SlideShare a Scribd company logo
Feedback Amplifiers and Operational
Amplifiers
Unit IV
Darwin Nesakumar A
Assistant Professor/ECE
RMKEC
 Introduction
 Principle of Feedback Amplifiers
 Classification Feedback Amplifiers
 Basic Concept of Feedback
 Block Diagram of Feedback Amplifier
 Properties of Feedback Amplifiers
 Topologies of Feedback Amplifier
 General Characteristics of Negative Feedback Amplifier
 Voltage Gain
Contents
 Input Impedance
 Output Impedance
 Sensitivities
 Bandwidth Stability
 Effect of Positive Feedback
 Condition of Oscillation
 Barkhausen Criteria
 Introduction to Integrated Circuits
Contents
 Application of Operational Amplifier
 Inverting Amplifier
 Non-Inverting Amplifier
 Adders
 Subtractors
 Constant-Gain Multiplier
 Voltage Follower
 Comparator
 Integrator
 Differentiator
Contents
Introduction
Fraction of the amplifier output is fed back to the input circuit
make the operating point of a transistor insensitive to temperature and
other variations
Feedback system is mainly used in amplifiers, control systems, and etc.,
Feedback system has three components
 Amplifier
 Feedback System
 Mixer or Comparator
Principle of Feedback Amplifier
Amplifier Without Feedback
𝑶𝒑𝒆𝒏 𝑳𝒐𝒐𝒑 𝑮𝒂𝒊𝒏 =
𝑽𝒐
𝑽𝒊
Amplifier Without Feedback
Principle of Feedback Amplifier
Amplifier With Feedback
Principle of Feedback Amplifier
Classification Feedback Amplifiers
Positive Feedback
Classification Feedback Amplifiers
Negative Feedback
Basic Concept of Feedback
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
𝑉𝑆 −ac signal at the input side
𝑉𝑓 −Feedback signal
𝑉𝑑 −Difference signal
𝑉𝑂 −Output signal
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
𝐴 − Gain of the basic amplifier =
𝑉𝑂
𝑉𝑑
𝛽 − Feedback Ratio =
𝑉𝑓
𝑉𝑂
𝐴𝑓 − Feedback Amplifier =
𝑉𝑂
𝑉𝑆
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
𝐴𝑓 − Feedback Amplifier =
𝑉𝑂
𝑉𝑆
Gain of Positive Feedback Amplifier
Here 𝑉𝑆 𝑎𝑛𝑑 𝑉𝑓 𝑎𝑟𝑒 𝑖𝑛𝑝ℎ𝑎𝑠𝑒
𝑉𝑑= 𝑉𝑆 + 𝑉𝑓
Find 𝑽𝒅
∵ 𝐴 =
𝑉𝑂
𝑉𝑑
𝐴𝑉𝑑 = 𝑉𝑂
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
Gain of Positive Feedback Amplifier
𝑉𝑑= 𝑉𝑆 + 𝑉𝑓
𝐴 𝑉𝑆 + 𝑉𝑓 = 𝑉𝑂
∵ 𝛽 =
𝑉𝑓
𝑉𝑂
𝛽𝑉𝑂=𝑉𝑓
𝐴 𝑉𝑆 + 𝛽𝑉𝑂 = 𝑉𝑂
𝐴𝑉𝑆 + 𝐴𝛽𝑉𝑂 = 𝑉𝑂
𝐴𝑉𝑆 = 𝑉𝑂 − 𝐴𝛽𝑉𝑂
𝐴𝑉𝑆 = 1 − 𝐴𝛽 𝑉𝑂
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
Gain of Positive Feedback Amplifier
𝑨𝒇 =
𝑨
[𝟏−𝑨𝜷]
𝑳𝒐𝒐𝒑 𝒈𝒂𝒊𝒏 = 𝑨𝜷
𝐴𝑉𝑆 = 1 − 𝐴𝛽 𝑉𝑂
𝐴
1−𝐴𝛽
=
𝑉𝑂
𝑉𝑆
Where 𝐴𝑓=
𝑉𝑂
𝑉𝑆
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
𝐴𝑓 − Feedback Amplifier =
𝑉𝑂
𝑉𝑆
Gain of Negative Feedback Amplifier
Here 𝑉𝑆 𝑎𝑛𝑑 𝑉𝑓 𝑎𝑟𝑒 𝑖𝑛𝑝ℎ𝑎𝑠𝑒
𝑉𝑑= 𝑉𝑆 − 𝑉𝑓
Find 𝑽𝒅
−
∵ 𝐴 =
𝑉𝑂
𝑉𝑑
𝐴𝑉𝑑 = 𝑉𝑂
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
Gain of Negative Feedback Amplifier
𝑉𝑑= 𝑉𝑆 − 𝑉𝑓
𝐴 𝑉𝑆 − 𝑉𝑓 = 𝑉𝑂 ∵ 𝛽 =
𝑉𝑓
𝑉𝑂
𝛽𝑉𝑂=𝑉𝑓
𝐴 𝑉𝑆 − 𝛽𝑉𝑂 = 𝑉𝑂
𝐴𝑉𝑆 − 𝐴𝛽𝑉𝑂 = 𝑉𝑂
𝐴𝑉𝑆 = 𝑉𝑂 + 𝐴𝛽𝑉𝑂
𝐴𝑉𝑆 = 1 + 𝐴𝛽 𝑉𝑂
Block Diagram of Feedback Amplifier
Basic Concept of Feedback
Gain of Negative Feedback Amplifier
−
𝐴𝑉𝑆 = 1 + 𝐴𝛽 𝑉𝑂
𝐴
1+𝐴𝛽
=
𝑉𝑂
𝑉𝑆
𝑨𝒇 =
𝑨
[𝟏+𝑨𝜷]
𝑳𝒐𝒐𝒑 𝒈𝒂𝒊𝒏 = 𝑨𝜷
Where 𝐴𝑓=
𝑉𝑂
𝑉𝑆
Properties of Negative Feedback
 Gain Desensitivity
 Extend the Bandwidth of the Amplifier
 Reduce Nonlinear Distortion
 Reduce the Effect of Noise
 Control the Input and Output Impedance
Properties of Negative Feedback
 Desensitivity is defined as the reciprocal of sensitivity
 voltage gain has been reduced due to feedback network
Closed-loop gain of the amplifier with negative feedback is
Gain Desensitivity
Properties of Negative Feedback
 Desensitivity is defined as the reciprocal of sensitivity
 voltage gain has been reduced due to feedback network
Closed-loop gain of the amplifier with negative feedback is
Gain Desensitivity
𝐴𝑓 =
𝐴
[1+𝐴𝛽]
(1)
Differentiating the above equation with respect to 𝐴
Properties of Negative Feedback
 Desensitivity is defined as the reciprocal of sensitivity
 voltage gain has been reduced due to feedback network
Closed-loop gain of the amplifier with negative feedback is
Gain Desensitivity
𝐴𝑓 =
𝐴
[1+𝐴𝛽]
(1)
Differentiating the above equation with respect to 𝐴
𝑑𝐴𝑓
𝑑𝐴
=
1 + 𝐴𝛽 . 1 − 𝐴 𝛽
[1 + 𝐴𝛽]2
Properties of Negative Feedback
Gain Desensitivity
𝑑𝐴𝑓
𝑑𝐴
=
1 + 𝐴𝛽 . 1 − 𝐴 𝛽
[1 + 𝐴𝛽]2
𝑑𝐴𝑓
𝑑𝐴
=
1 + 𝐴𝛽 − 𝐴𝛽
[1 + 𝐴𝛽]2
𝑑𝐴𝑓
𝑑𝐴
=
1
[1+𝐴𝛽]2 (2)
𝑑𝐴𝑓 =
𝑑𝐴
[1 + 𝐴𝛽]2
Dividing both sides by 𝐴𝑓,
Properties of Negative Feedback
Gain Desensitivity
Dividing both sides by 𝐴𝑓,
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
[1+𝐴𝛽]2 ×
1
𝐴𝑓
(3)
Substitute equation (1) in (3)
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
[1 + 𝐴𝛽]2 ×
1 + 𝐴𝛽
𝐴
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
1 + 𝐴𝛽
×
1
𝐴
Properties of Negative Feedback
Gain Desensitivity
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
1 + 𝐴𝛽
×
1
𝐴
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
𝐴
1 + 𝐴𝛽
𝒅𝑨𝒇
𝑨𝒇
represents the fractional change in amplifier voltage gain with feedback
𝒅𝑨
𝑨
denotes the fractional change in voltage gain without feedback
𝟏
𝟏+𝑨𝜷
is called sensitivity and 𝟏 + 𝑨𝜷 called as Desensitivity factor
Properties of Negative Feedback
Gain Desensitivity
𝑑𝐴𝑓
𝐴𝑓
=
𝑑𝐴
𝐴
1 + 𝐴𝛽
𝑑𝐴𝑓
𝐴𝑓
𝑑𝐴
𝐴
=
1
𝐷
=
1
1 + 𝐴𝛽
Stability of amplifier increases with increase in Desensitivity.
Extend the Bandwidth of the Amplifier
Amplifier bandwidth is a function of feedback
𝐵𝑊 𝑖𝑠 bandwidth of amplifier without feedback
𝐵𝑊′ is bandwidth of amplifier with feedback
𝛽 is feedback ratio.
𝐵𝑊′
Extend the Bandwidth of the Amplifier
𝐵𝑊′
Product of voltage gain and bandwidth of an amplifier without feedback and with
feedback remains the same
𝐴𝑣
′
× 𝐵𝑊′
= 𝐴𝑣 × 𝐵𝑊
𝑨𝒗
′
𝒇𝟐
′
− 𝒇𝟏
′
= 𝑨𝒗 𝒇𝟐 − 𝒇𝟏
𝑩𝑾𝒇 = 𝐁𝐖(𝟏 +𝛃𝐀)
Reduction of Noise
𝑉𝑂 = 𝐴1 𝑉𝑆 + 𝑉
𝑛
Find output voltage 𝑽𝑶
Reduction of Noise
Apply Superposition Theorem, Find 𝑽𝑶𝟏
𝑉𝑂1 = 𝑉𝑆
𝐴1𝐴2
1 + 𝐴1𝐴2𝛽 𝑉𝑛=0
Reduction of Noise
Apply Superposition Theorem, Find 𝑽𝑶𝟐
𝑉𝑂2 = 𝑉
𝑛
𝐴1
1 + 𝐴1𝐴2𝛽 𝑉𝑆=0
Reduction of Noise
Overall output voltage 𝑉𝑂 = 𝑉𝑂1 + 𝑉𝑂2
𝑽𝑶 = 𝑽𝑺
𝑨𝟏𝑨𝟐
𝟏+𝑨𝟏𝑨𝟐𝜷
+ 𝑽𝒏
𝑨𝟏
𝟏+𝑨𝟏𝑨𝟐𝜷
Overall Signal to Noise ratio is
𝑆
𝑁
=
𝑉𝑆
𝐴1𝐴2
1 + 𝐴1𝐴2𝛽
𝑉
𝑛
𝐴1
1 + 𝐴1𝐴2𝛽
Reduction of Noise
Overall Signal to Noise ratio is
𝑆
𝑁
=
𝑉𝑆
𝐴1𝐴2
1 + 𝐴1𝐴2𝛽
𝑉
𝑛
𝐴1
1 + 𝐴1𝐴2𝛽
𝑺
𝑵
=
𝑽𝑺
𝑽𝒏
𝑨𝟐
Reduce Nonlinear Distortion
 Non-linear distortion occurs due to active devices
 Occurs additional frequency components along with fundamental frequency called
hormonic distortion
 Negative feedback reduces the non linear distortion by the factor of 𝑫 = 𝟏 + 𝑨𝜷
 The distortion with feedback can be written as,
Df =
D
1 + Aβ
Control the Input and Output Impedance
𝑉𝑖
𝜷
𝑉𝑂
Control the Input and Output Impedance
𝑉𝑖
𝜷
𝑉𝑂
𝑽𝒊 − 𝜷𝑽𝑶
𝜷𝑽𝑶
Find 𝑽𝑶
𝑉𝑂 = 𝐴𝑣 𝑉𝑖 − 𝛽𝑉𝑂
𝑉𝑖 − 𝛽𝑉𝑂= 𝑖1𝑍𝑖𝑛
𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝑉𝑂
𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝐴𝑣 𝑉𝑖 − 𝛽𝑉𝑂
Substitute 𝑉𝑂 in 𝑉𝑖
𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝐴𝑣𝑖1𝑍𝑖𝑛
𝑉𝑖 = 𝑖1𝑍𝑖𝑛 1 + 𝛽𝐴𝑣
𝑉𝑖
𝑖1
= 𝑍𝑖𝑛 1 + 𝛽𝐴𝑣
Control the Input and Output Impedance
𝑉𝑖
𝜷
𝑉𝑂
𝑽𝒊 − 𝜷𝑽𝑶
𝜷𝑽𝑶
𝑉𝑖
𝑖1
= 𝑍𝑖𝑛 1 + 𝛽𝐴𝑣
Here
𝑉𝑖
𝑖1
= 𝑍𝑖𝑛
′
𝒁𝒊𝒏
′
= 𝒁𝒊𝒏 𝟏 + 𝜷𝑨𝒗
Control the Input and Output Impedance
𝑉𝑂
𝑉𝑂
′
𝑉𝑂 = 𝑉𝑂
′
+ 𝑖𝑜𝑍𝑜𝑢𝑡
𝑉𝑂 = 𝐴(𝑉𝑖 − 𝛽𝑉𝑂) + 𝑖𝑜𝑍𝑜𝑢𝑡
𝑉𝑂 + 𝐴𝛽𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡 ∵ 𝑉𝑖= 0
𝑽𝟎
