SlideShare a Scribd company logo
(1) Area Below x axis
                        Areas
           y
                                    y = f(x)




                                x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x


 f  x dx  0
 b

a
(1) Area Below x axis
                               Areas
             y
                                           y = f(x)


                          A1


                      a        b       x


   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                               Areas
             y
                                                y = f(x)


                          A1

                                        c   x
                      a        b   A2

   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b


 A1   f  x dx
              b

             a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b

                                             A2    f  x dx
                                                         c
 A1   f  x dx
              b

             a                                           b
Area below x axis is given by;
Area below x axis is given by;

                 A    f  x dx
                        c

                        b
Area below x axis is given by;

                 A    f  x dx
                         c

                         b

                        OR

                         f  x dx
                         c
                    
                        b
Area below x axis is given by;

                 A    f  x dx
                            c

                         b

                        OR

                         f  x dx
                            c
                    
                        b


                            OR
                      f  x dx
                        b

                        c
e.g. (i)        y       y  x3




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                    x 1  x 0
                                     1 40 1 41
                                     4        4
           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                    x 1  x 0
                                      1 40 1 41
                                      4       4
           -1       1   x             1
                                      4
                                              4  1
                                                  4
                                                     
                                    0   1   4  0
                                                     1

                                    1 1
                                   
                                    4 4
                                    1
                                   units 2
                                    2
e.g. (i)        y             y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                          x 1  x 0
                                            1 40 1 41
                                            4       4
           -1             1   x             1
                                            4
                                                    4  1
                                                        4
                                                           
                                          0   1   4  0
                                                           1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
                                         units 2
                                          2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                          x 1  x 0
                                            1 40 1 41
                                            4       4
           -1             1   x             1
                                            4
                                                    4  1
                                                        4
                                                           
                                          0   1   4  0
                                                           1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                          x 1  x 0
                                            1 40 1 41
                                            4       4
           -1             1   x             1
                                            4
                                                    4  1
                                                        4
                                                           
                                          0   1   4  0
                                                           1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                          x 1  x 0
                                            1 40 1 41
                                            4       4
           -1             1   x             1
                                            4
                                                    4  1
                                                        4
                                                           
                                          0   1   4  0
                                                           1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
    4  0
   1
     1
   2
   1
   units 2
   2
(ii)             y   y  x x  1 x  2 




       -2   -1         x
(ii)                           y    y  x x  1 x  2 




        -2            -1              x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                      0
                  3        2
             2                      1
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1
          1 x 4  x3  x 2   1 x 4  x3  x 2 
         
          4                 2  4
                                                0
                                                  
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

         1 x 4  x3  x 2   1 x 4  x3  x 2 
           4                 2  4
                                                 0
                                                   
            1                        2  1                      2
          2  1   1   1     2    2    2    0
                     4         3                     4   3

            4                           4                       
           1
          units 2
           2
(2) Area On The y axis
 y
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)                        d
                               3 A   g  y dy
                                        c
                   (a,c)

                           x
(2) Area On The y axis                (1) Make x the subject
  y                                        i.e. x = g(y)
       y = f(x)                       (2) Substitute the y coordinates
             (b,d)                             d
                                      3 A   g  y dy
                                               c
                     (a,c)
                               x

e.g.        y                y  x4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                               d
                                        3 A   g  y dy
                                                 c
                     (a,c)
                               x

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                               x         A   y dy
                                                  4

                                             1

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4

                                            4 4 4
                                                5   5
                                            16  1 
                                            5        
                     1   2     x             124
                                                units 2
                                              5
(3) Area Between Two Curves
 y




                              x
(3) Area Between Two Curves
 y                                y = f(x)…(1)




                              x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




                                     x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




     a          b                    x
(3) Area Between Two Curves
 y                       y = g(x)…(2)         y = f(x)…(1)




      a           b                      x

     Area = Area under (1) – Area under (2)
(3) Area Between Two Curves
 y                            y = g(x)…(2)       y = f(x)…(1)




      a              b                       x

     Area = Area under (1) – Area under (2)
            b             b
            f  x dx   g  x dx
            a             a
(3) Area Between Two Curves
 y                             y = g(x)…(2)       y = f(x)…(1)




      a               b                       x

     Area = Area under (1) – Area under (2)
            b              b
            f  x dx   g  x dx
            a              a
            b
             f  x   g  x dx
            a
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
             x x
              5
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx




                          x
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                              1 2 1 6 
             x5  x  0                       x  x 
                                              2   6 0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                              1 2 1 6 
             x5  x  0                       x  x 
                                              2   6 0
             xx 4  1  0
                                              1 1 2  1 1 6   0
                                               
             x  0 or x  1                             
                                              2       6     
                                              1
                                              unit 2
                                              3
2002 HSC Question 4d)




The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                         x2  5x  4  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
                        A is (1, 3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4
                       1 x3  5 x 2  4 x 
                    
                      3        2           1
                                            
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                      
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
     y  x  4.         4
                   A    x  4   x 2  4 x  dx
                        1
                        4
                        x 2  5 x  4 dx
                        1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                    
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
                        9
                         units 2
                        2
2005 HSC Question 8b)                                              (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                   1

                          1 x3  3 x 2  2 x 
                             3        2          0
                                                  
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                   1

                          1 x3  3 x 2  2 x 
                             3        2          0
                                                  

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                   1

                          1 x3  3 x 2  2 x 
                             3        2          0
                                                  

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
                          5  units 2
                                 
                              6
Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*


     Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

More Related Content

What's hot (12)

Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
 
X2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculusX2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculus
 
Cap4 lec5
Cap4 lec5Cap4 lec5
Cap4 lec5
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Cg
CgCg
Cg
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 

Viewers also liked

11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
Nigel Simmons
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)
Nigel Simmons
 
11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function
Nigel Simmons
 
11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)
Nigel Simmons
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
Nigel Simmons
 

Viewers also liked (6)

11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)
 
11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function
 
11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 

Similar to 11 x1 t16 04 areas (2012)

11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
Nigel Simmons
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
Nigel Simmons
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
ikhulsys
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
Silvius
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Nigel Simmons
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
akabaka12
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
Nigel Simmons
 

Similar to 11 x1 t16 04 areas (2012) (20)

11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Business math
Business mathBusiness math
Business math
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Derivadas
DerivadasDerivadas
Derivadas
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Cs 601
Cs 601Cs 601
Cs 601
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
Avinash Rai
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
YibeltalNibretu
 

Recently uploaded (20)

Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
Forest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDFForest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDF
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matrices
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 

11 x1 t16 04 areas (2012)

  • 1. (1) Area Below x axis Areas y y = f(x) x
  • 2. (1) Area Below x axis Areas y y = f(x) A1 a b x
  • 3. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a
  • 4. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a  A1   f  x dx b a
  • 5. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 b a  A1   f  x dx b a
  • 6. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A1   f  x dx b a
  • 7. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A2    f  x dx c  A1   f  x dx b a b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b
  • 11. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b OR   f  x dx b c
  • 12. e.g. (i) y y  x3 -1 1 x
  • 13. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0 -1 1 x
  • 14. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x
  • 15. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x 1 4  4 1 4    0   1   4  0 1 1 1   4 4 1  units 2 2
  • 16. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x 1 4  4 1 4    0   1   4  0 1 1 1   OR using symmetry of odd function 4 4 1  units 2 2
  • 17. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x 1 4  4 1 4    0   1   4  0 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2
  • 18. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x 1 4  4 1 4    0   1   4  0 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2
  • 19. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0   x 1  x 0 1 40 1 41 4 4 -1 1 x 1 4  4 1 4    0   1   4  0 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2   4  0 1 1 2 1  units 2 2
  • 20. (ii) y y  x x  1 x  2  -2 -1 x
  • 21. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1
  • 22. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1 1 x 4  x3  x 2   1 x 4  x3  x 2   4  2  4   0 
  • 23. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1 1 x 4  x3  x 2   1 x 4  x3  x 2  4  2  4   0  1 2  1 2  2  1   1   1     2    2    2    0 4 3 4 3 4  4  1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 x y 4 1 2 x
  • 30. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 e.g. y y  x4 1 x y 4 1 2 x
  • 31. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 1 2 x
  • 32. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 4 4 4 5 5  16  1  5  1 2 x 124  units 2 5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a
  • 39. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a b    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 2 1 6  x5  x  0  x  x  2 6 0 xx 4  1  0 x  0 or x  1
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 2 1 6  x5  x  0  x  x  2 6 0 xx 4  1  0 1 1 2  1 1 6   0    x  0 or x  1  2 6  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4.
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x    3 2 1 
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2 
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  9  units 2 2
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1    1 x3  3 x 2  2 x  3 2 0 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1    1 x3  3 x 2  2 x  3 2 0   1 3 3 2    1  1  2 1  0 3 2 
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1    1 x3  3 x 2  2 x  3 2 0   1 3 3 2    1  1  2 1  0 3 2     5  units 2   6
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*