Finding the area under a curve
                                            using definite integral


y                                            y
                                                     x = f(y)
                       y = f(x)
                                            d

                                                 A
               A                             c
                                  x                               x
0       a          b                         0
                                                      d
b

∫   f ( x)dx           definite integral             ∫ f ( y)dy
                                                      c
a

                   area of the shaded region
Finding the area under a curve
                         using definite integral

   y
                y = f(x)

                (6,9)


  2

                               x
                           6

(a) Shaded the region of   ∫ f ( x)dx
                           0       6

(b) Hence, find the value of       ∫ ydx + ∫ xdy
                                   0
Finding the area under a curve
                             using definite integral
y
        y = f(x)

        (6,9)
                       9

2                      ∫ xdy
                       2

                   x           6       9

    6                          ∫ ydx + ∫ xdy = (6 × 9) = 54
    ∫
    0
        f ( x)dx               0       2
Finding the area under a curve
                                 using definite integral



y

        y = 4x2


                      Find the area of the shaded region


                  x
0   4
Finding the area under a curve
                                      using definite integral

                                     area of the shaded region
Find the area of the                    4
shaded region                         = ∫ ydx
y                                       0
                                        4
                                      = ∫ 4 x 2 dx
              y = 4x2                   0
                                                 4
                                        4x 3
                                      =     
                                         3 0
                                        4(4) 3 4(0) 3 
                        x             =       −       
0         4                                3      3 
                                       
                                           1
                                      = 85
                                           3
Finding the area under a curve
                              using definite integral


      y
          y2 = 3x
y=4
                          Find the area of the
y=2
                          shaded region

                      x
  0
Finding the area under a curve
                                      using definite integral

 Find the area of the                 area of shaded region
 shaded region                           4

      y                                = ∫ xdy
                                         2
             y = 3x
              2
                                         4
                                           y2
y=4                                    = ∫ dy
                                         2
                                           3
                                                 4
y=2                                      y 3
                                       =      
                                         3(3)  2
   0
                        x                (4) 3 (2) 3 
                                       =      −      
                                         9        9 
                                           2
                                       =6
                                           9
Finding the area under a curve
                                          using definite integral
Find the area of the shaded region
 y
              y = 2x                          y
                                                                 y = 2x

           P(3,6)
                                              4              P(3,6)
              y = 5x – x2
                                                                 y = 5x – x2


                                                     A       B
                Q(5,0)
                            x
0                                                                  Q(5,0)
                                                                               x
                                              0          3       5

                                     A is the area under a straight line

                                     B is the area under a curve
Finding the area under a curve
                                               using definite integral
Find the area of the shaded region
                                        Area A = area of triangle
 y                                             = 1/2 x 3 x 6
                   y = 2x
                                               = 9 unit2
                                                     5
4              P(3,6)
                                         Area B   = ∫ ydx
                   y = 5x – x2
                                                     3
                                                    5

       A       B                                  = ∫ (5 x − x 2 )dx
                                                    3
                     Q(5,0)
                                 x                                5
0          3       5                                5x  2
                                                            x 
                                                              3
                                                  =      − 
                                                    2      3 3
                                                    5(5) 2 53   5(3) 2 33 
               Area of shaded region              =
                                                    2 − 3 − 2 − 3 
                                                                           
               = Area A + Area B                                          
                                                     1
                      1     1                     =7
               = 9 + 7 = 16                          3
                      3     3
Finding the area under a curve
                                  using definite integral



Find the area of the shaded region
 y
               y = 2x



6         P(5,5)
               y = 5x – x2
                     x = 6y – y2
      A

                               x
0
Finding the area under a curve
                                                   using definite integral
Find the area of the shaded region
                                            Area A = area of triangle
 y                                                 = 1/2 x 5 x 5
                     y = 2x
                                                   = 12.5 unit2
                                                         6
6       B
                P(5,5)                       Area B   = ∫ xdy
    5                y = 5x – x2
                                                         5
        A                  x = 6y – y2                  6