𝑽𝟎
,
𝑉𝑂 = 𝐴𝑉𝑖 − 𝐴𝛽𝑉𝑂 + 𝑖𝑜𝑍𝑜𝑢𝑡
∵ 𝐴 = 𝑉𝑂
′
/ (𝑉𝑖−𝛽𝑉𝑂)
Control the Input and Output Impedance
𝑉𝑂
𝑉𝑂
′
𝑉𝑂 + 𝐴𝛽𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡
1 + 𝐴𝛽 𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡
𝑉𝑂
𝑖𝑜
=
𝑍𝑜𝑢𝑡
1 + 𝐴𝛽
Here
𝑉𝑂
𝑖𝑂
= 𝑍𝑜𝑢𝑡
′
𝒁𝒐𝒖𝒕
′
=
𝒁𝒐𝒖𝒕
𝟏 + 𝑨𝜷
1 + Aβ > 1,output impedance of amplifier decreases by a factor(1 + Aβ)
Topologies of Feedback Amplifier
 Voltage-series Feedback or series-shunt feedback
 Voltage-shunt Feedback or shunt-shunt feedback
 Current-series Feedback or series-series feedback
 Current-shunt Feedback or shunt-series feedback
Both voltage and current can be fed back to the input either in series or parallel
Topologies of Feedback Amplifier
 Voltage-series Feedback or series-shunt feedback
Both voltage and current can be fed back to the input either in series or parallel
Method of Sampling
Method of Mixing
Series-Shunt feedback
Method of Mixing
Method of Sampling
Voltage-series Feedback
Voltage-series Feedback
(i) Gain of the Amplifier
(ii) Input Impedance with Feedback
(iii) Output Impedance with Feedback
Parameters
Voltage-series Feedback
Gain of the Amplifier
𝑰𝒊
𝑰𝟎
Voltage-series Feedback
Gain of the Amplifier
If there is no feedback (𝑉𝑓 = 0), the voltage
gain of the amplifier
𝐴 =
𝑉0
𝑉𝑖
If the feedback signal 𝑽𝒇 is connected in series
𝑉𝑖 = 𝑉𝑆 − 𝑉𝑓
Find output from the feedback network
𝑉𝑓 = 𝛽𝑉0
Voltage-series Feedback Gain of the Amplifier
Find output Voltage 𝑉0
𝑉0 = 𝐴𝑉𝑖
𝑉0 = 𝐴 𝑉𝑆 − 𝑉𝑓 ⇒ 𝐴 𝑉𝑆 − 𝛽𝑉0
𝑉0 = 𝐴 𝑉𝑆 − 𝐴𝛽𝑉0 ⇒ 𝑉0 + 𝐴𝛽𝑉0 = 𝐴 𝑉𝑆
𝑉0 1 + 𝐴𝛽 = 𝐴 𝑉𝑆
𝑉0
𝑉𝑆
=
𝐴
1 + 𝐴𝛽
𝑨𝒇 =
𝑨
𝟏 + 𝑨𝜷
Voltage-series Feedback Input Impedance with Feedback
𝑰𝒊
𝑰𝟎
Voltage-series Feedback Input Impedance with Feedback
Apply KVL to the input side
𝑉
𝑠 = 𝑍𝑖𝐼𝑖 + 𝑉𝑓
Substitute 𝑉𝑓 = 𝛽𝑉0
𝑉
𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝑉0
𝑉
𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝐴𝑉𝑖
∵ 𝑉0 = 𝐴𝑉𝑖
∵ 𝑉𝑖 = 𝐼𝑖𝑍𝑖
𝑉
𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝐴𝐼𝑖𝑍𝑖
1 + 𝛽𝐴 𝐼𝑖𝑍𝑖 = 𝑉𝑆
𝒁𝒊
𝒁𝒐
𝑉𝑆
𝐼𝑖
= 𝑍𝑖𝑓 𝑍𝑜𝑓
𝑍𝑜𝑓
′
Voltage-series Feedback Input Impedance with Feedback
𝒁𝒊
𝒁𝒐
1 + 𝛽𝐴 𝐼𝑖𝑍𝑖 = 𝑉𝑆
1 + 𝛽𝐴 𝑍𝑖 =
𝑉𝑆
𝐼𝑖
∵
𝑉𝑆
𝐼𝑖
= 𝑍𝑖𝑓
𝒁𝒊𝒇 = 𝟏 + 𝜷𝑨 𝒁𝒊
Voltage-series feedback, the input resistance increases by a factor (1 + 𝛽𝐴V)
𝑉𝑆
𝐼𝑖
= 𝑍𝑖𝑓
Voltage-series Feedback Output Impedance with Feedback
Applying KVL to the output loop
𝑭𝒊𝒏𝒅 𝑽𝟎
𝑉0 = 𝐴𝑉𝑖 + 𝐼0𝑍0
Substitute 𝑉𝑖
𝑉𝑖 = 𝑉𝑆 − 𝑉𝑓
To find output impedance, short circuit 𝑉
𝑠
𝑉𝑖 = −𝑉𝑓
𝑉0 = −𝐴𝑉𝑓 + 𝐼0𝑍0
𝑉
𝑜
𝒁𝒐𝒖𝒕
Voltage-series Feedback Output Impedance with Feedback
𝑉0 = −𝐴𝑉𝑓 + 𝐼0𝑍0
𝑉0 = −𝐴𝛽𝑉0 + 𝐼0𝑍0
𝑉0 + 𝐴𝛽𝑉0 = 𝐼0𝑍0
1 + 𝐴𝛽 𝑉0 = 𝐼0𝑍0
𝑉0
𝐼0
=
𝑍0
1 + 𝐴𝛽
𝒁𝟎𝒇 =
𝒁𝟎
𝟏+𝑨𝜷
𝑉
𝑜
𝒁𝒐𝒖𝒕
Voltage-Shunt Feedback
Voltage-shunt Feedback
(i) Gain of the Amplifier
(ii) Input Impedance with Feedback
(iii) Output Impedance with Feedback
Parameters
Voltage-shunt Feedback
Gain of the Amplifier
If there is no feedback (𝑉𝑓 = 0), the voltage
gain of the amplifier
𝐴 =
𝑉0
𝐼𝑖
If the feedback signal 𝑰𝒇 is connected in parallel
Find the input current 𝐼𝑠
Then the overall gain of the amplifier is
𝐴𝑓 =
𝑉0
𝐼𝑠
Voltage-Shunt Feedback
Gain of the Amplifier
Find output from the feedback network
𝐼𝑓 = 𝛽𝑉0
𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓
overall gain of the amplifier is,
𝐴𝑓 =
𝑉0
𝐼𝑠
⇒
𝑉0
𝐼𝑖+𝐼𝑓
From the circuit we know that ,
𝐼𝑖 =
𝑉0
𝐴
Voltage-Shunt Feedback Gain of the Amplifier
overall gain of the amplifier is,
𝐴𝑓 =
𝑉0
𝐼𝑖+𝐼𝑓
𝐴𝑓 =
𝑉0
𝑉0
𝐴
+𝛽𝑉0
𝐴𝑓 =
𝐴𝑉0
𝑉0+𝐴𝛽𝑉0
𝐴𝑓 =
𝐴 𝑉0
(1+𝐴𝛽)𝑉0
𝑨𝒇 =
𝑨
(𝟏+𝑨𝜷)
Voltage-shunt Feedback Input Impedance with Feedback
Voltage-shunt Feedback Input Impedance with Feedback
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑠
Substitute 𝐼𝑠
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖 + 𝐼𝑓
Find output from the feedback network
𝐼𝑓 = 𝛽𝑉0
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖 + 𝛽𝑉0
Voltage-shunt Feedback Input Impedance with Feedback
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖 + 𝛽𝑉0
Input impedance can be obtained by dividin
equation by 𝐼𝑖
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖
𝐼𝑖
𝐼𝑖
+
𝛽𝑉0
𝐼𝑖
𝒁𝒊𝒇 =
𝒁𝒊
𝟏 + 𝑨𝜷
Voltage-shunt Feedback Output Impedance with Feedback
Applying KVL to the output loop
𝑭𝒊𝒏𝒅 𝑽𝟎
𝑉0 = 𝐴𝐼𝑖 + 𝐼0𝑍0
𝑰𝟎 =
𝑉0 − 𝐴𝐼𝑖
𝑍0
To find output impedance, open circuit 𝐼𝑠
𝐼𝑖 = −𝐼𝑓
𝐼0
∵ 𝐼𝑖 =
𝑉0
𝐴
∵ 𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓
From the circuit we know that,
Voltage-shunt Feedback Output Impedance with Feedback
𝒁𝒐𝒇 =
𝒁𝟎
𝟏+𝑨𝜷
𝐼0
𝐼𝑓 = 𝛽𝑉0
𝐼𝑖 = −𝐼𝑓 ⇒ −𝛽𝑉0
𝐼0 =
𝑉0 − (−𝐴𝛽𝑉0)
𝑍0
𝐼0 =
𝑉0 + 𝐴𝛽𝑉0
𝑍0
𝐼0 =
(𝟏 + 𝐴𝛽)𝑉0
𝑍0
Voltage-shunt Feedback Output Impedance with Feedback
𝒁𝒐𝒇 =
𝒁𝟎
𝟏+𝑨𝜷
𝐼0
𝐼0 =
(𝟏 + 𝐴𝛽)𝑉0
𝑍0
𝐼0
𝑉0
=
(𝟏 + 𝐴𝛽)
𝑍0
∵ 𝑍0𝑓 =
𝑉0
𝐼0
Current-series Feedback
Current-series Feedback
(i) Gain of the Amplifier
(ii) Input Impedance with Feedback
(iii) Output Impedance with Feedback
Parameters
Current-series Feedback
Gain of the Amplifier
If there is no feedback (𝑉𝑓 = 0), the voltage
gain of the amplifier
𝐴 =
𝐼0
𝑉𝑖
If the feedback signal 𝑽𝒇 is connected in series
Find the input voltage at the amplifier 𝑉𝑖
Then the overall gain of the amplifier is
𝐴𝑓 =
𝐼0
𝑉
𝑠
Current-Series Feedback
Gain of the Amplifier
𝑉𝑓 = 𝛽𝐼0
𝑉𝑖 = 𝑉
𝑠 − 𝑉𝑓
From the circuit we know that ,
𝑉𝑖 =
𝐼0
𝐴
Find output from the feedback network
𝑉𝑖 = 𝑉
𝑠 − 𝛽𝐼0
𝐼0
𝐴
= 𝑉
𝑠 − 𝛽𝐼0
Current-Series Feedback Gain of the Amplifier
overall gain of the amplifier is,
𝐼0
𝐴
= 𝑉
𝑠 − 𝛽𝐼0
𝐼0
𝐴
+ 𝛽𝐼0 = 𝑉
𝑠
𝐼0 + 𝐴𝛽𝐼0
𝐴
= 𝑉
𝑠
1 + 𝐴𝛽 𝐼0
𝐴
= 𝑉
𝑠
1 + 𝐴𝛽
𝐴
=
𝑉
𝑠
𝐼0
Current-Series Feedback Gain of the Amplifier
overall gain of the amplifier is,
𝐴𝑓 =
𝐼0
𝑉𝑠
=
𝐴
(1+𝐴𝛽)
1 + 𝐴𝛽
𝐴
=
𝑉
𝑠
𝐼0
𝑨𝒇 =
𝑨
(𝟏+𝑨𝜷)
Current-Series Feedback Input Impedance with Feedback
Current-series Feedback
Input impedance of the Amplifier
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
Current-series Feedback
Input impedance of the Amplifier
Input Impedance with feedback is given as
𝑍𝑖𝑓 =
𝑉
𝑠
𝐼𝑖
𝑉
𝑠 − 𝐼𝑖𝑍𝑖 − 𝑉𝑓 = 0
Apply KVL to the input loop,
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 + 𝑉𝑓
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐼0
The output current is given by
∵ 𝑉𝑓 = 𝛽𝐼0
𝐼0 = 𝐴𝑉𝑖
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
Current-series Feedback
Input impedance of the Amplifier
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐼0
Substitute 𝐼0 value
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐴𝑉𝑖
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐴𝐼𝑖𝑍𝑖
∵ 𝑉𝑖 = 𝐼𝑖𝑍𝑖
𝑉
𝑠 = 𝐼𝑖𝑍𝑖 1 + 𝛽𝐴
𝑉
𝑠
𝐼𝑖
= 𝑍𝑖 1 + 𝛽𝐴
𝑍𝑖𝑓 = 𝑍𝑖 1 + 𝛽𝐴
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
Current-series Feedback
Input impedance of the Amplifier
𝒁𝒊𝒇 = 𝒁𝒊 𝟏 + 𝜷𝑨
Input resistance increases by a factor of (1 + 𝑨𝛽)
𝑉
𝑠
𝐼𝑖
= 𝑍𝑖 1 + 𝛽𝐴
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
Current-series Feedback
Output impedance of the Amplifie
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
Applying KCL to the output node
𝐴𝑉𝑖 + 𝐼 = 𝐼0
Input voltage is given by,
𝑉𝑠 − 𝑉𝑖 − 𝑉𝑓 = 0 ∵ 𝑉
𝑠 = 0
𝑉𝑖 = 𝑉𝑓 ∵ 𝑉𝑓 = 𝛽𝐼0
𝑉𝑖 = 𝛽𝐼0 or 𝑉𝑖 = 𝛽𝐼
Substitute 𝑉𝑖 value
𝐼𝐴𝛽 + 𝐼 = 𝐼0
Current-series Feedback
Output impedance of the Amplifie
𝒁𝑰𝑭 =
𝑽𝒔
𝑰𝒊
𝑰𝟎
