Algebra                                                                             Geometry
Arithmetic                                                                           Triangle                           Circle
a+b  a  b                                       a  c  ad + bc                        Area = 1 bh                        Area = πr 2
    = +                                           + =                                         2
 c   c  c                                       b  d    bd                           c2 = a 2 + b2 − 2ab cos θ          C = 2πr
  a
  b             a    d       ad
        =                =                                                                      a
  c             b    c       bc                                                                                     c                  r
                                                                                                            h
  d

                                                                                                        b
Factoring
x 2 − y 2 = (x − y)(x + y)                  x 3 − y 3 = (x − y)(x 2 + x y + y 2 )    Sector of a Circle                 Trapezoid
x 3 + y 3 = (x + y)(x 2 − x y + y 2 )       x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 )
                                                                                     Area = 1 r 2 θ
                                                                                              2                         Area = 1 (a + b)h
                                                                                                                               2
                                                                                     s = rθ
Binomial                                                                             (for θ in radians only)                       a

(x + y)2 = x 2 + 2x y + y 2                 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3
                                                                                                                                           h
                                                                                                                s
Exponents                                                                                                                          b
                              xn
xn xm   =   x n+m                = x n−m                    (x n )m     =   x nm
                              xm                                                                r
                                                                    n
         1                                                      x        xn
x −n   = n                   (x y)n = x n y n                           = n
        x                                                       y        y           Sphere                             Cone
                                                                        √
            √                 √          √ √                    x     x n
x n/m =     m
                xn            n   xy =   n
                                           xny              n     = √                Volume = 4 πr 3                    Volume = 1 πr 2 h
                                                                y   n y
                                                                                                3                                  3      √
                                                                                     Surface Area = 4πr 2               Surface Area = πr r 2 + h 2

Lines
Slope m of line through (x0 , y0 ) and (x1 , y1 )
                                                                                                    r
                                                                                                                             h
                                        y1 − y0
                                     m=
                                        x1 − x0
                                                                                                                                  r
Through (x0 , y0 ), slope m
                                  y − y0 = m(x − x0 )
Slope m, y-intercept b
                                                                                     Cylinder
                                     y = mx + b                                      Volume = πr 2 h
                                                                                     Surface Area = 2πr h
Quadratic Formula
If ax 2 + bx + c = 0 then
                                            √
                                     −b ±        b2 − 4ac                                   h
                              x=
                                                2a                                                  r

Distance
Distance d between (x1 , y1 ) and (x2 , y2 )

                         d=        (x2 − x1 )2 + (y2 − y1 )2
Trigonometry

                             (x, y)                      sin θ =
                                                                   y                       Half-Angle
                                                                   r
                                                                                                      1 − cos 2θ                                      1 + cos 2θ
                         r                                                                 sin2 θ =                                      cos2 θ =
                                                                 x                                        2                                               2
                                                         cos θ =
                                                                 r

                                                                   y
                                                                                           Addition
                                                         tan θ =
                                                                   x                       sin(a + b) = sin a cos b + cos a sin b        cos(a + b) = cos a cos b − sin a sin b


                                                                                           Subtraction
                                                         sin θ =
                                                                   opp                     sin(a − b) = sin a cos b − cos a sin b        cos(a − b) = cos a cos b + sin a sin b
                                                                   hyp

                   hyp                                             adj                     Sum
                                             opp         cos θ =
                                                                   hyp                                          u+v      u−v
                                                                                           sin u + sin v = 2 sin     cos
                                                                                                                  2        2
                                                                   opp                                           u+v      u−v
                                                         tan θ =                           cos u + cos v = 2 cos      cos
                                                                   adj                                             2        2
                     adj
                                                                                           Product
                                                                                           sin u sin v = 1 [cos(u − v) − cos(u + v)]
                                                                                                         2
Reciprocals                                                                                cos u cos v = 1 [cos(u − v) + cos(u + v)]
                                                                                                         2

             1                                1                                 1          sin u cos v = 1 [sin(u + v) + sin(u − v)]
                                                                                                         2
cot θ =                          sec θ =                           csc θ =
           tan θ                            cos θ                             sin θ        cos u sin v = 1 [sin(u + v) − sin(u − v)]
                                                                                                         2



Definitions                                                                                                                    π/2
                                                                                                                        2π/3             π/3
        cos θ                              1                                 1                                                                  π/4
cot θ =                          sec θ =                           csc θ =                                 3π/4
        sin θ                            cos θ                             sin θ
                                                                                                      5π/6                                            π/6


Pythagorean                                                                                            π                                               0


sin2 θ + cos2 θ = 1               tan2 θ + 1 = sec2 θ              1 + cot2 θ = csc2 θ                                         Radians

                                                                                                sin(0) = 0                                cos(0) = 1
                                                                                                                                                            √
                                                                                                      π                                         π
Cofunction                                                                                      sin   6      =    1
                                                                                                                  2                       cos   6     =     2
                                                                                                                                                             3

                                                                                                                  √                                         √
                                                                                                      π                                         π
      π                                π                                 π                      sin          =      2
                                                                                                                                          cos         =      2
sin   2   − θ = cos θ            cos   2   − θ = sin θ             tan   2   − θ = cot θ              4            2                            4           2
                                                                                                                  √
                                                                                                      π                                         π
                                                                                                sin   3      =     2
                                                                                                                    3
                                                                                                                                          cos   3     =     1
                                                                                                                                                            2
                                                                                                      π                                         π
                                                                                                sin          =1                           cos         =0
Even/Odd                                                                                              2
                                                                                                                   √
                                                                                                                                                2

                                                                                                sin   2π
                                                                                                       3     =     2
                                                                                                                    3
                                                                                                                                          cos   2π
                                                                                                                                                 3     = −1
                                                                                                                                                          2
sin(−θ ) = −sin θ                cos(−θ) = cos θ                   tan(−θ) = −tan θ                                √                                             √
                                                                                                sin   3π
                                                                                                       4     =     2
                                                                                                                    2
                                                                                                                                          cos   3π
                                                                                                                                                 4     =−     2
                                                                                                                                                               2

                                                                                                                                                             √
                                                                                                sin   5π
                                                                                                       6     =     1
                                                                                                                   2                      cos   5π
                                                                                                                                                 6     =    − 23
Double-Angle                                                                                    sin(π) = 0                                cos(π ) = −1
sin 2θ = 2 sin θ cos θ           cos 2θ = cos2 θ − sin2 θ          cos 2θ = 1 − 2 sin2 θ        sin(2π) = 0                               cos(2π) = 1

Figures

  • 1.
    Algebra Geometry Arithmetic Triangle Circle a+b a b a c ad + bc Area = 1 bh Area = πr 2 = + + = 2 c c c b d bd c2 = a 2 + b2 − 2ab cos θ C = 2πr a b a d ad = = a c b c bc c r h d b Factoring x 2 − y 2 = (x − y)(x + y) x 3 − y 3 = (x − y)(x 2 + x y + y 2 ) Sector of a Circle Trapezoid x 3 + y 3 = (x + y)(x 2 − x y + y 2 ) x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 ) Area = 1 r 2 θ 2 Area = 1 (a + b)h 2 s = rθ Binomial (for θ in radians only) a (x + y)2 = x 2 + 2x y + y 2 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3 h s Exponents b xn xn xm = x n+m = x n−m (x n )m = x nm xm r n 1 x xn x −n = n (x y)n = x n y n = n x y y Sphere Cone √ √ √ √ √ x x n x n/m = m xn n xy = n xny n = √ Volume = 4 πr 3 Volume = 1 πr 2 h y n y 3 3 √ Surface Area = 4πr 2 Surface Area = πr r 2 + h 2 Lines Slope m of line through (x0 , y0 ) and (x1 , y1 ) r h y1 − y0 m= x1 − x0 r Through (x0 , y0 ), slope m y − y0 = m(x − x0 ) Slope m, y-intercept b Cylinder y = mx + b Volume = πr 2 h Surface Area = 2πr h Quadratic Formula If ax 2 + bx + c = 0 then √ −b ± b2 − 4ac h x= 2a r Distance Distance d between (x1 , y1 ) and (x2 , y2 ) d= (x2 − x1 )2 + (y2 − y1 )2
  • 2.
    Trigonometry (x, y) sin θ = y Half-Angle r 1 − cos 2θ 1 + cos 2θ r sin2 θ = cos2 θ = x 2 2 cos θ = r y Addition tan θ = x sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b − sin a sin b Subtraction sin θ = opp sin(a − b) = sin a cos b − cos a sin b cos(a − b) = cos a cos b + sin a sin b hyp hyp adj Sum opp cos θ = hyp u+v u−v sin u + sin v = 2 sin cos 2 2 opp u+v u−v tan θ = cos u + cos v = 2 cos cos adj 2 2 adj Product sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 Reciprocals cos u cos v = 1 [cos(u − v) + cos(u + v)] 2 1 1 1 sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 cot θ = sec θ = csc θ = tan θ cos θ sin θ cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 Definitions π/2 2π/3 π/3 cos θ 1 1 π/4 cot θ = sec θ = csc θ = 3π/4 sin θ cos θ sin θ 5π/6 π/6 Pythagorean π 0 sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Radians sin(0) = 0 cos(0) = 1 √ π π Cofunction sin 6 = 1 2 cos 6 = 2 3 √ √ π π π π π sin = 2 cos = 2 sin 2 − θ = cos θ cos 2 − θ = sin θ tan 2 − θ = cot θ 4 2 4 2 √ π π sin 3 = 2 3 cos 3 = 1 2 π π sin =1 cos =0 Even/Odd 2 √ 2 sin 2π 3 = 2 3 cos 2π 3 = −1 2 sin(−θ ) = −sin θ cos(−θ) = cos θ tan(−θ) = −tan θ √ √ sin 3π 4 = 2 2 cos 3π 4 =− 2 2 √ sin 5π 6 = 1 2 cos 5π 6 = − 23 Double-Angle sin(π) = 0 cos(π ) = −1 sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ cos 2θ = 1 − 2 sin2 θ sin(2π) = 0 cos(2π) = 1