            A                                         = ∫ (6 y − y 2 )dy
                                                        5
                                     x                                6
0                                                      6y   2
                                                                y 
                                                                  3
                                                      =      − 
                                                        2      3 5
                                                        6(6) 2 63   6(5) 2 53 
                   Area of shaded region              =
                                                        2 − 3 − 2 − 3 
                                                                               
                   = area A + area B                                          
                                                         2
                             2     1                  =2
                   = 12.5 + 2 = 15                       3
                             3     6
Finding the area under a curve
                                                     using definite integral
Find the coordinate of P and Q.
Hence, find the area of the shaded region
  y
                                                        Coordinates P and Q:.
                    y = 6x + 4
                                                        y = 6x + 4 …… ( 1 )
                                                        y = – 3x2 + 10x + 8 …….. ( 2 )
              Q                                         per (1) = per (2)
                   y = – 3x2 + 10x + 8                  6x + 4 = – 3x2 + 10x + 8
                                                         3x2 - 10x - 8 + 6x + 4 = 0
P
                                 x                       3x2 - 4x - 4 = 0
    0
                                                         (3x + 2)(x – 2) = 0
    subtitute x = -2/3 into eq (1)                       x = -2/3 atau x = 2
    y = 6(-2/3 ) + 4 = 0
    subtitute x = 2 into eq (1)
    y = 6(2 ) + 4 = 16
                                         Koordinat P(-2/3 , 0) dan Q(2, 16)
Finding the area under a curve
                          using definite integral

Find the coordinate of P and Q.
Hence, find the area of the shaded region

     y
                 y = 6x + 4


           Q

                y = – 3x2 + 10x + 8


 P
                              x
     0      2
Finding the area under a curve
Area of the shaded region                              using definite integral
                        y = 6x + 4
    y

               Q

                       y = – 3x2 + 10x + 8


P
    0          2
                                     x
                                                        Area under curve
                                                               2
Area under straight line
          2                                             Area = ∫ ydx
Area = ∫ ydx                                                   0
                                                               2
                                                             = ∫ (−3 x 2 + 10 x + 8)dx
          2
          0
        = ∫ (6 x + 4)dx                                        0                         2
          0              2                                      − 3 x 3 10 x 2     
          6x2                                               =        +       + 8x
        =     + 4 x                                           3         2        0
          2        0
          6(2)2
                                                               − 3(2) 3 10(2) 2        
        =      + 4(2)  − 0                                  =
                                                                3       +        + 8(2)  − 0
                                                                                         
          2                                                              2            
                      
                                                              =28 unit2.
        =20 unit . 2
Finding the area under a curve
Area of shaded region                                   using definite integral
                       y = 6x + 4
                                                                      y
    y
                                                                                    Q
              Q
                                                                                        y = – 3x2 + 10x + 8


                                                                  P
                                                                      0             2
                                                                                                        x
P
    0                               x
                                                            y = 6x + 4    Area under curve
                                        y                                       2
Area under straight line
          2                                                              Area = ∫ ydx
Area = ∫ ydx
                                                        Q                       0
                                                                                2
                                                                              = ∫ (−3 x 2 + 10 x + 8)dx
          2
          0
        = ∫ (6 x + 4)dx                                                         0                           2
          0             2                                                        − 3 x 3 10 x 2     
          6x2                     P
                                                                          x    =        +       + 8x
        =     + 4 x                   0                                        3         2        0
          2        0
                                                                                 − 3(2) 3 10(2) 2        
          6(2)
        =
               2
                       
                + 4(2)  − 0
                                        Area of shaded region                  =
                                                                                 3       +        + 8(2)  − 0
                                                                                                          