𝑰
𝐼𝐴𝛽 + 𝐼 = 𝐼0
𝐼 𝐴𝛽 + 1 = 𝐼0
𝐼 1 + 𝐴𝛽 =
𝑉
𝑍0
𝑍0 1 + 𝐴𝛽 =
𝑉
𝐼
𝒁𝒐 𝟏 + 𝑨𝜷 = 𝒁𝒐𝒇
Output resistance increase by a factor (𝟏 + 𝑨𝜷).
Current-shunt Feedback
(i) Gain of the Amplifier
(ii) Input Impedance with Feedback
(iii) Output Impedance with Feedback
Parameters
Current-shunt Feedback
𝑰𝒇
Current-shunt Feedback
Gain of the Amplifier with feedback
If there is no feedback (𝑉𝑓 = 0), the voltage gain
of the amplifier
𝐴 =
𝐼0
𝐼𝑖
If the feedback network is connected in parallel wi
th input, overall gain of the feedback amplifier,
𝐴𝑓 =
𝐼0
𝐼𝑠
Find 𝑰𝒔
Current-shunt Feedback
Gain of the Amplifier with feedback
Find 𝑰𝒔
𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓
𝐴𝑓 =
𝐼0
𝐼𝑖 + 𝐼𝑓
Find output from the feedback networks
𝐼𝑓 = 𝛽𝐼0
Find Input current to the amplifier
𝐼𝑖 =
𝐼0
𝐴
Current-shunt Feedback
Gain of the Amplifier with feedback
𝐴𝑓 =
𝐼0
𝐼0
𝐴
+ 𝛽𝐼0
Substitute 𝐼𝑖 𝑎𝑛𝑑 𝐼𝑓 in 𝐴𝑓
𝐴𝑓 =
𝐴𝐼0
𝐼0 + 𝐴𝛽𝐼0
⇒
𝐴𝐼0
𝐼0 1 + 𝐴𝛽
𝑨𝒇 =
𝑨
𝟏 + 𝑨𝜷
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
Input impedance with feedback is
𝑽𝒊
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑠
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
Applying KCL to the input node
𝐼𝑠 = 𝐼𝑓 + 𝐼𝑖
Substitute 𝐼𝑓 in 𝐼𝑠
𝐼𝑠 = 𝛽𝐼0 + 𝐼𝑖
𝑽𝒊
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
Applying KCL to the input node
𝐼𝑠 = 𝐼𝑓 + 𝐼𝑖
Substitute 𝐼𝑓 in 𝐼𝑠
𝐼𝑠 = 𝛽𝐼0 + 𝐼𝑖
𝑽𝒊
Find output current 𝑰𝟎 with respect to amplifier
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
𝑽𝒊
Find output current 𝑰𝟎 with respect to amplifier
𝐼0 = 𝐴𝑖𝐼𝑖
𝐼𝑠 = 𝛽𝐴𝑖𝐼𝑖 + 𝐼𝑖
𝐼𝑠 = 𝐼𝑖 𝛽𝐴𝑖 + 1
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
𝑽𝒊
𝐼𝑠 = 𝐼𝑖 𝛽𝐴𝑖 + 1
Input impedance with feedback is
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑠
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖 𝛽𝐴𝑖 + 1
Current-Shunt Feedback
Input Impedance with Feedback
𝑰𝒇
𝑽𝒊
𝑍𝑖𝑓 =
𝑉𝑖
𝐼𝑖 𝛽𝐴𝑖 + 1 ∵ 𝑉𝑖 = 𝑍𝑖𝐼𝑖
𝑍𝑖𝑓 =
𝑍𝑖𝐼𝑖
𝐼𝑖 𝛽𝐴𝑖 + 1
𝒁𝒊𝒇 =
𝒁𝒊
𝜷𝑨𝒊 + 𝟏
Current-Shunt Feedback Output Impedance with Feedback
𝑰𝒇
𝑽𝒊 𝑽𝒐
Output impedance of the circuit is,
𝑍𝑜𝑓 =
𝑉
𝑜
𝐼𝑜
Applying KCL to the output node
𝐴𝑖𝐼𝑖 +
𝑉
𝑜
𝑍𝑜
= 𝐼𝑜
Current-Shunt Feedback Output Impedance with Feedback
𝑰𝒇
𝑽𝒊 𝑽𝒐
𝐴𝑖𝐼𝑖 +
𝑉
𝑜
𝑍𝑜
= 𝐼𝑜
we know that, 𝐼𝑠= 𝐼𝑓 + 𝐼𝑖
𝐼𝑓 = −𝐼𝑖 and 𝐼𝑖 = −𝛽𝐼𝑜
𝐴𝑖 −𝛽𝐼𝑜 +
𝑉
𝑜
𝑍𝑜
= 𝐼𝑜
Current-Shunt Feedback Output Impedance with Feedback
𝑰𝒇
𝑽𝒊 𝑽𝒐
𝐴𝑖 −𝛽𝐼𝑜 +
𝑉
𝑜
𝑍𝑜
= 𝐼𝑜
𝑉𝑜
𝑍𝑜
= 𝐼𝑜 + 𝐴𝑖𝛽𝐼𝑜
𝑉
𝑜
𝑍𝑜
= 1 + 𝐴𝑖𝛽 𝐼𝑜
Current-Shunt Feedback Output Impedance with Feedback
𝑰𝒇
𝑽𝒊 𝑽𝒐
𝑉
𝑜
𝑍𝑜
= 1 + 𝐴𝑖𝛽 𝐼𝑜
𝑉𝑜
𝐼𝑜
= 1 + 𝐴𝑖𝛽 𝑍𝑜
𝒁𝒐𝒇 = 𝟏 + 𝑨𝒊𝜷 𝒁𝒐
Operational Amplifier(OP-AMP)
Introduction
 Low cost integrating circuit consisting of
Transistors
Resistors
Capacitors
 Able to amplify a signal due to an external power supply
 Op-Amp is a very high gain differential amplifier with very high input
impedance (in terms of Mega Ω) and a low output impedance (less
than 100Ω)
 used in analog computers to perform mathematical operations to solve
differential and integral equations.
 Op-amps are linear integrated circuits (ICs) that use relatively low dc
supply voltages and are reliable and inexpensive
Operational Amplifier(OP-AMP)
Introduction
Applications of Op-Amps
 Simple Amplifiers
 Sign Changer
 Summers
 Comparators
 Integrators
 Differentiators
 Analog to Digital Converters
Block Diagram of Op-Amps
Symbol of Op-Amps
Pin Configuration of Op-Amps
8 Pin DIP (Dual Inline Package) Package
Pin Configuration of Op-Amps
8 Metal CAN package
Equivalent Circuit of Op-Amps
Characteristics of an Ideal Op-Amp
 Infinite voltage gain
 Infinite input resistance
 Zero output resistance
 Zero output voltage when input is zero
 Infinite Common Mode Rejection Ratio (CMRR)
 Gain is independent of input frequency
 Infinite slew rate (Slew rate is defined as the maximum rate of change of an op amps
output voltage, and is given in units of volts per microsecond.)
Input Signal Modes
Single-ended differential mode
Double-ended differential mode
Input Signal Modes
Common-Mode operation
Op-Amp Parameters
Common-Mode Rejection Ratio
Common-Mode Rejection Ratio (CMRR) =
𝑨𝒅
𝑨𝑪𝑴
Common-Mode Rejection Ratio (CMRR) = 𝟐𝟎𝒍𝒐𝒈
𝑨𝒅
𝑨𝑪𝑴
in dB
Inverting Amplifier
If there is no current at the inverting input, then 𝐼𝑓 = 𝐼𝑖𝑛
Since inverting terminal is virtual ground, then
𝐼𝑖𝑛 =
𝑉𝑖𝑛−𝑉𝐴
𝑅𝑖
∵ 𝑉𝐴 = 0
Inverting Amplifier
𝐼𝑖𝑛 =
𝑉𝑖𝑛
𝑅𝑖
Find current through feedback 𝑅𝑓
𝐼𝑓 =
𝑉𝐴 − 𝑉𝑜𝑢𝑡
𝑅𝑓
Since 𝐼𝑓 = 𝐼𝑖𝑛
−𝑉𝑜𝑢𝑡
𝑅𝑓
=
𝑉𝑖𝑛
𝑅𝑖
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏
=
−𝑹𝒇
𝑹𝒊
Closed Loop Gain 𝑨𝒄𝒍(𝑰) =
−𝑹𝒇
𝑹𝒊
𝐼𝑓 =
−𝑉𝑜𝑢𝑡
𝑅𝑓
𝐼𝑖𝑛 =
𝑉𝑖𝑛−𝑉𝐴
𝑅𝑖
∵ 𝑉𝐴 = 0
Inverting Amplifier- Input & Output Impedance
Input Impedance 𝑍𝑖 = 𝑅𝑖
Sign Changer
𝐴𝑐𝑙(𝐼) =
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
=
−𝑅𝑓
𝑅𝑖
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
= −1
𝑉𝑜𝑢𝑡 = − 𝑉𝑖𝑛
Inverter or Sign Changer
Non-Inverting Amplifier
Current through 𝑅𝑖 = Current through 𝑅𝑓
𝑉𝑖𝑛 − 0
𝑅𝑖
=
𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛
𝑅𝑓
𝑉𝑖𝑛𝑅𝑓 = 𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛 𝑅𝑖
𝑉𝑖𝑛𝑅𝑓 = 𝑉𝑜𝑢𝑡𝑅𝑖 − 𝑉𝑖𝑛𝑅𝑖
𝑉𝑖𝑛 𝑅𝑓 + 𝑅𝑖 = 𝑉𝑜𝑢𝑡𝑅𝑖
Non-Inverting Amplifier
𝑉𝑖𝑛 𝑅𝑓 + 𝑅𝑖 = 𝑉𝑜𝑢𝑡𝑅𝑖
𝑅𝑓 + 𝑅𝑖
𝑅𝑖
=
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
= 1 +
𝑅𝑓
𝑅𝑖
Closed Loop Gain 𝑨𝒄𝒍 = 𝟏 +
𝑹𝒇
𝑹𝒊
Voltage Follower
𝑨𝒄𝒍 = 𝟏 +
𝟎
𝑹𝒊
𝑨𝒄𝒍 = 𝟏
𝐴𝑐𝑙 = 1 +
𝑅𝑓
𝑅𝑖
Adder or Summing Amplifier
Infinite impedance and virtual ground
𝐼𝑓 = 𝐼1 + 𝐼2 + 𝐼3
When all the three inputs are applied the output
voltage is
𝑉𝑜𝑢𝑡 = −𝐼𝑓𝑅𝑓
𝑉𝑜𝑢𝑡 = − 𝐼1 + 𝐼2 + 𝐼3 𝑅𝑓
= −
𝑉1
𝑅1
+
𝑉2
𝑅2
+
𝑉3
𝑅3
𝑅𝑓
If 𝑅1 = 𝑅2 = 𝑅3 = 𝑅, then
Adder or Summing Amplifier
If 𝑅1 = 𝑅2 = 𝑅3 = 𝑅, then
𝑽𝒐𝒖𝒕 = −
𝑹𝒇
𝑹
𝑽𝟏 + 𝑽𝟐 + 𝑽𝟑
If the gain of the amplifier is unity then,
𝑅1 = 𝑅2 = 𝑅3 = 𝑅𝑓
𝑽𝒐𝒖𝒕 = − 𝑽𝟏 + 𝑽𝟐 + 𝑽𝟑
Subtractor
When V2 is zero
𝑉𝑜1 =
−𝑅𝑓
𝑅1
𝑉1 (1)
When 𝑽𝟏 is zero
𝑉𝐵 = 𝑉2
𝑅𝑓
𝑅2+𝑅𝑓
(2)
Potential of node A is same as B i.e. VA = VB
𝐼 =
𝑉𝐴 − 𝑉1
𝑅1
⇒ 𝐼 =
𝑉𝐴
𝑅1
𝐼 =
𝑉𝐴
𝑅1
=
𝑉𝐵
𝑅1
(3)
Ref : Superposition Theorem
Subtractor 𝐼 =
𝑉𝐴
𝑅1
=
𝑉𝐵
𝑅1
(3)
Find the current at feedback path
𝐼 =
𝑉𝑜2−𝑉𝐴
𝑅𝑓
=
𝑉𝑜2−𝑉𝐵
𝑅𝑓
(4)
Equating the equations (3) and (4),
𝑉𝑜2−𝑉𝐵
𝑅𝑓
=
𝑉𝐵
𝑅1
𝑉𝑜2
𝑅𝑓
=
𝑉𝐵
𝑅1
+
𝑉𝐵
𝑅𝑓
𝑉𝑜2 = 𝑉𝐵
1
𝑅1
+
1
𝑅𝑓
𝑅𝑓
𝑉𝑜2 = 𝑉𝐵
𝑅𝑓
𝑅1
+ 1
Subtractor
𝑉𝑜2 = 𝑉𝐵
1
𝑅1
+
1
𝑅𝑓
𝑅𝑓
𝑉𝑜2 = 𝑉𝐵
𝑅𝑓
𝑅1
+ 1
Substitute equation (2) in (5)
𝑉𝑜2 = 𝑉2
𝑅𝑓
𝑅2+𝑅𝑓
𝑅𝑓
𝑅1
+ 1
Hence using Superposition principle
𝑉
𝑜 = 𝑉𝑜1 + 𝑉𝑜2
𝑉
𝑜 =
−𝑅𝑓
𝑅1
𝑉1 + 𝑉2
𝑅𝑓
𝑅2+𝑅𝑓
𝑅𝑓
𝑅1
+ 1
Subtractor
𝑉
𝑜 = 𝑉𝑜1 + 𝑉𝑜2
𝑉
𝑜 =
−𝑅𝑓
𝑅1
𝑉1 + 𝑉2
𝑅𝑓
𝑅2+𝑅𝑓
𝑅𝑓
𝑅1
+ 1
If the resistances are selected as R1 = R2
𝑉
𝑜 =
−𝑅𝑓
𝑅1
𝑉1 + 𝑉2
𝑅𝑓
𝑅1+𝑅𝑓
𝑅𝑓
𝑅1
+ 1
𝑉
𝑜 =
−𝑅𝑓
𝑅1
𝑉1 + 𝑉2
𝑅𝑓
𝑅1+𝑅𝑓
𝑅1+𝑅𝑓
𝑅1
𝑉
𝑜 =
−𝑅𝑓
𝑅1
𝑉1 + 𝑉2
𝑅𝑓
𝑅1
𝑽𝒐 =
𝑹𝒇
𝑹𝟏
𝑽𝟐 − 𝑽𝟏
Subtractor
𝑽𝒐 =
𝑹𝒇
𝑹𝟏
𝑽𝟐 − 𝑽𝟏
Output voltage is proportional to the difference
between the two input voltages
If 𝑅1 = 𝑅2 = 𝑅𝐹 is selected
𝑽𝒐 = 𝑽𝟐 − 𝑽𝟏
Integrator
Because of virtual ground and infinite impedance
𝑖 = 𝑖𝑐
𝑖 =
𝑉𝑖−0
𝑅
=
𝑉𝑖
𝑅
(1)
Integrator
voltage across capacitor is
𝑉
𝑐 = 0 − 𝑉
𝑜
𝑉
𝑐 = −𝑉
𝑜
𝑖𝑐 =
𝐶𝑑𝑉
𝑐
𝑑𝑡
Integrator
𝑖𝑐 =
𝐶𝑑𝑉
𝑐
𝑑𝑡
𝑖𝑐 = −
𝐶𝑑𝑉𝑜
𝑑𝑡
(2)
From equations (1) and (2)
𝑉𝑖
𝑅
= −
𝐶𝑑𝑉
𝑜
𝑑𝑡
Integrator
𝑉𝑖
𝑅
= −
𝐶𝑑𝑉
𝑜
𝑑𝑡
𝑑𝑉𝑜
𝑑𝑡
= −
𝑉𝑖
𝑅𝐶
Take integration on both sides
𝑽𝒐 = −
𝟏
𝑹𝑪
𝟎
𝒕
𝑽𝒕 𝒅𝒕 scale multiplier
𝟏
𝑹𝑪

