SlideShare a Scribd company logo
Calculus Cheat Sheet

                                                                    Integrals
                                             Definitions
Definite Integral: Suppose f ( x ) is continuous     Anti-Derivative : An anti-derivative of f ( x )
on [ a, b] . Divide [ a, b ] into n subintervals of                            is a function, F ( x ) , such that F ¢ ( x ) = f ( x ) .
width D x and choose x from each interval.                                     Indefinite Integral : ò f ( x ) dx = F ( x ) + c
                                        *
                                        i
                                        ¥
                                                                               where F ( x ) is an anti-derivative of f ( x ) .
              ò a f ( x ) dx = n å f ( x ) D x .
                  b                          *
Then                           lim           i
                                   ®¥
                                   i    =1


                                        Fundamental Theorem of Calculus
Part I : If f ( x ) is continuous on [ a, b ] then           Variants of Part I :
                                                              d u( x)
                                                                          f ( t ) dt = u ¢ ( x ) f éu ( x ) ù
                                                             dx ò a
            x
g ( x ) = ò f ( t ) dt is also continuous on [ a, b ]                                              ë           û
           a
                d x                                           d b
                                                                         f ( t ) dt = -v¢ ( x ) f év ( x ) ù
                                                             dx ò v( x )
and g ¢ ( x ) =     òa f ( t ) dt = f ( x ) .                                                        ë          û
                dx
Part II : f ( x ) is continuous on [ a, b ] , F ( x ) is      d u( x)
                                                                          f ( t ) dt = u ¢ ( x ) f [ u ( x ) ] - v¢ ( x ) f [ v ( x ) ]
                                                             dx ò v( x )
an anti-derivative of f ( x ) (i.e. F ( x ) = ò f ( x ) dx )
              b
then ò f ( x ) dx = F ( b ) - F ( a ) .
              a


                                                                    Properties
ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx                             ò cf ( x ) dx = c ò f ( x ) dx , c is a constant
  b                         b                b                                     b                  b
òa  f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx                           òa  cf ( x ) dx = c ò f ( x ) dx , c is a constant
                            a                a                                                        a
  a                                                                                b                  b
òa     f ( x ) dx = 0                                                            òa     f ( x ) dx = ò f ( t ) dt
                                                                                                      a
  b                            a
ò a f ( x ) dx = -òb f ( x ) dx
                                                                                    b                     b
                                                                                  ò f ( x ) dx £ ò
                                                                                   a                   a
                                                                                                              f ( x ) dx
                                                      b                 a
If f ( x ) ³ g ( x ) on a £ x £ b then               ò f ( x ) dx ³ ò g ( x ) dx
                                                      a                b
                                                 b
If f ( x ) ³ 0 on a £ x £ b then             ò f ( x ) dx ³ 0
                                                 a
                                                                           b
If m £ f ( x ) £ M on a £ x £ b then m ( b - a ) £ ò f ( x ) dx £ M ( b - a )
                                                                        a



                                                             Common Integrals
ò k dx = k x + c                                          ò cos u du = sin u + c                       ò tan u du = ln sec u + c
ò x dx = n+1 x + c, n ¹ -1                                ò sin u du = - cos u + c                     ò sec u du = ln sec u + tan u + c
    n        1    n           +1



ò x dx = ò x dx = ln x + c                                ò sec u du = tan u + c                       ò a + u du = a tan ( a ) + c
      -1                  1                                     2                                                 1           u
                                                                                                                              1       -1
                                                                                                              2       2


ò a x + b dx = a ln ax + b + c
          1               1
                                                          ò sec u tan u du = sec u + c                 ò a - u du = sin ( a ) + c
                                                                                                            1
                                                                                                                  2       2
                                                                                                                             u       -1



ò ln u du = u ln ( u ) - u + c                            ò csc u cot udu = - csc u + c
ò e du = e + c                                            ò csc u du = - cot u + c
      u               u                                         2




Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                        © 2005 Paul Dawkins
Calculus Cheat Sheet

                                Standard Integration Techniques
Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class.

                                                                                                                             ( )
                                                                                       ò a f ( g ( x ) ) g ¢ ( x ) dx = ò g (a ) f ( u ) du
                                                                                           b                                            g b
u Substitution : The substitution u = g ( x ) will convert                                                                                                using

du = g ¢ ( x ) dx . For indefinite integrals drop the limits of integration.

                     cos ( x3 ) dx                                                         cos ( x3 ) dx = ò
            2                                                                 2                                          8
Ex.    ò 1 5x
                 2
                                                                          ò 1 5x
                                                                                       2                               5
                                                                                                                     1 3
                                                                                                                         cos          ( u ) du
u = x 3 Þ du = 3x 2 dx Þ x 2 dx = 1 du                                                                                               ( sin (8) - sin (1) )
                                                                                                                     8
                                  3                                                                = 5 sin ( u ) 1 =
                                                                                                     3
                                                                                                                                 5
                                                                                                                                 3
x = 1 Þ u = 1 = 1 :: x = 2 Þ u = 2 = 8
                          3                             3



                                                                      b                        b        b
Integration by Parts : ò u dv = uv - ò v du and                     ò a u dv = uv              a
                                                                                                   - ò v du . Choose u and dv from
                                                                                                        a

integral and compute du by differentiating u and compute v using v = ò dv .