          2                                                                               2            
                                      =28 - 20
                                                                               =28 unit2.
        =20 unit . 2                    = 8 unit   2.
Finding the area under a curve
                                              using definite integral
Find the coordinate of P and Q.
Hence, find the area of the shaded region
     y                                           Coordinates P and Q.
                        y=x+4                    y=x+4 … …(1)
                                                 y = (x - 2 ) 2 …….. ( 2 )
                    Q
                                                 eq (1) = eq (2)
                  y = (x – 2)2                    x+4=(x–2)2
 P
                                                  x2 - 4x + 4 - x - 4 = 0
                        x
  0
                                                  x2 - 5x = 0
                                                  x(x – 5) = 0
  subtitute x =0 into eq(1)
                                                   x = 0 or x = 5
  y=0+4=4
  subtitute x = 5 into eq (1)
  y=5+4=9
                              coordinate P(0 , 4) and Q(5, 9)
Finding the area under a curve
                                     using definite integral



Find the coordinate of P and Q.
Hence, find the area of the shaded region

     y
                      y=x+4

                  Q

                 y = (x – 2)2
 P

                       x
  0
Finding the area under a curve
Area of shaded region
                                                     using definite integral
        y
                                 y=x+4

                             Q
                            y = (x – 2)2
    P
                                   x                      Area under straight line
     0                                                             2

Area under curve                                           Area = ∫ ydx
            2                                                      5
                                                                   0

 Area = ∫ ydx                                                    = ∫ ( x + 4)dx
            0                                                       0            5
            5                                                       x2   
        = ∫ ( x − 2) 2 dx                                        =  + 4 x
                                                                   2     0
            0           5
           ( x − 2) 3                                            (5) 2        
         =                                                      =
                                                                   2     + 4(5)  − 0
                                                                                 
                                                                               
           3(1)  0
           (5 − 2) 3 (0 − 2)3                                 = 65/2 unit2.
         =
           3 − 3 −0          
                              
         =35/3 unit2.
Finding the area under a curve
Area of shaded region
                                                      using definite integral
      y                                                        y
                                 y=x+4

                             Q
                            y = (x – 2)2
   P
                                  x                                                         x
    0                                  y                       0
Area under curve                                              Area under straight line
         2                                                            2

Area = ∫ ydx                                                  Area = ∫ ydx
         0                                                            5
                                                                      0
                                                                    = ∫ ( x + 4)dx
         5
       = ∫ ( x − 2) 2 dx
                                                                       0            5
         0              5
                                                         x              x2   
          ( x − 2) 3                0                              =  + 4 x
        =                                                            2     0
          3(1)  0
                                      Area of shaded region           (5) 2        
          (5 − 2) 3 (0 − 2)3                                      =
                                                                      2     + 4(5)  − 0
                                                                                    
        =
          3 − 3 −0                                                              
                                    = 65/2 - 35/3 .
                                      = 205/6 unit2.                = 65/2 unit2.
        = /3 unit .
          35        2
y


      3
                     y2 = 9 - x

      2
  2x + 3y = 6
                                      x
                 3                9


Diagram shows sebahagian daripada curve
y2 = 9 – x and straight line 2x + 3y = 6.
Calculate the shaded region
y

                     3                   y2 = 9 - x
                     2
                  2x + 3y = 6
                                     3           9    x

Area of shaded region = area under curve – area of triangle
                             3
                                  1
                         = ∫ xdy − × 3 × 2
                           0
                                  2
                                 3
                         = ∫ (9 − y 2 )dy - 6
                            0
                                           3
                                 y  3
                         = 9 y −    - 6
                                 3       0

                                 33
                         = 9(3) − − 3 = 15
                                 3

Integral (area)