More Related Content

What's hot

Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
Burdwan University
 
Phase Controlled Rectifiers
Phase Controlled RectifiersPhase Controlled Rectifiers
Phase Controlled Rectifiers
maneesh001
 
Feedback amplifiers
Feedback  amplifiersFeedback  amplifiers
Feedback amplifiers
Harit Mohan
 
Feedback Amplifier_Nt Pixel
Feedback Amplifier_Nt PixelFeedback Amplifier_Nt Pixel
Feedback Amplifier_Nt Pixel
Nitin Gupta
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
SANTOSH GADEKAR
 
Slew rate, Open and closed loop configurations
Slew rate, Open and closed loop configurationsSlew rate, Open and closed loop configurations
Slew rate, Open and closed loop configurations
GOWRISHANKAR RAJU
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
Mohammed Waris Senan
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
Harsha Nair
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741
unni krishnan
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
Akshay Parmar
 
Two port network
Two port networkTwo port network
Two port network
Rajput Manthan
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
ForwardBlog Enewzletter
 
Power amplifire analog electronics
Power amplifire analog electronicsPower amplifire analog electronics
Power amplifire analog electronics
rakesh mandiya
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
Hussain K
 
Synchronous motor
Synchronous motorSynchronous motor
Synchronous motor
Sirat Mahmood
 
Negative amplifiers and its types Positive feedback and Negative feedback
Negative amplifiers and its types Positive feedback  and Negative feedbackNegative amplifiers and its types Positive feedback  and Negative feedback
Negative amplifiers and its types Positive feedback and Negative feedback
imtiazalijoono
 
Chebyshev filter
Chebyshev filterChebyshev filter
Chebyshev filter
MOHAMMAD AKRAM
 

What's hot (20)

Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
 
Phase Controlled Rectifiers
Phase Controlled RectifiersPhase Controlled Rectifiers
Phase Controlled Rectifiers
 
Power amplifier
Power amplifierPower amplifier
Power amplifier
 
Oscillators
OscillatorsOscillators
Oscillators
 
Feedback amplifiers
Feedback  amplifiersFeedback  amplifiers
Feedback amplifiers
 
Feedback Amplifier_Nt Pixel
Feedback Amplifier_Nt PixelFeedback Amplifier_Nt Pixel
Feedback Amplifier_Nt Pixel
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
 
Slew rate, Open and closed loop configurations
Slew rate, Open and closed loop configurationsSlew rate, Open and closed loop configurations
Slew rate, Open and closed loop configurations
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
 
Two port network
Two port networkTwo port network
Two port network
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
Power amplifire analog electronics
Power amplifire analog electronicsPower amplifire analog electronics
Power amplifire analog electronics
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
Synchronous motor
Synchronous motorSynchronous motor
Synchronous motor
 
Final
FinalFinal
Final
 
Negative amplifiers and its types Positive feedback and Negative feedback
Negative amplifiers and its types Positive feedback  and Negative feedbackNegative amplifiers and its types Positive feedback  and Negative feedback
Negative amplifiers and its types Positive feedback and Negative feedback
 
Chebyshev filter
Chebyshev filterChebyshev filter
Chebyshev filter
 

Similar to Feedback Amplifiers & Operational Amplifiers (OPAMP)

a159298350984.pdf
a159298350984.pdfa159298350984.pdf
a159298350984.pdf
VIT VELLORE
 
Deterimining Loop gain in Feedback Amplifiers
Deterimining Loop gain in Feedback AmplifiersDeterimining Loop gain in Feedback Amplifiers
Deterimining Loop gain in Feedback Amplifiers
Maria Antony
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdf
Johnathan41
 
Chapter 3.pdf
Chapter 3.pdfChapter 3.pdf
Chapter 3.pdf
AkliluAyele3
 
Feedbacck Amplifier
Feedbacck AmplifierFeedbacck Amplifier
Feedbacck Amplifier
Bhaskar Kumar Jha
 
Vibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateVibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plate
Open Adaptronik
 
Buck converter
Buck converterBuck converter
Buck converter
mechatronics jf
 
Electronic Circuits
Electronic CircuitsElectronic Circuits
Electronic Circuits
Jason J Pulikkottil
 
Feedback amplifier 2
Feedback amplifier 2Feedback amplifier 2
Feedback amplifier 2
VARUN KUMAR
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
AIMST University
 
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
HariNathaReddy14
 
Feedback amplifier
Feedback amplifierFeedback amplifier
Feedback amplifier
saju Sajube82
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
AIMST University
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
buttshaheemsoci77
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
SHREDHAPRASAD
 
Small signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersSmall signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiers
PRAVEENA N G
 
E ② chapter one - feedback amplifier
E ②   chapter one - feedback amplifierE ②   chapter one - feedback amplifier
E ② chapter one - feedback amplifier
haylat andu
 
Oscillator.pptx
Oscillator.pptxOscillator.pptx
Oscillator.pptx
ProfVilasShamraoPati
 
Feedback in amplifier
Feedback in amplifierFeedback in amplifier
baocaosu
baocaosubaocaosu
baocaosu
giahuy646563
 

Similar to Feedback Amplifiers & Operational Amplifiers (OPAMP) (20)

a159298350984.pdf
a159298350984.pdfa159298350984.pdf
a159298350984.pdf
 
Deterimining Loop gain in Feedback Amplifiers
Deterimining Loop gain in Feedback AmplifiersDeterimining Loop gain in Feedback Amplifiers
Deterimining Loop gain in Feedback Amplifiers
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdf
 
Chapter 3.pdf
Chapter 3.pdfChapter 3.pdf
Chapter 3.pdf
 
Feedbacck Amplifier
Feedbacck AmplifierFeedbacck Amplifier
Feedbacck Amplifier
 
Vibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateVibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plate
 
Buck converter
Buck converterBuck converter
Buck converter
 
Electronic Circuits
Electronic CircuitsElectronic Circuits
Electronic Circuits
 
Feedback amplifier 2
Feedback amplifier 2Feedback amplifier 2
Feedback amplifier 2
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
 
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII...
 