       ò xe
                -x                                                                             5
Ex.                  dx                                                       Ex.          ò3 ln x dx
  u=x            dv = e- x Þ              du = dx v = -e - x                  u = ln x                  dv = dx Þ du = 1 dx v = x
                                                                                                                       x
ò xe        dx = - xe + ò e dx = - xe - e
       -x                 -x         -x           -x     -x
                                                              +c
                                                                                       ln x dx = x ln x 3 - ò dx = ( x ln ( x ) - x )
                                                                                   5                             5               5                           5
                                                                                  ò3                                             3                           3

                                                                                                       = 5ln ( 5) - 3ln ( 3) - 2

Products and (some) Quotients of Trig Functions
For ò sin n x cos m x dx we have the following : For ò tan n x sec m x dx we have the following :
1. n odd. Strip 1 sine out and convert rest to                  1.                  n odd. Strip 1 tangent and 1 secant out and
    cosines using sin x = 1 - cos x , then use
                       2            2                                               convert the rest to secants using
    the substitution u = cos x .                                                     tan 2 x = sec 2 x - 1 , then use the substitution
2. m odd. Strip 1 cosine out and convert rest                                        u = sec x .
    to sines using cos 2 x = 1 - sin 2 x , then use             2.                  m even. Strip 2 secants out and convert rest
    the substitution u = sin x .                                                    to tangents using sec2 x = 1 + tan 2 x , then
3. n and m both odd. Use either 1. or 2.                                            use the substitution u = tan x .
4. n and m both even. Use double angle                          3.                  n odd and m even. Use either 1. or 2.
    and/or half angle formulas to reduce the                    4.                  n even and m odd. Each integral will be
    integral into a form that can be integrated.                                    dealt with differently.
Trig Formulas : sin ( 2 x ) = 2sin ( x ) cos ( x ) , cos 2 ( x ) =                 2 (1 + cos ( 2 x ) ) , sin ( x ) = 2 (1 - cos ( 2 x ) )
                                                                                   1                         2        1




Ex. ò tan 3 x sec5 x dx                                                       Ex.              sin5 x
                                                                                       ò cos x dx  3


ò tan       x sec5 xdx = ò tan 2 x sec 4 x tan x sec xdx
        3                                                                                  5                 4                                2   2
                                                                                                                      (sin x ) sin x
                                                                                  ò cos x dx = ò cos x dx = ò cos x dx
                                                                                    sin x        sin x sin x
                                                                                           3                     3                                3

                     = ò ( sec2 x - 1) sec 4 x tan x sec xdx                                      (1- cos x ) sin x  2       2
                                                                                             =ò
                                                                                                        cos x
                                                                                                                    dx   3 ( u = cos x )
                     = ò ( u 2 - 1) u 4 du         ( u = sec x )                                                     2 2
                                                                                             = - ò (1-u ) du = - ò 1-2u +u du
                                                                                                                                                  2   4
                                                                                                       u         3         u                      3
                     = 1 sec7 x - 1 sec5 x + c
                       7          5
                                                                                                       = 1 sec2 x + 2 ln cos x - 1 cos 2 x + c
                                                                                                         2                       2




Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                 © 2005 Paul Dawkins
Calculus Cheat Sheet

Trig Substitutions : If the integral contains the following root use the given substitution and
formula to convert into an integral involving trig functions.
       a 2 - b 2 x 2 Þ x = a sin q
                           b
                                                                                              a
                                                                          b 2 x 2 - a 2 Þ x = b sec q                                      a 2 + b 2 x 2 Þ x = a tan q
                                                                                                                                                               b
               cos 2 q = 1 - sin 2 q                                           tan 2 q = sec 2 q - 1                                          sec2 q = 1 + tan 2 q