  • 1.
    Finding the areaunder a curve using definite integral y y x = f(y) y = f(x) d A A c x x 0 a b 0 d b ∫ f ( x)dx definite integral ∫ f ( y)dy c a area of the shaded region
  • 2.
    Finding the areaunder a curve using definite integral y y = f(x) (6,9) 2 x 6 (a) Shaded the region of ∫ f ( x)dx 0 6 (b) Hence, find the value of ∫ ydx + ∫ xdy 0
  • 3.
    Finding the areaunder a curve using definite integral y y = f(x) (6,9) 9 2 ∫ xdy 2 x 6 9 6 ∫ ydx + ∫ xdy = (6 × 9) = 54 ∫ 0 f ( x)dx 0 2
  • 4.
    Finding the areaunder a curve using definite integral y y = 4x2 Find the area of the shaded region x 0 4
  • 5.
    Finding the areaunder a curve using definite integral area of the shaded region Find the area of the 4 shaded region = ∫ ydx y 0 4 = ∫ 4 x 2 dx y = 4x2 0 4  4x 3 =   3 0  4(4) 3 4(0) 3  x = −  0 4 3 3   1 = 85 3
  • 6.
    Finding the areaunder a curve using definite integral y y2 = 3x y=4 Find the area of the y=2 shaded region x 0
  • 7.
    Finding the areaunder a curve using definite integral Find the area of the area of shaded region shaded region 4 y = ∫ xdy 2 y = 3x 2 4 y2 y=4 = ∫ dy 2 3 4 y=2  y 3 =   3(3)  2 0 x  (4) 3 (2) 3  = −   9 9  2 =6 9
  • 8.
    Finding the areaunder a curve using definite integral Find the area of the shaded region y y = 2x y y = 2x P(3,6) 4 P(3,6) y = 5x – x2 y = 5x – x2 A B Q(5,0) x 0 Q(5,0) x 0 3 5 A is the area under a straight line B is the area under a curve
  • 9.
    Finding the areaunder a curve using definite integral Find the area of the shaded region Area A = area of triangle y = 1/2 x 3 x 6 y = 2x = 9 unit2 5 4 P(3,6) Area B = ∫ ydx y = 5x – x2 3 5 A B = ∫ (5 x − x 2 )dx 3 Q(5,0) x 5 0 3 5  5x 2 x  3 = −   2 3 3  5(5) 2 53   5(3) 2 33  Area of shaded region =  2 − 3 − 2 − 3     = Area A + Area B     1 1 1 =7 = 9 + 7 = 16 3 3 3
  • 10.
    Finding the areaunder a curve using definite integral Find the area of the shaded region y y = 2x 6 P(5,5) y = 5x – x2 x = 6y – y2 A x 0
  • 11.
    Finding the areaunder a curve using definite integral Find the area of the shaded region Area A = area of triangle y = 1/2 x 5 x 5 y = 2x = 12.5 unit2 6 6 B P(5,5) Area B = ∫ xdy 5 y = 5x – x2 5 A x = 6y – y2 6 A = ∫ (6 y − y 2 )dy 5 x 6 0 6y 2 y  3 = −   2 3 5  6(6) 2 63   6(5) 2 53  Area of shaded region =  2 − 3 − 2 − 3     = area A + area B     2 2 1 =2 = 12.5 + 2 = 15 3 3 6
  • 12.
    Finding the areaunder a curve using definite integral Find the coordinate of P and Q. Hence, find the area of the shaded region y Coordinates P and Q:. y = 6x + 4 y = 6x + 4 …… ( 1 ) y = – 3x2 + 10x + 8 …….. ( 2 ) Q per (1) = per (2) y = – 3x2 + 10x + 8 6x + 4 = – 3x2 + 10x + 8 3x2 - 10x - 8 + 6x + 4 = 0 P x 3x2 - 4x - 4 = 0 0 (3x + 2)(x – 2) = 0 subtitute x = -2/3 into eq (1) x = -2/3 atau x = 2 y = 6(-2/3 ) + 4 = 0 subtitute x = 2 into eq (1) y = 6(2 ) + 4 = 16 Koordinat P(-2/3 , 0) dan Q(2, 16)
  • 13.
    Finding the areaunder a curve using definite integral Find the coordinate of P and Q. Hence, find the area of the shaded region y y = 6x + 4 Q y = – 3x2 + 10x + 8 P x 0 2
  • 14.
    Finding the areaunder a curve Area of the shaded region using definite integral y = 6x + 4 y Q y = – 3x2 + 10x + 8 P 0 2 x Area under curve 2 Area under straight line 2 Area = ∫ ydx Area = ∫ ydx 0 2 = ∫ (−3 x 2 + 10 x + 8)dx 2 0 = ∫ (6 x + 4)dx 0 2 0 2  − 3 x 3 10 x 2   6x2  = + + 8x = + 4 x  3 2 0  2 0  6(2)2   − 3(2) 3 10(2) 2  = + 4(2)  − 0 =  3 + + 8(2)  − 0   2   2    =28 unit2. =20 unit . 2
  • 15.
    Finding the areaunder a curve Area of shaded region using definite integral y = 6x + 4 y y Q Q y = – 3x2 + 10x + 8 P 0 2 x P 0 x y = 6x + 4 Area under curve y 2 Area under straight line 2 Area = ∫ ydx Area = ∫ ydx Q 0 2 = ∫ (−3 x 2 + 10 x + 8)dx 2 0 = ∫ (6 x + 4)dx 0 2 0 2  − 3 x 3 10 x 2   6x2  P x = + + 8x = + 4 x 0  3 2 0  2 0  − 3(2) 3 10(2) 2   6(2) = 2  + 4(2)  − 0 Area of shaded region =  3 + + 8(2)  − 0   2   2    =28 - 20 =28 unit2. =20 unit . 2 = 8 unit 2.
  • 16.
    Finding the areaunder a curve using definite integral Find the coordinate of P and Q. Hence, find the area of the shaded region y Coordinates P and Q. y=x+4 y=x+4 … …(1) y = (x - 2 ) 2 …….. ( 2 ) Q eq (1) = eq (2) y = (x – 2)2 x+4=(x–2)2 P x2 - 4x + 4 - x - 4 = 0 x 0 x2 - 5x = 0 x(x – 5) = 0 subtitute x =0 into eq(1) x = 0 or x = 5 y=0+4=4 subtitute x = 5 into eq (1) y=5+4=9 coordinate P(0 , 4) and Q(5, 9)
  • 17.
    Finding the areaunder a curve using definite integral Find the coordinate of P and Q. Hence, find the area of the shaded region y y=x+4 Q y = (x – 2)2 P x 0
  • 18.
    Finding the areaunder a curve Area of shaded region using definite integral y y=x+4 Q y = (x – 2)2 P x Area under straight line 0 2 Area under curve Area = ∫ ydx 2 5 0 Area = ∫ ydx = ∫ ( x + 4)dx 0 0 5 5  x2  = ∫ ( x − 2) 2 dx =  + 4 x 2 0 0 5  ( x − 2) 3   (5) 2  = =  2 + 4(5)  − 0      3(1)  0  (5 − 2) 3 (0 − 2)3  = 65/2 unit2. =  3 − 3 −0    =35/3 unit2.
  • 19.
    Finding the areaunder a curve Area of shaded region using definite integral y y y=x+4 Q y = (x – 2)2 P x x 0 y 0 Area under curve Area under straight line 2 2 Area = ∫ ydx Area = ∫ ydx 0 5 0 = ∫ ( x + 4)dx 5 = ∫ ( x − 2) 2 dx 0 5 0 5 x  x2   ( x − 2) 3  0 =  + 4 x =  2 0  3(1)  0 Area of shaded region  (5) 2   (5 − 2) 3 (0 − 2)3  =  2 + 4(5)  − 0  =  3 − 3 −0      = 65/2 - 35/3 . = 205/6 unit2. = 65/2 unit2. = /3 unit . 35 2
  • 20.
    y 3 y2 = 9 - x 2 2x + 3y = 6 x 3 9 Diagram shows sebahagian daripada curve y2 = 9 – x and straight line 2x + 3y = 6. Calculate the shaded region
  • 21.
    y 3 y2 = 9 - x 2 2x + 3y = 6 3 9 x Area of shaded region = area under curve – area of triangle 3 1 = ∫ xdy − × 3 × 2 0 2 3 = ∫ (9 − y 2 )dy - 6 0 3  y 3 = 9 y −  - 6  3 0 33 = 9(3) − − 3 = 15 3