Feedback amplifier
Feedback amplifierFeedback amplifier
Feedback amplifier
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
Small signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersSmall signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiers
 
E ② chapter one - feedback amplifier
E ②   chapter one - feedback amplifierE ②   chapter one - feedback amplifier
E ② chapter one - feedback amplifier
 
Oscillator.pptx
Oscillator.pptxOscillator.pptx
Oscillator.pptx
 
Feedback in amplifier
Feedback in amplifierFeedback in amplifier
Feedback in amplifier
 
baocaosu
baocaosubaocaosu
baocaosu
 

More from Darwin Nesakumar

MG8591 - PRINCIPLES OF MANAGEMENT.pptx
MG8591 - PRINCIPLES OF MANAGEMENT.pptxMG8591 - PRINCIPLES OF MANAGEMENT.pptx
MG8591 - PRINCIPLES OF MANAGEMENT.pptx
Darwin Nesakumar
 
Digital Electronics Fundamentals
Digital Electronics Fundamentals Digital Electronics Fundamentals
Digital Electronics Fundamentals
Darwin Nesakumar
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)
Darwin Nesakumar
 
Bipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxBipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptx
Darwin Nesakumar
 
Semiconductor Diodes and Circuits
Semiconductor Diodes and CircuitsSemiconductor Diodes and Circuits
Semiconductor Diodes and Circuits
Darwin Nesakumar
 
Unit 4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
Unit  4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...Unit  4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
Unit 4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
Darwin Nesakumar
 
Contention based MAC protocols
Contention based  MAC protocolsContention based  MAC protocols
Contention based MAC protocols
Darwin Nesakumar
 
Schedule and Contention based MAC protocols
Schedule and Contention based MAC protocolsSchedule and Contention based MAC protocols
Schedule and Contention based MAC protocols
Darwin Nesakumar
 
Schedule Based MAC Protocol
Schedule Based MAC ProtocolSchedule Based MAC Protocol
Schedule Based MAC Protocol
Darwin Nesakumar
 
Sensor Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
Sensor  Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...Sensor  Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
Sensor Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
Darwin Nesakumar
 
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering CollegeDSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
Darwin Nesakumar
 
Introduction to Routing Protocols of MANET
Introduction to Routing Protocols of MANET Introduction to Routing Protocols of MANET
Introduction to Routing Protocols of MANET
Darwin Nesakumar
 
AODV - Ad hoc On-Demand Distance Vector Routing Protocols
AODV - Ad hoc On-Demand Distance Vector Routing Protocols AODV - Ad hoc On-Demand Distance Vector Routing Protocols
AODV - Ad hoc On-Demand Distance Vector Routing Protocols
Darwin Nesakumar
 
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
Darwin Nesakumar
 
Applications and issues of MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
Applications and issues of  MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...Applications and issues of  MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
Applications and issues of MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
Darwin Nesakumar
 

More from Darwin Nesakumar (15)

MG8591 - PRINCIPLES OF MANAGEMENT.pptx
MG8591 - PRINCIPLES OF MANAGEMENT.pptxMG8591 - PRINCIPLES OF MANAGEMENT.pptx
MG8591 - PRINCIPLES OF MANAGEMENT.pptx
 
Digital Electronics Fundamentals
Digital Electronics Fundamentals Digital Electronics Fundamentals
Digital Electronics Fundamentals
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)
 
Bipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxBipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptx
 
Semiconductor Diodes and Circuits
Semiconductor Diodes and CircuitsSemiconductor Diodes and Circuits
Semiconductor Diodes and Circuits
 
Unit 4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
Unit  4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...Unit  4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
Unit 4 ec8702 - ad hoc and wireless sensor networks unit -4 mr.darwin nesaku...
 
Contention based MAC protocols
Contention based  MAC protocolsContention based  MAC protocols
Contention based MAC protocols
 
Schedule and Contention based MAC protocols
Schedule and Contention based MAC protocolsSchedule and Contention based MAC protocols
Schedule and Contention based MAC protocols
 
Schedule Based MAC Protocol
Schedule Based MAC ProtocolSchedule Based MAC Protocol
Schedule Based MAC Protocol
 
Sensor Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
Sensor  Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...Sensor  Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
Sensor Networks – Introduction & Architectures by Mr.Darwin Nesakumar, AP/EC...
 
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering CollegeDSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
DSDV Protocols by Mr.Darwin Nesakumar A, AP/ECE, R.M.K.Engineering College
 
Introduction to Routing Protocols of MANET
Introduction to Routing Protocols of MANET Introduction to Routing Protocols of MANET
Introduction to Routing Protocols of MANET
 
AODV - Ad hoc On-Demand Distance Vector Routing Protocols
AODV - Ad hoc On-Demand Distance Vector Routing Protocols AODV - Ad hoc On-Demand Distance Vector Routing Protocols
AODV - Ad hoc On-Demand Distance Vector Routing Protocols
 
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
Introduction to MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE, R.M.K.Engi...
 
Applications and issues of MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
Applications and issues of  MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...Applications and issues of  MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
Applications and issues of MANET By Mr.Darwin Nesakumar A,M.E.,(P.hD) AP/ECE...
 

Recently uploaded

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 

Recently uploaded (20)

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 

Feedback Amplifiers & Operational Amplifiers (OPAMP)