         òx                                                                                    ó                          ( 2 cos q ) dq = ò sin2 q dq
                  16
Ex.                             dx                                                                             16                              12
              2
                  4 -9 x 2                                                                     õ    4 sin 2 q ( 2cosq )
                                                                                                    9
                                                                                                                            3

x = 2 sin q Þ dx = 2 cos q dq
    3              3                                                                                                             = ò 12 csc 2 dq = -12 cot q + c
    4 - 9x 2 = 4 - 4sin q = 4 cos q = 2 cos q
                       2         2
                                                                                               Use Right Triangle Trig to go back to x’s. From
Recall x 2 = x . Because we have an indefinite                                                 substitution we have sin q = 32x so,
integral we’ll assume positive and drop absolute
value bars. If we had a definite integral we’d
need to compute q ’s and remove absolute value
bars based on that and,
                    ì x if x ³ 0                                                                                                                          4 -9 x 2
                 x =í                                                                          From this we see that cot q =                                3x
                                                                                                                                                                      . So,
                    î- x if x < 0
                                                                                                                                                        4 -9 x 2
                                                                                                                      òx                   dx = - 4                 +c
                                                                                                                                16
In this case we have                            4 - 9x = 2 cos q .
                                                             2                                                             2
                                                                                                                                4 -9 x 2                  x


                                                                      P( x )
Partial Fractions : If integrating                                ò Q( x) dx where the degree of P ( x ) is smaller than the degree of
Q ( x ) . Factor denominator as completely as possible and find the partial fraction decomposition of
the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the
denominator we get term(s) in the decomposition according to the following table.

              Factor in Q ( x )                     Term in P.F.D Factor in Q ( x )                                                  Term in P.F.D
                                                               A                                                      A1       A2                Ak
                          ax + b                                                  ( ax + b )
                                                                                                k
                                                                                                                          +             +L +
                                                             ax + b                                                 ax + b ( ax + b ) 2
                                                                                                                                             ( ax + b )
                                                                                                                                                        k



                                                        Ax + B                                                        A1 x + B1          Ak x + Bk
                                                                                                                                +L +
                                                                               ( ax       + bx + c )
                                                                                      2                k
                  ax 2 + bx + c                                                                                     ax + bx + c      ( ax 2 + bx + c )
                                                                                                                      2                                k
                                                      ax + bx + c
                                                        2




              7 x2 +13 x
                                                                                                                                + Bx +C =     A( x2 + 4) + ( Bx + C ) ( x -1)
Ex.      ò   ( x -1)( x   2
                              +4)
                                  dx                                                            7 x2 +13 x
                                                                                                           2
                                                                                               ( x -1)( x + 4 )
                                                                                                                     =    A
                                                                                                                         x -1     x2 + 4             ( x -1)( x 2 + 4 )

     7 x2 +13 x                                                                                Set numerators equal and collect like terms.
ò   ( x -1)( x2 + 4 )
                        dx = ò x4 1 + 3xx2+16 dx
                                -         +4
                                                                                                   7 x 2 + 13x = ( A + B ) x 2 + ( C - B ) x + 4 A - C
                   = ò x41 +
                        -
                                        3x
                                       x2 + 4
                                                +    16
                                                    x2 + 4
                                                             dx                                Set coefficients equal to get a system and solve
                   = 4 ln x - 1 + 2 ln ( x 2 + 4 ) + 8 tan -1 ( x )
                                  3                                                            to get constants.
                                                                2
                                                                                                    A+ B = 7          C - B = 13         4A - C = 0
Here is partial fraction form and recombined.
                                                                                                        A=4             B=3                 C = 16

An alternate method that sometimes works to find constants. Start with setting numerators equal in
previous example : 7 x 2 + 13x = A ( x 2 + 4 ) + ( Bx + C ) ( x - 1) . Chose nice values of x and plug in.
For example if x = 1 we get 20 = 5A which gives A = 4 . This won’t always work easily.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                                  © 2005 Paul Dawkins
Calculus Cheat Sheet

                                                          Applications of Integrals
                   b
Net Area :       ò a f ( x ) dx represents the net area between f ( x ) and the
x-axis with area above x-axis positive and area below x-axis negative.



Area Between Curves : The general formulas for the two main cases for each are,
                            b                                                                               d
y = f ( x) Þ A = ò              éupper function ù
                                ë               û   - élower
                                                      ë        function ù dx
                                                                        û      & x = f ( y) Þ A = ò             é right function ù
                                                                                                                ë                û   - éleft
                                                                                                                                       ë       function ù dy
                                                                                                                                                        û
                            a                                                                               c
If the curves intersect then the area of each portion must be found individually. Here are some
sketches of a couple possible situations and formulas for a couple of possible cases.




