the circuit in (a) for increasing vI. Positive saturation L+ and negative saturation L- VTH =L+ β
  • 38.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Bistable Circuit The transfer characteristic for decreasing vI. VTL=L− β
  • 39.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Bistable Circuit The complete transfer characteristics.
  • 40.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Application of Bistable Circuit as a Comparator • Comparator is an analog-circuit building block used in a variety applications. • To detect the level of an input signal relative to a preset threshold value. • To design A/D converter. • Include single threshold value and two threshold values. • Hysteresis comparator can reject the interference.
  • 41.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Application of Bistable Circuit as a Comparator Block diagram representation and transfer characteristic for a comparator having a reference, or threshold, voltage VR. Comparator characteristic with hysteresis.
  • 42.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Application of Bistable Circuit as a Comparator Illustrating the use of hysteresis in the comparator characteristics as a means of rejecting interference.
  • 43.
    03/07/15 Prof.Satheesh MB,INA, Ezhimala Generation of Square Waveforms The circuit obtained when the bistable multi-vibrator is implemented with the positive feedback loop circuit.