  • 1. Feedback Amplifiers and Operational Amplifiers Unit IV Darwin Nesakumar A Assistant Professor/ECE RMKEC
  • 2.  Introduction  Principle of Feedback Amplifiers  Classification Feedback Amplifiers  Basic Concept of Feedback  Block Diagram of Feedback Amplifier  Properties of Feedback Amplifiers  Topologies of Feedback Amplifier  General Characteristics of Negative Feedback Amplifier  Voltage Gain Contents
  • 3.  Input Impedance  Output Impedance  Sensitivities  Bandwidth Stability  Effect of Positive Feedback  Condition of Oscillation  Barkhausen Criteria  Introduction to Integrated Circuits Contents
  • 4.  Application of Operational Amplifier  Inverting Amplifier  Non-Inverting Amplifier  Adders  Subtractors  Constant-Gain Multiplier  Voltage Follower  Comparator  Integrator  Differentiator Contents
  • 5. Introduction Fraction of the amplifier output is fed back to the input circuit make the operating point of a transistor insensitive to temperature and other variations Feedback system is mainly used in amplifiers, control systems, and etc., Feedback system has three components  Amplifier  Feedback System  Mixer or Comparator
  • 6. Principle of Feedback Amplifier Amplifier Without Feedback
  • 7. 𝑶𝒑𝒆𝒏 𝑳𝒐𝒐𝒑 𝑮𝒂𝒊𝒏 = 𝑽𝒐 𝑽𝒊 Amplifier Without Feedback Principle of Feedback Amplifier
  • 8. Amplifier With Feedback Principle of Feedback Amplifier
  • 11. Basic Concept of Feedback
  • 12. Block Diagram of Feedback Amplifier Basic Concept of Feedback 𝑉𝑆 −ac signal at the input side 𝑉𝑓 −Feedback signal 𝑉𝑑 −Difference signal 𝑉𝑂 −Output signal
  • 13. Block Diagram of Feedback Amplifier Basic Concept of Feedback
  • 14. Block Diagram of Feedback Amplifier Basic Concept of Feedback 𝐴 − Gain of the basic amplifier = 𝑉𝑂 𝑉𝑑 𝛽 − Feedback Ratio = 𝑉𝑓 𝑉𝑂 𝐴𝑓 − Feedback Amplifier = 𝑉𝑂 𝑉𝑆
  • 15. Block Diagram of Feedback Amplifier Basic Concept of Feedback 𝐴𝑓 − Feedback Amplifier = 𝑉𝑂 𝑉𝑆 Gain of Positive Feedback Amplifier Here 𝑉𝑆 𝑎𝑛𝑑 𝑉𝑓 𝑎𝑟𝑒 𝑖𝑛𝑝ℎ𝑎𝑠𝑒 𝑉𝑑= 𝑉𝑆 + 𝑉𝑓 Find 𝑽𝒅 ∵ 𝐴 = 𝑉𝑂 𝑉𝑑 𝐴𝑉𝑑 = 𝑉𝑂
  • 16. Block Diagram of Feedback Amplifier Basic Concept of Feedback Gain of Positive Feedback Amplifier 𝑉𝑑= 𝑉𝑆 + 𝑉𝑓 𝐴 𝑉𝑆 + 𝑉𝑓 = 𝑉𝑂 ∵ 𝛽 = 𝑉𝑓 𝑉𝑂 𝛽𝑉𝑂=𝑉𝑓 𝐴 𝑉𝑆 + 𝛽𝑉𝑂 = 𝑉𝑂 𝐴𝑉𝑆 + 𝐴𝛽𝑉𝑂 = 𝑉𝑂 𝐴𝑉𝑆 = 𝑉𝑂 − 𝐴𝛽𝑉𝑂 𝐴𝑉𝑆 = 1 − 𝐴𝛽 𝑉𝑂
  • 17. Block Diagram of Feedback Amplifier Basic Concept of Feedback Gain of Positive Feedback Amplifier 𝑨𝒇 = 𝑨 [𝟏−𝑨𝜷] 𝑳𝒐𝒐𝒑 𝒈𝒂𝒊𝒏 = 𝑨𝜷 𝐴𝑉𝑆 = 1 − 𝐴𝛽 𝑉𝑂 𝐴 1−𝐴𝛽 = 𝑉𝑂 𝑉𝑆 Where 𝐴𝑓= 𝑉𝑂 𝑉𝑆
  • 18. Block Diagram of Feedback Amplifier Basic Concept of Feedback 𝐴𝑓 − Feedback Amplifier = 𝑉𝑂 𝑉𝑆 Gain of Negative Feedback Amplifier Here 𝑉𝑆 𝑎𝑛𝑑 𝑉𝑓 𝑎𝑟𝑒 𝑖𝑛𝑝ℎ𝑎𝑠𝑒 𝑉𝑑= 𝑉𝑆 − 𝑉𝑓 Find 𝑽𝒅 − ∵ 𝐴 = 𝑉𝑂 𝑉𝑑 𝐴𝑉𝑑 = 𝑉𝑂
  • 19. Block Diagram of Feedback Amplifier Basic Concept of Feedback Gain of Negative Feedback Amplifier 𝑉𝑑= 𝑉𝑆 − 𝑉𝑓 𝐴 𝑉𝑆 − 𝑉𝑓 = 𝑉𝑂 ∵ 𝛽 = 𝑉𝑓 𝑉𝑂 𝛽𝑉𝑂=𝑉𝑓 𝐴 𝑉𝑆 − 𝛽𝑉𝑂 = 𝑉𝑂 𝐴𝑉𝑆 − 𝐴𝛽𝑉𝑂 = 𝑉𝑂 𝐴𝑉𝑆 = 𝑉𝑂 + 𝐴𝛽𝑉𝑂 𝐴𝑉𝑆 = 1 + 𝐴𝛽 𝑉𝑂
  • 20. Block Diagram of Feedback Amplifier Basic Concept of Feedback Gain of Negative Feedback Amplifier − 𝐴𝑉𝑆 = 1 + 𝐴𝛽 𝑉𝑂 𝐴 1+𝐴𝛽 = 𝑉𝑂 𝑉𝑆 𝑨𝒇 = 𝑨 [𝟏+𝑨𝜷] 𝑳𝒐𝒐𝒑 𝒈𝒂𝒊𝒏 = 𝑨𝜷 Where 𝐴𝑓= 𝑉𝑂 𝑉𝑆
  • 21. Properties of Negative Feedback  Gain Desensitivity  Extend the Bandwidth of the Amplifier  Reduce Nonlinear Distortion  Reduce the Effect of Noise  Control the Input and Output Impedance
  • 22. Properties of Negative Feedback  Desensitivity is defined as the reciprocal of sensitivity  voltage gain has been reduced due to feedback network Closed-loop gain of the amplifier with negative feedback is Gain Desensitivity
  • 23. Properties of Negative Feedback  Desensitivity is defined as the reciprocal of sensitivity  voltage gain has been reduced due to feedback network Closed-loop gain of the amplifier with negative feedback is Gain Desensitivity 𝐴𝑓 = 𝐴 [1+𝐴𝛽] (1) Differentiating the above equation with respect to 𝐴
  • 24. Properties of Negative Feedback  Desensitivity is defined as the reciprocal of sensitivity  voltage gain has been reduced due to feedback network Closed-loop gain of the amplifier with negative feedback is Gain Desensitivity 𝐴𝑓 = 𝐴 [1+𝐴𝛽] (1) Differentiating the above equation with respect to 𝐴 𝑑𝐴𝑓 𝑑𝐴 = 1 + 𝐴𝛽 . 1 − 𝐴 𝛽 [1 + 𝐴𝛽]2
  • 25. Properties of Negative Feedback Gain Desensitivity 𝑑𝐴𝑓 𝑑𝐴 = 1 + 𝐴𝛽 . 1 − 𝐴 𝛽 [1 + 𝐴𝛽]2 𝑑𝐴𝑓 𝑑𝐴 = 1 + 𝐴𝛽 − 𝐴𝛽 [1 + 𝐴𝛽]2 𝑑𝐴𝑓 𝑑𝐴 = 1 [1+𝐴𝛽]2 (2) 𝑑𝐴𝑓 = 𝑑𝐴 [1 + 𝐴𝛽]2 Dividing both sides by 𝐴𝑓,
  • 26. Properties of Negative Feedback Gain Desensitivity Dividing both sides by 𝐴𝑓, 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 [1+𝐴𝛽]2 × 1 𝐴𝑓 (3) Substitute equation (1) in (3) 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 [1 + 𝐴𝛽]2 × 1 + 𝐴𝛽 𝐴 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 1 + 𝐴𝛽 × 1 𝐴
  • 27. Properties of Negative Feedback Gain Desensitivity 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 1 + 𝐴𝛽 × 1 𝐴 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 𝐴 1 + 𝐴𝛽 𝒅𝑨𝒇 𝑨𝒇 represents the fractional change in amplifier voltage gain with feedback 𝒅𝑨 𝑨 denotes the fractional change in voltage gain without feedback 𝟏 𝟏+𝑨𝜷 is called sensitivity and 𝟏 + 𝑨𝜷 called as Desensitivity factor
  • 28. Properties of Negative Feedback Gain Desensitivity 𝑑𝐴𝑓 𝐴𝑓 = 𝑑𝐴 𝐴 1 + 𝐴𝛽 𝑑𝐴𝑓 𝐴𝑓 𝑑𝐴 𝐴 = 1 𝐷 = 1 1 + 𝐴𝛽 Stability of amplifier increases with increase in Desensitivity.
  • 29. Extend the Bandwidth of the Amplifier Amplifier bandwidth is a function of feedback 𝐵𝑊 𝑖𝑠 bandwidth of amplifier without feedback 𝐵𝑊′ is bandwidth of amplifier with feedback 𝛽 is feedback ratio. 𝐵𝑊′
  • 30. Extend the Bandwidth of the Amplifier 𝐵𝑊′ Product of voltage gain and bandwidth of an amplifier without feedback and with feedback remains the same 𝐴𝑣 ′ × 𝐵𝑊′ = 𝐴𝑣 × 𝐵𝑊 𝑨𝒗 ′ 𝒇𝟐 ′ − 𝒇𝟏 ′ = 𝑨𝒗 𝒇𝟐 − 𝒇𝟏 𝑩𝑾𝒇 = 𝐁𝐖(𝟏 +𝛃𝐀)
  • 31. Reduction of Noise 𝑉𝑂 = 𝐴1 𝑉𝑆 + 𝑉 𝑛 Find output voltage 𝑽𝑶
  • 32. Reduction of Noise Apply Superposition Theorem, Find 𝑽𝑶𝟏 𝑉𝑂1 = 𝑉𝑆 𝐴1𝐴2 1 + 𝐴1𝐴2𝛽 𝑉𝑛=0
  • 33. Reduction of Noise Apply Superposition Theorem, Find 𝑽𝑶𝟐 𝑉𝑂2 = 𝑉 𝑛 𝐴1 1 + 𝐴1𝐴2𝛽 𝑉𝑆=0
  • 34. Reduction of Noise Overall output voltage 𝑉𝑂 = 𝑉𝑂1 + 𝑉𝑂2 𝑽𝑶 = 𝑽𝑺 𝑨𝟏𝑨𝟐 𝟏+𝑨𝟏𝑨𝟐𝜷 + 𝑽𝒏 𝑨𝟏 𝟏+𝑨𝟏𝑨𝟐𝜷 Overall Signal to Noise ratio is 𝑆 𝑁 = 𝑉𝑆 𝐴1𝐴2 1 + 𝐴1𝐴2𝛽 𝑉 𝑛 𝐴1 1 + 𝐴1𝐴2𝛽
  • 35. Reduction of Noise Overall Signal to Noise ratio is 𝑆 𝑁 = 𝑉𝑆 𝐴1𝐴2 1 + 𝐴1𝐴2𝛽 𝑉 𝑛 𝐴1 1 + 𝐴1𝐴2𝛽 𝑺 𝑵 = 𝑽𝑺 𝑽𝒏 𝑨𝟐
  • 36. Reduce Nonlinear Distortion  Non-linear distortion occurs due to active devices  Occurs additional frequency components along with fundamental frequency called hormonic distortion  Negative feedback reduces the non linear distortion by the factor of 𝑫 = 𝟏 + 𝑨𝜷  The distortion with feedback can be written as, Df = D 1 + Aβ
  • 37. Control the Input and Output Impedance 𝑉𝑖 𝜷 𝑉𝑂
  • 38. Control the Input and Output Impedance 𝑉𝑖 𝜷 𝑉𝑂 𝑽𝒊 − 𝜷𝑽𝑶 𝜷𝑽𝑶 Find 𝑽𝑶 𝑉𝑂 = 𝐴𝑣 𝑉𝑖 − 𝛽𝑉𝑂 𝑉𝑖 − 𝛽𝑉𝑂= 𝑖1𝑍𝑖𝑛 𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝑉𝑂 𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝐴𝑣 𝑉𝑖 − 𝛽𝑉𝑂 Substitute 𝑉𝑂 in 𝑉𝑖 𝑉𝑖 = 𝑖1𝑍𝑖𝑛 + 𝛽𝐴𝑣𝑖1𝑍𝑖𝑛 𝑉𝑖 = 𝑖1𝑍𝑖𝑛 1 + 𝛽𝐴𝑣 𝑉𝑖 𝑖1 = 𝑍𝑖𝑛 1 + 𝛽𝐴𝑣
  • 39. Control the Input and Output Impedance 𝑉𝑖 𝜷 𝑉𝑂 𝑽𝒊 − 𝜷𝑽𝑶 𝜷𝑽𝑶 𝑉𝑖 𝑖1 = 𝑍𝑖𝑛 1 + 𝛽𝐴𝑣 Here 𝑉𝑖 𝑖1 = 𝑍𝑖𝑛 ′ 𝒁𝒊𝒏 ′ = 𝒁𝒊𝒏 𝟏 + 𝜷𝑨𝒗