                                                      d
                                           A = ò f ( y ) - g ( y ) dy
         b                                                                                    c                                b
 A = ò f ( x ) - g ( x ) dx                          c                                 A = ò f ( x ) - g ( x ) dx + ò g ( x ) - f ( x ) dx
        a                                                                                     a                               c



Volumes of Revolution : The two main formulas are V = ò A ( x ) dx and V = ò A ( y ) dy . Here is
some general information about each method of computing and some examples.
                       Rings                                      Cylinders
                       (
         A = p ( outer radius ) - ( inner radius)
                               2                  2
                                                           ) A = 2p ( radius ) ( width / height )
Limits: x/y of right/bot ring to x/y of left/top ring   Limits : x/y of inner cyl. to x/y of outer cyl.
Horz. Axis use f ( x ) ,   Vert. Axis use f ( y ) ,   Horz. Axis use f ( y ) ,  Vert. Axis use f ( x ) ,
g ( x ) , A ( x ) and dx.              g ( y ) , A ( y ) and dy.                g ( y ) , A ( y ) and dy.            g ( x ) , A ( x ) and dx.

Ex. Axis : y = a > 0                  Ex. Axis : y = a £ 0                      Ex. Axis : y = a > 0                Ex. Axis : y = a £ 0




outer radius : a - f ( x )            outer radius: a + g ( x )                 radius : a - y                      radius : a + y
inner radius : a - g ( x )            inner radius: a + f ( x )                 width : f ( y ) - g ( y )           width : f ( y ) - g ( y )

These are only a few cases for horizontal axis of rotation. If axis of rotation is the x-axis use the
 y = a £ 0 case with a = 0 . For vertical axis of rotation ( x = a > 0 and x = a £ 0 ) interchange x and
y to get appropriate formulas.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                    © 2005 Paul Dawkins
Calculus Cheat Sheet

Work : If a force of F ( x ) moves an object                                                       Average Function Value : The average value
                                                                                                                                                                     b
                                                                          b                        of f ( x ) on a £ x £ b is f avg =                             1
                                                                                                                                                                        ò f ( x ) dx
in a £ x £ b , the work done is W = ò F ( x ) dx                                                                                                                 b-a a
                                                                      a


Arc Length Surface Area : Note that this is often a Calc II topic. The three basic formulas are,
         b                                      b                                                                                   b
L = ò ds                      SA = ò 2p y ds (rotate about x-axis)                                                 SA = ò 2p x ds (rotate about y-axis)
         a                                  a                                                                                       a
where ds is dependent upon the form of the function being worked with as follows.

                ( )                                                                               ( dx )               ( )
                         2                                                                                                      2
                             dx if y = f ( x ) , a £ x £ b                                                                          dt if x = f ( t ) , y = g ( t ) , a £ t £ b
                    dy                                                                                     2               dy
ds = 1 +            dx
                                                                                      ds =          dt
                                                                                                               +           dt

             1+ ( )                                                                   ds = r 2 + ( dq ) dq if r = f (q ) , a £ q £ b
                         2                                                                         dr                      2
ds =                dx
                    dy
                             dy if x = f ( y ) , a £ y £ b
With surface area you may have to substitute in for the x or y depending on your choice of ds to
match the differential in the ds. With parametric and polar you will always need to substitute.

                                           Improper Integral
An improper integral is an integral with one or more infinite limits and/or discontinuous integrands.
Integral is called convergent if the limit exists and has a finite value and divergent if the limit
doesn’t exist or has infinite value. This is typically a Calc II topic.

Infinite Limit
         ¥                                  t                                                                      b                                     b
1.   ò           f ( x ) dx = lim ò f ( x ) dx                                                     2.      ò¥              f ( x ) dx = lim         ò f ( x ) dx
         a                     t ®¥         a                                                                  -                            t ®-¥        t
         ¥                          c                             ¥
3.   ò ¥ f ( x ) dx = ò ¥ f ( x ) dx + ò
         -                       -                                c
                                                                      f ( x ) dx provided BOTH integrals are convergent.
Discontinuous Integrand
                                b                                     b                                                                       b                           t
1. Discont. at a: ò f ( x ) dx = lim ò f ( x ) dx
                                    +
                                                                                                   2. Discont. at b : ò f ( x ) dx = lim ò f ( x ) dx
                                                                                                                                        -
                                a                            t ®a     t                                                                      a                   t ®b    a
                                                                  b                   c                        b
3. Discontinuity at a < c < b :                                  ò f ( x ) dx = ò f ( x ) dx + ò f ( x ) dx provided both are convergent.
                                                                  a                   a                        c



Comparison Test for Improper Integrals : If f ( x ) ³ g ( x ) ³ 0 on [ a, ¥ ) then,
             ¥                                           ¥                                                             ¥                                     ¥
1. If ò f ( x ) dx conv. then ò g ( x ) dx conv.                                                   2. If ò g ( x ) dx divg. then ò f ( x ) dx divg.
             a                                           a                                                             a                                     a
                                                     ¥
Useful fact : If a > 0 then                         òa            dx converges if p > 1 and diverges for p £ 1 .
                                                             1
                                                         xp

