(G) Graphs of Reciprocal
           1
             Functions
The graph of y            can be sketched by first drawing y  f  x 
                   f x
and noticing;
(G) Graphs of Reciprocal
            1
              Functions
The graph of y             can be sketched by first drawing y  f  x 
                    f x
and noticing;
                             1
 when f  x   0, then         is undefined, i.e. a vertical asymptote exists 
                           f x
y  f x   y




            1



                 x

            -1
y  f x   y




            1



                 x

            -1
(G) Graphs of Reciprocal
            1
              Functions
The graph of y             can be sketched by first drawing y  f  x 
                    f x
and noticing;
                         1
 when f  x   0, then      is undefined, i.e. a vertical asymptote exists 
                       f x
                            1
 when f  x   , then          0, i.e. asymptotes become x intercepts 
                          f x
y  f x   y




            1



                 x

            -1
y  f x   y




            1



                 x

            -1
y  f x   y




            1



                 x

            -1
y  f x   y




            1



                 x

            -1
(G) Graphs of Reciprocal
            1
              Functions
The graph of y             can be sketched by first drawing y  f  x 
                    f x
and noticing;
                            1
 when f  x   0, then         is undefined, i.e. a vertical asymptote exists 
                          f x
                               1
 when f  x   , then             0, i.e. asymptotes become x intercepts 
                             f x
 when f  x  is increasing, the reciprocal is decreasing, and visa - versa
(G) Graphs of Reciprocal
            1
              Functions
The graph of y             can be sketched by first drawing y  f  x 
                    f x
and noticing;
                            1
 when f  x   0, then         is undefined, i.e. a vertical asymptote exists 
                          f x
                               1
 when f  x   , then            0, i.e. asymptotes become x intercepts 
                             f x
 when f  x  is increasing, the reciprocal is decreasing, and visa - versa
                               1
 when f  x  is positive,         is positive, etc.
                             f x
y  f x   y




            1



                 x

            -1
(G) Graphs of Reciprocal
            1
              Functions
The graph of y              can be sketched by first drawing y  f  x 
                     f x
and noticing;
                             1
 when f  x   0, then          is undefined, i.e. a vertical asymptote exists 
                           f x
                                1
 when f  x   , then              0, i.e. asymptotes become x intercepts 
                              f x
 when f  x  is increasing, the reciprocal is decreasing, and visa - versa
                                1
 when f  x  is positive,           is positive, etc.
                              f x
                        1         -f  x 
 the derivative of          is              , hence stationary points of the
                      f  x   f  x    2


  original curve are stationary points of its reciprocal.
y  f x   y




            1



                 x

            -1
y  f x   y

                        1
                 y
                      f x



            1



                              x

            -1
y

            1
     y
          f x



1



                  x

-1

X2 T04 04 curve sketching - reciprocal functions

  • 1.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing;
  • 2.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing; 1  when f  x   0, then is undefined, i.e. a vertical asymptote exists  f x
  • 3.
    y  fx y 1 x -1
  • 4.
    y  fx y 1 x -1
  • 5.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing; 1  when f  x   0, then is undefined, i.e. a vertical asymptote exists  f x 1  when f  x   , then  0, i.e. asymptotes become x intercepts  f x
  • 6.
    y  fx y 1 x -1
  • 7.
    y  fx y 1 x -1
  • 8.
    y  fx y 1 x -1
  • 9.
    y  fx y 1 x -1
  • 10.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing; 1  when f  x   0, then is undefined, i.e. a vertical asymptote exists  f x 1  when f  x   , then  0, i.e. asymptotes become x intercepts  f x  when f  x  is increasing, the reciprocal is decreasing, and visa - versa
  • 11.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing; 1  when f  x   0, then is undefined, i.e. a vertical asymptote exists  f x 1  when f  x   , then  0, i.e. asymptotes become x intercepts  f x  when f  x  is increasing, the reciprocal is decreasing, and visa - versa 1  when f  x  is positive, is positive, etc. f x
  • 12.
    y  fx y 1 x -1
  • 13.
    (G) Graphs ofReciprocal 1 Functions The graph of y  can be sketched by first drawing y  f  x  f x and noticing; 1  when f  x   0, then is undefined, i.e. a vertical asymptote exists  f x 1  when f  x   , then  0, i.e. asymptotes become x intercepts  f x  when f  x  is increasing, the reciprocal is decreasing, and visa - versa 1  when f  x  is positive, is positive, etc. f x 1 -f  x   the derivative of is , hence stationary points of the f  x   f  x  2 original curve are stationary points of its reciprocal.
  • 14.
    y  fx y 1 x -1
  • 15.
    y  fx y 1 y f x 1 x -1
  • 16.
    y 1 y f x 1 x -1