  • 40. Control the Input and Output Impedance 𝑉𝑂 𝑉𝑂 ′ 𝑉𝑂 = 𝑉𝑂 ′ + 𝑖𝑜𝑍𝑜𝑢𝑡 𝑉𝑂 = 𝐴(𝑉𝑖 − 𝛽𝑉𝑂) + 𝑖𝑜𝑍𝑜𝑢𝑡 𝑉𝑂 + 𝐴𝛽𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡 ∵ 𝑉𝑖= 0 𝑽𝟎 𝑽𝟎 , 𝑉𝑂 = 𝐴𝑉𝑖 − 𝐴𝛽𝑉𝑂 + 𝑖𝑜𝑍𝑜𝑢𝑡 ∵ 𝐴 = 𝑉𝑂 ′ / (𝑉𝑖−𝛽𝑉𝑂)
  • 41. Control the Input and Output Impedance 𝑉𝑂 𝑉𝑂 ′ 𝑉𝑂 + 𝐴𝛽𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡 1 + 𝐴𝛽 𝑉𝑂 = 𝑖𝑜𝑍𝑜𝑢𝑡 𝑉𝑂 𝑖𝑜 = 𝑍𝑜𝑢𝑡 1 + 𝐴𝛽 Here 𝑉𝑂 𝑖𝑂 = 𝑍𝑜𝑢𝑡 ′ 𝒁𝒐𝒖𝒕 ′ = 𝒁𝒐𝒖𝒕 𝟏 + 𝑨𝜷 1 + Aβ > 1,output impedance of amplifier decreases by a factor(1 + Aβ)
  • 42. Topologies of Feedback Amplifier  Voltage-series Feedback or series-shunt feedback  Voltage-shunt Feedback or shunt-shunt feedback  Current-series Feedback or series-series feedback  Current-shunt Feedback or shunt-series feedback Both voltage and current can be fed back to the input either in series or parallel
  • 43. Topologies of Feedback Amplifier  Voltage-series Feedback or series-shunt feedback Both voltage and current can be fed back to the input either in series or parallel Method of Sampling Method of Mixing Series-Shunt feedback Method of Mixing Method of Sampling
  • 45. Voltage-series Feedback (i) Gain of the Amplifier (ii) Input Impedance with Feedback (iii) Output Impedance with Feedback Parameters
  • 46. Voltage-series Feedback Gain of the Amplifier 𝑰𝒊 𝑰𝟎
  • 47. Voltage-series Feedback Gain of the Amplifier If there is no feedback (𝑉𝑓 = 0), the voltage gain of the amplifier 𝐴 = 𝑉0 𝑉𝑖 If the feedback signal 𝑽𝒇 is connected in series 𝑉𝑖 = 𝑉𝑆 − 𝑉𝑓 Find output from the feedback network 𝑉𝑓 = 𝛽𝑉0
  • 48. Voltage-series Feedback Gain of the Amplifier Find output Voltage 𝑉0 𝑉0 = 𝐴𝑉𝑖 𝑉0 = 𝐴 𝑉𝑆 − 𝑉𝑓 ⇒ 𝐴 𝑉𝑆 − 𝛽𝑉0 𝑉0 = 𝐴 𝑉𝑆 − 𝐴𝛽𝑉0 ⇒ 𝑉0 + 𝐴𝛽𝑉0 = 𝐴 𝑉𝑆 𝑉0 1 + 𝐴𝛽 = 𝐴 𝑉𝑆 𝑉0 𝑉𝑆 = 𝐴 1 + 𝐴𝛽 𝑨𝒇 = 𝑨 𝟏 + 𝑨𝜷
  • 49. Voltage-series Feedback Input Impedance with Feedback 𝑰𝒊 𝑰𝟎
  • 50. Voltage-series Feedback Input Impedance with Feedback Apply KVL to the input side 𝑉 𝑠 = 𝑍𝑖𝐼𝑖 + 𝑉𝑓 Substitute 𝑉𝑓 = 𝛽𝑉0 𝑉 𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝑉0 𝑉 𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝐴𝑉𝑖 ∵ 𝑉0 = 𝐴𝑉𝑖 ∵ 𝑉𝑖 = 𝐼𝑖𝑍𝑖 𝑉 𝑠 = 𝑍𝑖𝐼𝑖 + 𝛽𝐴𝐼𝑖𝑍𝑖 1 + 𝛽𝐴 𝐼𝑖𝑍𝑖 = 𝑉𝑆 𝒁𝒊 𝒁𝒐 𝑉𝑆 𝐼𝑖 = 𝑍𝑖𝑓 𝑍𝑜𝑓 𝑍𝑜𝑓 ′
  • 51. Voltage-series Feedback Input Impedance with Feedback 𝒁𝒊 𝒁𝒐 1 + 𝛽𝐴 𝐼𝑖𝑍𝑖 = 𝑉𝑆 1 + 𝛽𝐴 𝑍𝑖 = 𝑉𝑆 𝐼𝑖 ∵ 𝑉𝑆 𝐼𝑖 = 𝑍𝑖𝑓 𝒁𝒊𝒇 = 𝟏 + 𝜷𝑨 𝒁𝒊 Voltage-series feedback, the input resistance increases by a factor (1 + 𝛽𝐴V) 𝑉𝑆 𝐼𝑖 = 𝑍𝑖𝑓
  • 52. Voltage-series Feedback Output Impedance with Feedback Applying KVL to the output loop 𝑭𝒊𝒏𝒅 𝑽𝟎 𝑉0 = 𝐴𝑉𝑖 + 𝐼0𝑍0 Substitute 𝑉𝑖 𝑉𝑖 = 𝑉𝑆 − 𝑉𝑓 To find output impedance, short circuit 𝑉 𝑠 𝑉𝑖 = −𝑉𝑓 𝑉0 = −𝐴𝑉𝑓 + 𝐼0𝑍0 𝑉 𝑜 𝒁𝒐𝒖𝒕
  • 53. Voltage-series Feedback Output Impedance with Feedback 𝑉0 = −𝐴𝑉𝑓 + 𝐼0𝑍0 𝑉0 = −𝐴𝛽𝑉0 + 𝐼0𝑍0 𝑉0 + 𝐴𝛽𝑉0 = 𝐼0𝑍0 1 + 𝐴𝛽 𝑉0 = 𝐼0𝑍0 𝑉0 𝐼0 = 𝑍0 1 + 𝐴𝛽 𝒁𝟎𝒇 = 𝒁𝟎 𝟏+𝑨𝜷 𝑉 𝑜 𝒁𝒐𝒖𝒕
  • 55. Voltage-shunt Feedback (i) Gain of the Amplifier (ii) Input Impedance with Feedback (iii) Output Impedance with Feedback Parameters
  • 56. Voltage-shunt Feedback Gain of the Amplifier If there is no feedback (𝑉𝑓 = 0), the voltage gain of the amplifier 𝐴 = 𝑉0 𝐼𝑖 If the feedback signal 𝑰𝒇 is connected in parallel Find the input current 𝐼𝑠 Then the overall gain of the amplifier is 𝐴𝑓 = 𝑉0 𝐼𝑠
  • 57. Voltage-Shunt Feedback Gain of the Amplifier Find output from the feedback network 𝐼𝑓 = 𝛽𝑉0 𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓 overall gain of the amplifier is, 𝐴𝑓 = 𝑉0 𝐼𝑠 ⇒ 𝑉0 𝐼𝑖+𝐼𝑓 From the circuit we know that , 𝐼𝑖 = 𝑉0 𝐴
  • 58. Voltage-Shunt Feedback Gain of the Amplifier overall gain of the amplifier is, 𝐴𝑓 = 𝑉0 𝐼𝑖+𝐼𝑓 𝐴𝑓 = 𝑉0 𝑉0 𝐴 +𝛽𝑉0 𝐴𝑓 = 𝐴𝑉0 𝑉0+𝐴𝛽𝑉0 𝐴𝑓 = 𝐴 𝑉0 (1+𝐴𝛽)𝑉0 𝑨𝒇 = 𝑨 (𝟏+𝑨𝜷)
  • 59. Voltage-shunt Feedback Input Impedance with Feedback
  • 60. Voltage-shunt Feedback Input Impedance with Feedback 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑠 Substitute 𝐼𝑠 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 + 𝐼𝑓 Find output from the feedback network 𝐼𝑓 = 𝛽𝑉0 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 + 𝛽𝑉0
  • 61. Voltage-shunt Feedback Input Impedance with Feedback 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 + 𝛽𝑉0 Input impedance can be obtained by dividin equation by 𝐼𝑖 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 𝐼𝑖 𝐼𝑖 + 𝛽𝑉0 𝐼𝑖 𝒁𝒊𝒇 = 𝒁𝒊 𝟏 + 𝑨𝜷
  • 62. Voltage-shunt Feedback Output Impedance with Feedback Applying KVL to the output loop 𝑭𝒊𝒏𝒅 𝑽𝟎 𝑉0 = 𝐴𝐼𝑖 + 𝐼0𝑍0 𝑰𝟎 = 𝑉0 − 𝐴𝐼𝑖 𝑍0 To find output impedance, open circuit 𝐼𝑠 𝐼𝑖 = −𝐼𝑓 𝐼0 ∵ 𝐼𝑖 = 𝑉0 𝐴 ∵ 𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓 From the circuit we know that,
  • 63. Voltage-shunt Feedback Output Impedance with Feedback 𝒁𝒐𝒇 = 𝒁𝟎 𝟏+𝑨𝜷 𝐼0 𝐼𝑓 = 𝛽𝑉0 𝐼𝑖 = −𝐼𝑓 ⇒ −𝛽𝑉0 𝐼0 = 𝑉0 − (−𝐴𝛽𝑉0) 𝑍0 𝐼0 = 𝑉0 + 𝐴𝛽𝑉0 𝑍0 𝐼0 = (𝟏 + 𝐴𝛽)𝑉0 𝑍0
  • 64. Voltage-shunt Feedback Output Impedance with Feedback 𝒁𝒐𝒇 = 𝒁𝟎 𝟏+𝑨𝜷 𝐼0 𝐼0 = (𝟏 + 𝐴𝛽)𝑉0 𝑍0 𝐼0 𝑉0 = (𝟏 + 𝐴𝛽) 𝑍0 ∵ 𝑍0𝑓 = 𝑉0 𝐼0
  • 66. Current-series Feedback (i) Gain of the Amplifier (ii) Input Impedance with Feedback (iii) Output Impedance with Feedback Parameters
  • 67. Current-series Feedback Gain of the Amplifier If there is no feedback (𝑉𝑓 = 0), the voltage gain of the amplifier 𝐴 = 𝐼0 𝑉𝑖 If the feedback signal 𝑽𝒇 is connected in series Find the input voltage at the amplifier 𝑉𝑖 Then the overall gain of the amplifier is 𝐴𝑓 = 𝐼0 𝑉 𝑠
  • 68. Current-Series Feedback Gain of the Amplifier 𝑉𝑓 = 𝛽𝐼0 𝑉𝑖 = 𝑉 𝑠 − 𝑉𝑓 From the circuit we know that , 𝑉𝑖 = 𝐼0 𝐴 Find output from the feedback network 𝑉𝑖 = 𝑉 𝑠 − 𝛽𝐼0 𝐼0 𝐴 = 𝑉 𝑠 − 𝛽𝐼0
  • 69. Current-Series Feedback Gain of the Amplifier overall gain of the amplifier is, 𝐼0 𝐴 = 𝑉 𝑠 − 𝛽𝐼0 𝐼0 𝐴 + 𝛽𝐼0 = 𝑉 𝑠 𝐼0 + 𝐴𝛽𝐼0 𝐴 = 𝑉 𝑠 1 + 𝐴𝛽 𝐼0 𝐴 = 𝑉 𝑠 1 + 𝐴𝛽 𝐴 = 𝑉 𝑠 𝐼0
  • 70. Current-Series Feedback Gain of the Amplifier overall gain of the amplifier is, 𝐴𝑓 = 𝐼0 𝑉𝑠 = 𝐴 (1+𝐴𝛽) 1 + 𝐴𝛽 𝐴 = 𝑉 𝑠 𝐼0 𝑨𝒇 = 𝑨 (𝟏+𝑨𝜷)
  • 71. Current-Series Feedback Input Impedance with Feedback
  • 72. Current-series Feedback Input impedance of the Amplifier 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰
  • 73. Current-series Feedback Input impedance of the Amplifier Input Impedance with feedback is given as 𝑍𝑖𝑓 = 𝑉 𝑠 𝐼𝑖 𝑉 𝑠 − 𝐼𝑖𝑍𝑖 − 𝑉𝑓 = 0 Apply KVL to the input loop, 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 + 𝑉𝑓 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐼0 The output current is given by ∵ 𝑉𝑓 = 𝛽𝐼0 𝐼0 = 𝐴𝑉𝑖 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰
  • 74. Current-series Feedback Input impedance of the Amplifier 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐼0 Substitute 𝐼0 value 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐴𝑉𝑖 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 + 𝛽𝐴𝐼𝑖𝑍𝑖 ∵ 𝑉𝑖 = 𝐼𝑖𝑍𝑖 𝑉 𝑠 = 𝐼𝑖𝑍𝑖 1 + 𝛽𝐴 𝑉 𝑠 𝐼𝑖 = 𝑍𝑖 1 + 𝛽𝐴 𝑍𝑖𝑓 = 𝑍𝑖 1 + 𝛽𝐴 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰
  • 75. Current-series Feedback Input impedance of the Amplifier 𝒁𝒊𝒇 = 𝒁𝒊 𝟏 + 𝜷𝑨 Input resistance increases by a factor of (1 + 𝑨𝛽) 𝑉 𝑠 𝐼𝑖 = 𝑍𝑖 1 + 𝛽𝐴 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰
  • 76. Current-series Feedback Output impedance of the Amplifie 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰 Applying KCL to the output node 𝐴𝑉𝑖 + 𝐼 = 𝐼0 Input voltage is given by, 𝑉𝑠 − 𝑉𝑖 − 𝑉𝑓 = 0 ∵ 𝑉 𝑠 = 0 𝑉𝑖 = 𝑉𝑓 ∵ 𝑉𝑓 = 𝛽𝐼0 𝑉𝑖 = 𝛽𝐼0 or 𝑉𝑖 = 𝛽𝐼 Substitute 𝑉𝑖 value 𝐼𝐴𝛽 + 𝐼 = 𝐼0
  • 77. Current-series Feedback Output impedance of the Amplifie 𝒁𝑰𝑭 = 𝑽𝒔 𝑰𝒊 𝑰𝟎 𝑰 𝐼𝐴𝛽 + 𝐼 = 𝐼0 𝐼 𝐴𝛽 + 1 = 𝐼0 𝐼 1 + 𝐴𝛽 = 𝑉 𝑍0 𝑍0 1 + 𝐴𝛽 = 𝑉 𝐼 𝒁𝒐 𝟏 + 𝑨𝜷 = 𝒁𝒐𝒇 Output resistance increase by a factor (𝟏 + 𝑨𝜷).
  • 78. Current-shunt Feedback (i) Gain of the Amplifier (ii) Input Impedance with Feedback (iii) Output Impedance with Feedback Parameters
  • 80. Current-shunt Feedback Gain of the Amplifier with feedback If there is no feedback (𝑉𝑓 = 0), the voltage gain of the amplifier 𝐴 = 𝐼0 𝐼𝑖 If the feedback network is connected in parallel wi th input, overall gain of the feedback amplifier, 𝐴𝑓 = 𝐼0 𝐼𝑠 Find 𝑰𝒔
  • 81. Current-shunt Feedback Gain of the Amplifier with feedback Find 𝑰𝒔 𝐼𝑠 = 𝐼𝑖 + 𝐼𝑓 𝐴𝑓 = 𝐼0 𝐼𝑖 + 𝐼𝑓 Find output from the feedback networks 𝐼𝑓 = 𝛽𝐼0 Find Input current to the amplifier 𝐼𝑖 = 𝐼0 𝐴
  • 82. Current-shunt Feedback Gain of the Amplifier with feedback 𝐴𝑓 = 𝐼0 𝐼0 𝐴 + 𝛽𝐼0 Substitute 𝐼𝑖 𝑎𝑛𝑑 𝐼𝑓 in 𝐴𝑓 𝐴𝑓 = 𝐴𝐼0 𝐼0 + 𝐴𝛽𝐼0 ⇒ 𝐴𝐼0 𝐼0 1 + 𝐴𝛽 𝑨𝒇 = 𝑨 𝟏 + 𝑨𝜷
  • 83. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 Input impedance with feedback is 𝑽𝒊 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑠
  • 84. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 Applying KCL to the input node 𝐼𝑠 = 𝐼𝑓 + 𝐼𝑖 Substitute 𝐼𝑓 in 𝐼𝑠 𝐼𝑠 = 𝛽𝐼0 + 𝐼𝑖 𝑽𝒊
  • 85. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 Applying KCL to the input node 𝐼𝑠 = 𝐼𝑓 + 𝐼𝑖 Substitute 𝐼𝑓 in 𝐼𝑠 𝐼𝑠 = 𝛽𝐼0 + 𝐼𝑖 𝑽𝒊 Find output current 𝑰𝟎 with respect to amplifier
  • 86. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 𝑽𝒊 Find output current 𝑰𝟎 with respect to amplifier 𝐼0 = 𝐴𝑖𝐼𝑖 𝐼𝑠 = 𝛽𝐴𝑖𝐼𝑖 + 𝐼𝑖 𝐼𝑠 = 𝐼𝑖 𝛽𝐴𝑖 + 1
  • 87. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝐼𝑠 = 𝐼𝑖 𝛽𝐴𝑖 + 1 Input impedance with feedback is 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑠 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 𝛽𝐴𝑖 + 1
  • 88. Current-Shunt Feedback Input Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝑍𝑖𝑓 = 𝑉𝑖 𝐼𝑖 𝛽𝐴𝑖 + 1 ∵ 𝑉𝑖 = 𝑍𝑖𝐼𝑖 𝑍𝑖𝑓 = 𝑍𝑖𝐼𝑖 𝐼𝑖 𝛽𝐴𝑖 + 1 𝒁𝒊𝒇 = 𝒁𝒊 𝜷𝑨𝒊 + 𝟏
  • 89. Current-Shunt Feedback Output Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝑽𝒐 Output impedance of the circuit is, 𝑍𝑜𝑓 = 𝑉 𝑜 𝐼𝑜 Applying KCL to the output node 𝐴𝑖𝐼𝑖 + 𝑉 𝑜 𝑍𝑜 = 𝐼𝑜
  • 90. Current-Shunt Feedback Output Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝑽𝒐 𝐴𝑖𝐼𝑖 + 𝑉 𝑜 𝑍𝑜 = 𝐼𝑜 we know that, 𝐼𝑠= 𝐼𝑓 + 𝐼𝑖 𝐼𝑓 = −𝐼𝑖 and 𝐼𝑖 = −𝛽𝐼𝑜 𝐴𝑖 −𝛽𝐼𝑜 + 𝑉 𝑜 𝑍𝑜 = 𝐼𝑜
  • 91. Current-Shunt Feedback Output Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝑽𝒐 𝐴𝑖 −𝛽𝐼𝑜 + 𝑉 𝑜 𝑍𝑜 = 𝐼𝑜 𝑉𝑜 𝑍𝑜 = 𝐼𝑜 + 𝐴𝑖𝛽𝐼𝑜 𝑉 𝑜 𝑍𝑜 = 1 + 𝐴𝑖𝛽 𝐼𝑜
  • 92. Current-Shunt Feedback Output Impedance with Feedback 𝑰𝒇 𝑽𝒊 𝑽𝒐 𝑉 𝑜 𝑍𝑜 = 1 + 𝐴𝑖𝛽 𝐼𝑜 𝑉𝑜 𝐼𝑜 = 1 + 𝐴𝑖𝛽 𝑍𝑜 𝒁𝒐𝒇 = 𝟏 + 𝑨𝒊𝜷 𝒁𝒐
  • 93. Operational Amplifier(OP-AMP) Introduction  Low cost integrating circuit consisting of Transistors Resistors Capacitors  Able to amplify a signal due to an external power supply  Op-Amp is a very high gain differential amplifier with very high input impedance (in terms of Mega Ω) and a low output impedance (less than 100Ω)
  • 94.  used in analog computers to perform mathematical operations to solve differential and integral equations.  Op-amps are linear integrated circuits (ICs) that use relatively low dc supply voltages and are reliable and inexpensive Operational Amplifier(OP-AMP) Introduction
  • 95. Applications of Op-Amps  Simple Amplifiers  Sign Changer  Summers  Comparators  Integrators  Differentiators  Analog to Digital Converters
  • 96. Block Diagram of Op-Amps
  • 98. Pin Configuration of Op-Amps 8 Pin DIP (Dual Inline Package) Package
  • 99. Pin Configuration of Op-Amps 8 Metal CAN package
  • 101. Characteristics of an Ideal Op-Amp  Infinite voltage gain  Infinite input resistance  Zero output resistance  Zero output voltage when input is zero  Infinite Common Mode Rejection Ratio (CMRR)  Gain is independent of input frequency  Infinite slew rate (Slew rate is defined as the maximum rate of change of an op amps output voltage, and is given in units of volts per microsecond.)
  • 102. Input Signal Modes Single-ended differential mode Double-ended differential mode
  • 104. Op-Amp Parameters Common-Mode Rejection Ratio Common-Mode Rejection Ratio (CMRR) = 𝑨𝒅 𝑨𝑪𝑴 Common-Mode Rejection Ratio (CMRR) = 𝟐𝟎𝒍𝒐𝒈 𝑨𝒅 𝑨𝑪𝑴 in dB
  • 105. Inverting Amplifier If there is no current at the inverting input, then 𝐼𝑓 = 𝐼𝑖𝑛 Since inverting terminal is virtual ground, then 𝐼𝑖𝑛 = 𝑉𝑖𝑛−𝑉𝐴 𝑅𝑖 ∵ 𝑉𝐴 = 0
  • 106. Inverting Amplifier 𝐼𝑖𝑛 = 𝑉𝑖𝑛 𝑅𝑖 Find current through feedback 𝑅𝑓 𝐼𝑓 = 𝑉𝐴 − 𝑉𝑜𝑢𝑡 𝑅𝑓 Since 𝐼𝑓 = 𝐼𝑖𝑛 −𝑉𝑜𝑢𝑡 𝑅𝑓 = 𝑉𝑖𝑛 𝑅𝑖 𝑽𝒐𝒖𝒕 𝑽𝒊𝒏 = −𝑹𝒇 𝑹𝒊 Closed Loop Gain 𝑨𝒄𝒍(𝑰) = −𝑹𝒇 𝑹𝒊 𝐼𝑓 = −𝑉𝑜𝑢𝑡 𝑅𝑓 𝐼𝑖𝑛 = 𝑉𝑖𝑛−𝑉𝐴 𝑅𝑖 ∵ 𝑉𝐴 = 0
  • 107. Inverting Amplifier- Input & Output Impedance Input Impedance 𝑍𝑖 = 𝑅𝑖
  • 109. Non-Inverting Amplifier Current through 𝑅𝑖 = Current through 𝑅𝑓 𝑉𝑖𝑛 − 0 𝑅𝑖 = 𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛 𝑅𝑓 𝑉𝑖𝑛𝑅𝑓 = 𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛 𝑅𝑖 𝑉𝑖𝑛𝑅𝑓 = 𝑉𝑜𝑢𝑡𝑅𝑖 − 𝑉𝑖𝑛𝑅𝑖 𝑉𝑖𝑛 𝑅𝑓 + 𝑅𝑖 = 𝑉𝑜𝑢𝑡𝑅𝑖
  • 110. Non-Inverting Amplifier 𝑉𝑖𝑛 𝑅𝑓 + 𝑅𝑖 = 𝑉𝑜𝑢𝑡𝑅𝑖 𝑅𝑓 + 𝑅𝑖 𝑅𝑖 = 𝑉𝑜𝑢𝑡 𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑉𝑖𝑛 = 1 + 𝑅𝑓 𝑅𝑖 Closed Loop Gain 𝑨𝒄𝒍 = 𝟏 + 𝑹𝒇 𝑹𝒊
  • 111. Voltage Follower 𝑨𝒄𝒍 = 𝟏 + 𝟎 𝑹𝒊 𝑨𝒄𝒍 = 𝟏 𝐴𝑐𝑙 = 1 + 𝑅𝑓 𝑅𝑖
  • 112. Adder or Summing Amplifier Infinite impedance and virtual ground 𝐼𝑓 = 𝐼1 + 𝐼2 + 𝐼3 When all the three inputs are applied the output voltage is 𝑉𝑜𝑢𝑡 = −𝐼𝑓𝑅𝑓 𝑉𝑜𝑢𝑡 = − 𝐼1 + 𝐼2 + 𝐼3 𝑅𝑓 = − 𝑉1 𝑅1 + 𝑉2 𝑅2 + 𝑉3 𝑅3 𝑅𝑓 If 𝑅1 = 𝑅2 = 𝑅3 = 𝑅, then
  • 113. Adder or Summing Amplifier If 𝑅1 = 𝑅2 = 𝑅3 = 𝑅, then 𝑽𝒐𝒖𝒕 = − 𝑹𝒇 𝑹 𝑽𝟏 + 𝑽𝟐 + 𝑽𝟑 If the gain of the amplifier is unity then, 𝑅1 = 𝑅2 = 𝑅3 = 𝑅𝑓 𝑽𝒐𝒖𝒕 = − 𝑽𝟏 + 𝑽𝟐 + 𝑽𝟑
  • 114. Subtractor When V2 is zero 𝑉𝑜1 = −𝑅𝑓 𝑅1 𝑉1 (1) When 𝑽𝟏 is zero 𝑉𝐵 = 𝑉2 𝑅𝑓 𝑅2+𝑅𝑓 (2) Potential of node A is same as B i.e. VA = VB 𝐼 = 𝑉𝐴 − 𝑉1 𝑅1 ⇒ 𝐼 = 𝑉𝐴 𝑅1 𝐼 = 𝑉𝐴 𝑅1 = 𝑉𝐵 𝑅1 (3) Ref : Superposition Theorem
  • 115. Subtractor 𝐼 = 𝑉𝐴 𝑅1 = 𝑉𝐵 𝑅1 (3) Find the current at feedback path 𝐼 = 𝑉𝑜2−𝑉𝐴 𝑅𝑓 = 𝑉𝑜2−𝑉𝐵 𝑅𝑓 (4) Equating the equations (3) and (4), 𝑉𝑜2−𝑉𝐵 𝑅𝑓 = 𝑉𝐵 𝑅1 𝑉𝑜2 𝑅𝑓 = 𝑉𝐵 𝑅1 + 𝑉𝐵 𝑅𝑓 𝑉𝑜2 = 𝑉𝐵 1 𝑅1 + 1 𝑅𝑓 𝑅𝑓 𝑉𝑜2 = 𝑉𝐵 𝑅𝑓 𝑅1 + 1
  • 116. Subtractor 𝑉𝑜2 = 𝑉𝐵 1 𝑅1 + 1 𝑅𝑓 𝑅𝑓 𝑉𝑜2 = 𝑉𝐵 𝑅𝑓 𝑅1 + 1 Substitute equation (2) in (5) 𝑉𝑜2 = 𝑉2 𝑅𝑓 𝑅2+𝑅𝑓 𝑅𝑓 𝑅1 + 1 Hence using Superposition principle 𝑉 𝑜 = 𝑉𝑜1 + 𝑉𝑜2 𝑉 𝑜 = −𝑅𝑓 𝑅1 𝑉1 + 𝑉2 𝑅𝑓 𝑅2+𝑅𝑓 𝑅𝑓 𝑅1 + 1
  • 117. Subtractor 𝑉 𝑜 = 𝑉𝑜1 + 𝑉𝑜2 𝑉 𝑜 = −𝑅𝑓 𝑅1 𝑉1 + 𝑉2 𝑅𝑓 𝑅2+𝑅𝑓 𝑅𝑓 𝑅1 + 1 If the resistances are selected as R1 = R2 𝑉 𝑜 = −𝑅𝑓 𝑅1 𝑉1 + 𝑉2 𝑅𝑓 𝑅1+𝑅𝑓 𝑅𝑓 𝑅1 + 1 𝑉 𝑜 = −𝑅𝑓 𝑅1 𝑉1 + 𝑉2 𝑅𝑓 𝑅1+𝑅𝑓 𝑅1+𝑅𝑓 𝑅1 𝑉 𝑜 = −𝑅𝑓 𝑅1 𝑉1 + 𝑉2 𝑅𝑓 𝑅1 𝑽𝒐 = 𝑹𝒇 𝑹𝟏 𝑽𝟐 − 𝑽𝟏
  • 118. Subtractor 𝑽𝒐 = 𝑹𝒇 𝑹𝟏 𝑽𝟐 − 𝑽𝟏 Output voltage is proportional to the difference between the two input voltages If 𝑅1 = 𝑅2 = 𝑅𝐹 is selected 𝑽𝒐 = 𝑽𝟐 − 𝑽𝟏
  • 119. Integrator Because of virtual ground and infinite impedance 𝑖 = 𝑖𝑐 𝑖 = 𝑉𝑖−0 𝑅 = 𝑉𝑖 𝑅 (1)
  • 120. Integrator voltage across capacitor is 𝑉 𝑐 = 0 − 𝑉 𝑜 𝑉 𝑐 = −𝑉 𝑜 𝑖𝑐 = 𝐶𝑑𝑉 𝑐 𝑑𝑡
  • 121. Integrator 𝑖𝑐 = 𝐶𝑑𝑉 𝑐 𝑑𝑡 𝑖𝑐 = − 𝐶𝑑𝑉𝑜 𝑑𝑡 (2) From equations (1) and (2) 𝑉𝑖 𝑅 = − 𝐶𝑑𝑉 𝑜 𝑑𝑡
  • 122. Integrator 𝑉𝑖 𝑅 = − 𝐶𝑑𝑉 𝑜 𝑑𝑡 𝑑𝑉𝑜 𝑑𝑡 = − 𝑉𝑖 𝑅𝐶 Take integration on both sides 𝑽𝒐 = − 𝟏 𝑹𝑪 𝟎 𝒕 𝑽𝒕 𝒅𝒕 scale multiplier 𝟏 𝑹𝑪