                                                                 Approximating Definite Integrals
                                        b
For given integral              ò a f ( x ) dx and a n (must be even for Simpson’s Rule) define Dx = b-a
                                                                                                      n                                                                   and

divide [ a, b] into n subintervals [ x0 , x1 ] , [ x1 , x2 ] , … , [ xn -1 , xn ] with x0 = a and xn = b then,

                               ò f ( x ) dx » Dx é f ( x ) + f ( x ) + L + f ( x )ù , xi                                                is midpoint [ xi -1 , xi ]
                                    b
                                                                              *           *                            *            *
Midpoint Rule :                                  ë                            1   û       2                            n
                                a

                                        b      Dx
Trapezoid Rule :                ò f ( x ) dx » 2 é f ( x ) + 2 f ( x ) + +2 f ( x ) + L + 2 f ( x ) + f ( x )ù
                                     a            ë                               0           1              û         2                          n -1           n

                                        b      Dx
Simpson’s Rule :                ò f ( x ) dx » 3 é f ( x ) + 4 f ( x ) + 2 f ( x ) + L + 2 f ( x ) + 4 f ( x ) + f ( x )ù
                                     a            ë                               0           1                    2    û                     n-2                n -1           n


Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                                   © 2005 Paul Dawkins

More Related Content

What's hot

Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equations
arvindpt1
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivativesindu thakur
 
25 surface area
25 surface area25 surface area
25 surface areamath267
 
Functions JC H2 Maths
Functions JC H2 MathsFunctions JC H2 Maths
Functions JC H2 Maths
Math Academy Singapore
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissancesĂmîʼndǿ TrànCè
 
Chapter 11 - Differentiation
Chapter 11 - DifferentiationChapter 11 - Differentiation
Chapter 11 - Differentiation
Muhammad Bilal Khairuddin
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.
Jan Plaza
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
Matthew Leingang
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
soufiane merabti
 
Types of function
Types of function Types of function
Types of function
SanaullahMemon10
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
Curl
CurlCurl
Purely Functional Data Structures in Scala
Purely Functional Data Structures in ScalaPurely Functional Data Structures in Scala
Purely Functional Data Structures in Scala
Vladimir Kostyukov
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
FFMdeMul
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
Solo Hermelin
 

What's hot (20)

Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equations
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
Borland C++Builder 進階課程
Borland C++Builder 進階課程Borland C++Builder 進階課程
Borland C++Builder 進階課程
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Double integration
Double integrationDouble integration
Double integration
 
25 surface area
25 surface area25 surface area
25 surface area
 
The integral
The integralThe integral
The integral
 
Functions JC H2 Maths
Functions JC H2 MathsFunctions JC H2 Maths
Functions JC H2 Maths
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissances
 
Chapter 11 - Differentiation
Chapter 11 - DifferentiationChapter 11 - Differentiation
Chapter 11 - Differentiation
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
 
Types of function
Types of function Types of function
Types of function
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
Curl
CurlCurl
Curl
 
Purely Functional Data Structures in Scala
Purely Functional Data Structures in ScalaPurely Functional Data Structures in Scala
Purely Functional Data Structures in Scala
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 

Similar to Calculus cheat sheet_integrals

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
cea0001
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Matthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Matthew Leingang
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides
Mel Anthony Pepito
 

Similar to Calculus cheat sheet_integrals (20)

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
01 regras diferenciacao
01   regras diferenciacao01   regras diferenciacao
01 regras diferenciacao
 
Business math
Business mathBusiness math
Business math
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
gfg
gfggfg
gfg
 
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides
 

Calculus cheat sheet_integrals

  • 1. Calculus Cheat Sheet Integrals Definitions Definite Integral: Suppose f ( x ) is continuous Anti-Derivative : An anti-derivative of f ( x ) on [ a, b] . Divide [ a, b ] into n subintervals of is a function, F ( x ) , such that F ¢ ( x ) = f ( x ) . width D x and choose x from each interval. Indefinite Integral : ò f ( x ) dx = F ( x ) + c * i ¥ where F ( x ) is an anti-derivative of f ( x ) . ò a f ( x ) dx = n å f ( x ) D x . b * Then lim i ®¥ i =1 Fundamental Theorem of Calculus Part I : If f ( x ) is continuous on [ a, b ] then Variants of Part I : d u( x) f ( t ) dt = u ¢ ( x ) f éu ( x ) ù dx ò a x g ( x ) = ò f ( t ) dt is also continuous on [ a, b ] ë û a d x d b f ( t ) dt = -v¢ ( x ) f év ( x ) ù dx ò v( x ) and g ¢ ( x ) = òa f ( t ) dt = f ( x ) . ë û dx Part II : f ( x ) is continuous on [ a, b ] , F ( x ) is d u( x) f ( t ) dt = u ¢ ( x ) f [ u ( x ) ] - v¢ ( x ) f [ v ( x ) ] dx ò v( x ) an anti-derivative of f ( x ) (i.e. F ( x ) = ò f ( x ) dx ) b then ò f ( x ) dx = F ( b ) - F ( a ) . a Properties ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx ò cf ( x ) dx = c ò f ( x ) dx , c is a constant b b b b b òa f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx òa cf ( x ) dx = c ò f ( x ) dx , c is a constant a a a a b b òa f ( x ) dx = 0 òa f ( x ) dx = ò f ( t ) dt a b a ò a f ( x ) dx = -òb f ( x ) dx b b ò f ( x ) dx £ ò a a f ( x ) dx b a If f ( x ) ³ g ( x ) on a £ x £ b then ò f ( x ) dx ³ ò g ( x ) dx a b b If f ( x ) ³ 0 on a £ x £ b then ò f ( x ) dx ³ 0 a b If m £ f ( x ) £ M on a £ x £ b then m ( b - a ) £ ò f ( x ) dx £ M ( b - a ) a Common Integrals ò k dx = k x + c ò cos u du = sin u + c ò tan u du = ln sec u + c ò x dx = n+1 x + c, n ¹ -1 ò sin u du = - cos u + c ò sec u du = ln sec u + tan u + c n 1 n +1 ò x dx = ò x dx = ln x + c ò sec u du = tan u + c ò a + u du = a tan ( a ) + c -1 1 2 1 u 1 -1 2 2 ò a x + b dx = a ln ax + b + c 1 1 ò sec u tan u du = sec u + c ò a - u du = sin ( a ) + c 1 2 2 u -1 ò ln u du = u ln ( u ) - u + c ò csc u cot udu = - csc u + c ò e du = e + c ò csc u du = - cot u + c u u 2 Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 2. Calculus Cheat Sheet Standard Integration Techniques Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class. ( ) ò a f ( g ( x ) ) g ¢ ( x ) dx = ò g (a ) f ( u ) du b g b u Substitution : The substitution u = g ( x ) will convert using du = g ¢ ( x ) dx . For indefinite integrals drop the limits of integration. cos ( x3 ) dx cos ( x3 ) dx = ò 2 2 8 Ex. ò 1 5x 2 ò 1 5x 2 5 1 3 cos ( u ) du u = x 3 Þ du = 3x 2 dx Þ x 2 dx = 1 du ( sin (8) - sin (1) ) 8 3 = 5 sin ( u ) 1 = 3 5 3 x = 1 Þ u = 1 = 1 :: x = 2 Þ u = 2 = 8 3 3 b b b Integration by Parts : ò u dv = uv - ò v du and ò a u dv = uv a - ò v du . Choose u and dv from a integral and compute du by differentiating u and compute v using v = ò dv . ò xe -x 5 Ex. dx Ex. ò3 ln x dx u=x dv = e- x Þ du = dx v = -e - x u = ln x dv = dx Þ du = 1 dx v = x x ò xe dx = - xe + ò e dx = - xe - e -x -x -x -x -x +c ln x dx = x ln x 3 - ò dx = ( x ln ( x ) - x ) 5 5 5 5 ò3 3 3 = 5ln ( 5) - 3ln ( 3) - 2 Products and (some) Quotients of Trig Functions For ò sin n x cos m x dx we have the following : For ò tan n x sec m x dx we have the following : 1. n odd. Strip 1 sine out and convert rest to 1. n odd. Strip 1 tangent and 1 secant out and cosines using sin x = 1 - cos x , then use 2 2 convert the rest to secants using the substitution u = cos x . tan 2 x = sec 2 x - 1 , then use the substitution 2. m odd. Strip 1 cosine out and convert rest u = sec x . to sines using cos 2 x = 1 - sin 2 x , then use 2. m even. Strip 2 secants out and convert rest the substitution u = sin x . to tangents using sec2 x = 1 + tan 2 x , then 3. n and m both odd. Use either 1. or 2. use the substitution u = tan x . 4. n and m both even. Use double angle 3. n odd and m even. Use either 1. or 2. and/or half angle formulas to reduce the 4. n even and m odd. Each integral will be integral into a form that can be integrated. dealt with differently. Trig Formulas : sin ( 2 x ) = 2sin ( x ) cos ( x ) , cos 2 ( x ) = 2 (1 + cos ( 2 x ) ) , sin ( x ) = 2 (1 - cos ( 2 x ) ) 1 2 1 Ex. ò tan 3 x sec5 x dx Ex. sin5 x ò cos x dx 3 ò tan x sec5 xdx = ò tan 2 x sec 4 x tan x sec xdx 3 5 4 2 2 (sin x ) sin x ò cos x dx = ò cos x dx = ò cos x dx sin x sin x sin x 3 3 3 = ò ( sec2 x - 1) sec 4 x tan x sec xdx (1- cos x ) sin x 2 2 =ò cos x dx 3 ( u = cos x ) = ò ( u 2 - 1) u 4 du ( u = sec x ) 2 2 = - ò (1-u ) du = - ò 1-2u +u du 2 4 u 3 u 3 = 1 sec7 x - 1 sec5 x + c 7 5 = 1 sec2 x + 2 ln cos x - 1 cos 2 x + c 2 2 Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 3. Calculus Cheat Sheet Trig Substitutions : If the integral contains the following root use the given substitution and formula to convert into an integral involving trig functions. a 2 - b 2 x 2 Þ x = a sin q b a b 2 x 2 - a 2 Þ x = b sec q a 2 + b 2 x 2 Þ x = a tan q b cos 2 q = 1 - sin 2 q tan 2 q = sec 2 q - 1 sec2 q = 1 + tan 2 q òx ó ( 2 cos q ) dq = ò sin2 q dq 16 Ex. dx 16 12 2 4 -9 x 2 õ 4 sin 2 q ( 2cosq ) 9 3 x = 2 sin q Þ dx = 2 cos q dq 3 3 = ò 12 csc 2 dq = -12 cot q + c 4 - 9x 2 = 4 - 4sin q = 4 cos q = 2 cos q 2 2 Use Right Triangle Trig to go back to x’s. From Recall x 2 = x . Because we have an indefinite substitution we have sin q = 32x so, integral we’ll assume positive and drop absolute value bars. If we had a definite integral we’d need to compute q ’s and remove absolute value bars based on that and, ì x if x ³ 0 4 -9 x 2 x =í From this we see that cot q = 3x . So, î- x if x < 0 4 -9 x 2 òx dx = - 4 +c 16 In this case we have 4 - 9x = 2 cos q . 2 2 4 -9 x 2 x P( x ) Partial Fractions : If integrating ò Q( x) dx where the degree of P ( x ) is smaller than the degree of Q ( x ) . Factor denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table. Factor in Q ( x ) Term in P.F.D Factor in Q ( x ) Term in P.F.D A A1 A2 Ak ax + b ( ax + b ) k + +L + ax + b ax + b ( ax + b ) 2 ( ax + b ) k Ax + B A1 x + B1 Ak x + Bk +L + ( ax + bx + c ) 2 k ax 2 + bx + c ax + bx + c ( ax 2 + bx + c ) 2 k ax + bx + c 2 7 x2 +13 x + Bx +C = A( x2 + 4) + ( Bx + C ) ( x -1) Ex. ò ( x -1)( x 2 +4) dx 7 x2 +13 x 2 ( x -1)( x + 4 ) = A x -1 x2 + 4 ( x -1)( x 2 + 4 ) 7 x2 +13 x Set numerators equal and collect like terms. ò ( x -1)( x2 + 4 ) dx = ò x4 1 + 3xx2+16 dx - +4 7 x 2 + 13x = ( A + B ) x 2 + ( C - B ) x + 4 A - C = ò x41 + - 3x x2 + 4 + 16 x2 + 4 dx Set coefficients equal to get a system and solve = 4 ln x - 1 + 2 ln ( x 2 + 4 ) + 8 tan -1 ( x ) 3 to get constants. 2 A+ B = 7 C - B = 13 4A - C = 0 Here is partial fraction form and recombined. A=4 B=3 C = 16 An alternate method that sometimes works to find constants. Start with setting numerators equal in previous example : 7 x 2 + 13x = A ( x 2 + 4 ) + ( Bx + C ) ( x - 1) . Chose nice values of x and plug in. For example if x = 1 we get 20 = 5A which gives A = 4 . This won’t always work easily. Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 4. Calculus Cheat Sheet Applications of Integrals b Net Area : ò a f ( x ) dx represents the net area between f ( x ) and the x-axis with area above x-axis positive and area below x-axis negative. Area Between Curves : The general formulas for the two main cases for each are, b d y = f ( x) Þ A = ò éupper function ù ë û - élower ë function ù dx û & x = f ( y) Þ A = ò é right function ù ë û - éleft ë function ù dy û a c If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases. d A = ò f ( y ) - g ( y ) dy b c b A = ò f ( x ) - g ( x ) dx c A = ò f ( x ) - g ( x ) dx + ò g ( x ) - f ( x ) dx a a c Volumes of Revolution : The two main formulas are V = ò A ( x ) dx and V = ò A ( y ) dy . Here is some general information about each method of computing and some examples. Rings Cylinders ( A = p ( outer radius ) - ( inner radius) 2 2 ) A = 2p ( radius ) ( width / height ) Limits: x/y of right/bot ring to x/y of left/top ring Limits : x/y of inner cyl. to x/y of outer cyl. Horz. Axis use f ( x ) , Vert. Axis use f ( y ) , Horz. Axis use f ( y ) , Vert. Axis use f ( x ) , g ( x ) , A ( x ) and dx. g ( y ) , A ( y ) and dy. g ( y ) , A ( y ) and dy. g ( x ) , A ( x ) and dx. Ex. Axis : y = a > 0 Ex. Axis : y = a £ 0 Ex. Axis : y = a > 0 Ex. Axis : y = a £ 0 outer radius : a - f ( x ) outer radius: a + g ( x ) radius : a - y radius : a + y inner radius : a - g ( x ) inner radius: a + f ( x ) width : f ( y ) - g ( y ) width : f ( y ) - g ( y ) These are only a few cases for horizontal axis of rotation. If axis of rotation is the x-axis use the y = a £ 0 case with a = 0 . For vertical axis of rotation ( x = a > 0 and x = a £ 0 ) interchange x and y to get appropriate formulas. Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 5. Calculus Cheat Sheet Work : If a force of F ( x ) moves an object Average Function Value : The average value b b of f ( x ) on a £ x £ b is f avg = 1 ò f ( x ) dx in a £ x £ b , the work done is W = ò F ( x ) dx b-a a a Arc Length Surface Area : Note that this is often a Calc II topic. The three basic formulas are, b b b L = ò ds SA = ò 2p y ds (rotate about x-axis) SA = ò 2p x ds (rotate about y-axis) a a a where ds is dependent upon the form of the function being worked with as follows. ( ) ( dx ) ( ) 2 2 dx if y = f ( x ) , a £ x £ b dt if x = f ( t ) , y = g ( t ) , a £ t £ b dy 2 dy ds = 1 + dx ds = dt + dt 1+ ( ) ds = r 2 + ( dq ) dq if r = f (q ) , a £ q £ b 2 dr 2 ds = dx dy dy if x = f ( y ) , a £ y £ b With surface area you may have to substitute in for the x or y depending on your choice of ds to match the differential in the ds. With parametric and polar you will always need to substitute. Improper Integral An improper integral is an integral with one or more infinite limits and/or discontinuous integrands. Integral is called convergent if the limit exists and has a finite value and divergent if the limit doesn’t exist or has infinite value. This is typically a Calc II topic. Infinite Limit ¥ t b b 1. ò f ( x ) dx = lim ò f ( x ) dx 2. ò¥ f ( x ) dx = lim ò f ( x ) dx a t ®¥ a - t ®-¥ t ¥ c ¥ 3. ò ¥ f ( x ) dx = ò ¥ f ( x ) dx + ò - - c f ( x ) dx provided BOTH integrals are convergent. Discontinuous Integrand b b b t 1. Discont. at a: ò f ( x ) dx = lim ò f ( x ) dx + 2. Discont. at b : ò f ( x ) dx = lim ò f ( x ) dx - a t ®a t a t ®b a b c b 3. Discontinuity at a < c < b : ò f ( x ) dx = ò f ( x ) dx + ò f ( x ) dx provided both are convergent. a a c Comparison Test for Improper Integrals : If f ( x ) ³ g ( x ) ³ 0 on [ a, ¥ ) then, ¥ ¥ ¥ ¥ 1. If ò f ( x ) dx conv. then ò g ( x ) dx conv. 2. If ò g ( x ) dx divg. then ò f ( x ) dx divg. a a a a ¥ Useful fact : If a > 0 then òa dx converges if p > 1 and diverges for p £ 1 . 1 xp Approximating Definite Integrals b For given integral ò a f ( x ) dx and a n (must be even for Simpson’s Rule) define Dx = b-a n and divide [ a, b] into n subintervals [ x0 , x1 ] , [ x1 , x2 ] , … , [ xn -1 , xn ] with x0 = a and xn = b then, ò f ( x ) dx » Dx é f ( x ) + f ( x ) + L + f ( x )ù , xi is midpoint [ xi -1 , xi ] b * * * * Midpoint Rule : ë 1 û 2 n a b Dx Trapezoid Rule : ò f ( x ) dx » 2 é f ( x ) + 2 f ( x ) + +2 f ( x ) + L + 2 f ( x ) + f ( x )ù a ë 0 1 û 2 n -1 n b Dx Simpson’s Rule : ò f ( x ) dx » 3 é f ( x ) + 4 f ( x ) + 2 f ( x ) + L + 2 f ( x ) + 4 f ( x ) + f ( x )ù a ë 0 1 2 û n-2 n -1 n Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins