SlideShare a Scribd company logo
(1) Area Below x axis
                        Areas
           y
                                    y = f(x)




                                x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x


 f  x dx  0
 b

a
(1) Area Below x axis
                               Areas
             y
                                           y = f(x)


                          A1


                      a        b       x


   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                               Areas
             y
                                                y = f(x)


                          A1

                                        c   x
                      a        b   A2

   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b


 A1   f  x dx
              b

             a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b

                                             A2    f  x dx
                                                         c
 A1   f  x dx
              b

             a                                           b
Area below x axis is given by;
Area below x axis is given by;

                 A    f  x dx
                        c

                        b
Area below x axis is given by;

                 A    f  x dx
                         c

                         b

                        OR

                         f  x dx
                         c
                    
                        b
Area below x axis is given by;

                 A    f  x dx
                            c

                         b

                        OR

                         f  x dx
                            c
                    
                        b


                            OR
                      f  x dx
                        b

                        c
e.g. (i)        y       y  x3




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0




           -1       1   x
e.g. (i)        y       y  x3          0         1
                                 A    x dx   x 3 dx
                                            3
                                       1         0


                                  
                                       4
                                         x 1  4 x 0
                                       1 40 1 41

           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                  
                                      4
                                        x 1  4 x 0
                                      1 40 1 41

           -1       1   x             1
                                      4
                                                 4
                                                     
                                    0   1   4  0
                                                      1
                                                      4
                                                         1

                                    1 1
                                   
                                    4 4
                                    1
                                   units 2
                                    2
e.g. (i)        y             y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
                                         units 2
                                          2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
    4  0
   1
     1
   2
   1
   units 2
   2
(ii)             y   y  x x  1 x  2 




       -2   -1         x
(ii)                           y    y  x x  1 x  2 




        -2            -1              x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                      0
                  3        2
             2                      1
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                     1
           4
                            2  4
                                               0
                                                 
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                        1
           4
                             2  4
                                                    0
                                                      
          2 1  14   13   12    1  2 4   2 3   2 2   0
                                                                            
              4                              4                             
           1
          units 2
           2
(2) Area On The y axis
 y
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)                        d
                               3 A   g  y dy
                                        c
                   (a,c)

                           x
(2) Area On The y axis                (1) Make x the subject
  y                                        i.e. x = g(y)
       y = f(x)                       (2) Substitute the y coordinates
             (b,d)                             d
                                      3 A   g  y dy
                                               c
                     (a,c)
                               x

e.g.        y                y  x4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                               d
                                        3 A   g  y dy
                                                 c
                     (a,c)
                               x

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                               x         A   y dy
                                                  4

                                             1

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4

                                             4  5 5
                                            16 4  14 
                                             5          
                     1   2     x             124
                                                units 2
                                              5
(3) Area Between Two Curves
 y




                              x
(3) Area Between Two Curves
 y                                y = f(x)…(1)




                              x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




                                     x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




     a          b                    x
(3) Area Between Two Curves
 y                       y = g(x)…(2)         y = f(x)…(1)




      a           b                      x

     Area = Area under (1) – Area under (2)
(3) Area Between Two Curves
 y                            y = g(x)…(2)       y = f(x)…(1)




      a              b                       x

     Area = Area under (1) – Area under (2)
            b             b
            f  x dx   g  x dx
            a             a
(3) Area Between Two Curves
 y                             y = g(x)…(2)       y = f(x)…(1)




      a               b                       x

     Area = Area under (1) – Area under (2)
            b              b
            f  x dx   g  x dx
            a              a
            b
             f  x   g  x dx
            a
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
             x x
              5
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx




                          x
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
                                              1 1 2  1 1 6   0
                                               
             x  0 or x  1                             
                                              2       6     
                                              1
                                              unit 2
                                              3
2002 HSC Question 4d)




The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                         x2  5x  4  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
                        A is (1, 3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4
                       1 x3  5 x 2  4 x 
                    
                      3        2           1
                                            
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                      
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
     y  x  4.         4
                   A    x  4   x 2  4 x  dx
                        1
                        4
                        x 2  5 x  4 dx
                        1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                    
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
                        9
                         units 2
                        2
2005 HSC Question 8b)                                              (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3       2            
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                      2        0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
                          5  units 2
                                 
                              6
Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*


     Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

More Related Content

What's hot

X2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculusX2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculus
Nigel Simmons
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
Kelly Scallion
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
Nigel Simmons
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
zwaneroger8912
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Nigel Simmons
 
Figures
FiguresFigures
Figures
Drradz Maths
 
Cg
CgCg
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
samhui48
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
Nigel Simmons
 

What's hot (10)

X2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculusX2 T04 01 curve sketching - basic features/ calculus
X2 T04 01 curve sketching - basic features/ calculus
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Figures
FiguresFigures
Figures
 
Cg
CgCg
Cg
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 

Viewers also liked

11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
Nigel Simmons
 
X2 T04 07 curve sketching - other graphs
X2 T04 07 curve sketching - other graphsX2 T04 07 curve sketching - other graphs
X2 T04 07 curve sketching - other graphs
Nigel Simmons
 
X2 T05 02 trig integrals (2010)
X2 T05 02 trig integrals (2010)X2 T05 02 trig integrals (2010)
X2 T05 02 trig integrals (2010)Nigel Simmons
 
11X1 T17 05 volumes
11X1 T17 05 volumes11X1 T17 05 volumes
11X1 T17 05 volumes
Nigel Simmons
 
11X1 T14 04 sums of a sequence (2010)
11X1 T14 04 sums of a sequence (2010)11X1 T14 04 sums of a sequence (2010)
11X1 T14 04 sums of a sequence (2010)Nigel Simmons
 
11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)Nigel Simmons
 
X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)Nigel Simmons
 
11X1 T09 01 limits and continuity (2010)
11X1 T09 01 limits and continuity (2010)11X1 T09 01 limits and continuity (2010)
11X1 T09 01 limits and continuity (2010)
Nigel Simmons
 
11X1 T08 01 radian measure (2010)
11X1 T08 01 radian measure (2010)11X1 T08 01 radian measure (2010)
11X1 T08 01 radian measure (2010)
Nigel Simmons
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
Nigel Simmons
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
Nigel Simmons
 
X2 T07 06 banked curves (2010)
X2 T07 06 banked curves (2010)X2 T07 06 banked curves (2010)
X2 T07 06 banked curves (2010)
Nigel Simmons
 
11X1 T06 01 permutations I
11X1 T06 01 permutations I11X1 T06 01 permutations I
11X1 T06 01 permutations I
Nigel Simmons
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
Nigel Simmons
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)
Nigel Simmons
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
Nigel Simmons
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
Nigel Simmons
 

Viewers also liked (20)

11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)11X1 T14 05 sum of an arithmetic series (2010)
11X1 T14 05 sum of an arithmetic series (2010)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)11X1 T14 06 sum of a geometric series (2010)
11X1 T14 06 sum of a geometric series (2010)
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
 
X2 T04 07 curve sketching - other graphs
X2 T04 07 curve sketching - other graphsX2 T04 07 curve sketching - other graphs
X2 T04 07 curve sketching - other graphs
 
X2 T05 02 trig integrals (2010)
X2 T05 02 trig integrals (2010)X2 T05 02 trig integrals (2010)
X2 T05 02 trig integrals (2010)
 
11X1 T17 05 volumes
11X1 T17 05 volumes11X1 T17 05 volumes
11X1 T17 05 volumes
 
11X1 T14 04 sums of a sequence (2010)
11X1 T14 04 sums of a sequence (2010)11X1 T14 04 sums of a sequence (2010)
11X1 T14 04 sums of a sequence (2010)
 
11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)
 
X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)
 
11X1 T09 01 limits and continuity (2010)
11X1 T09 01 limits and continuity (2010)11X1 T09 01 limits and continuity (2010)
11X1 T09 01 limits and continuity (2010)
 
11X1 T08 01 radian measure (2010)
11X1 T08 01 radian measure (2010)11X1 T08 01 radian measure (2010)
11X1 T08 01 radian measure (2010)
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
 
X2 T07 06 banked curves (2010)
X2 T07 06 banked curves (2010)X2 T07 06 banked curves (2010)
X2 T07 06 banked curves (2010)
 
11X1 T06 01 permutations I
11X1 T06 01 permutations I11X1 T06 01 permutations I
11X1 T06 01 permutations I
 
11X1 T08 05 product rule
11X1 T08 05 product rule11X1 T08 05 product rule
11X1 T08 05 product rule
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)
 
11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)11 X1 T01 09 Completing The Square (2010)
11 X1 T01 09 Completing The Square (2010)
 
12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams12X1 T09 02 tree diagrams
12X1 T09 02 tree diagrams
 

Similar to 11X1 T17 04 areas

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
Nigel Simmons
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
Oladokun Sulaiman Olanrewaju
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
Nigel Simmons
 
Business math
Business mathBusiness math
Business math
sanjida_yeasmin
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
cea0001
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
Silvius
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
taha25
 
Derivadas
DerivadasDerivadas
Derivadas
romgarcia
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
Kelly Scallion
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
akabaka12
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
ikhulsys
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Mohd Paub
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Nigel Simmons
 
Cs 601
Cs 601Cs 601
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
Kelly Scallion
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
Nigel Simmons
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
Himani Asija
 

Similar to 11X1 T17 04 areas (20)

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
 
Business math
Business mathBusiness math
Business math
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Derivadas
DerivadasDerivadas
Derivadas
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Cs 601
Cs 601Cs 601
Cs 601
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
sayalidalavi006
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 

11X1 T17 04 areas

  • 1. (1) Area Below x axis Areas y y = f(x) x
  • 2. (1) Area Below x axis Areas y y = f(x) A1 a b x
  • 3. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a
  • 4. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a  A1   f  x dx b a
  • 5. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 b a  A1   f  x dx b a
  • 6. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A1   f  x dx b a
  • 7. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A2    f  x dx c  A1   f  x dx b a b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b
  • 11. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b OR   f  x dx b c
  • 12. e.g. (i) y y  x3 -1 1 x
  • 13. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0 -1 1 x
  • 14. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x
  • 15. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   4 4 1  units 2 2
  • 16. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1  units 2 2
  • 17. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2
  • 18. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2
  • 19. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2   4  0 1 1 2 1  units 2 2
  • 20. (ii) y y  x x  1 x  2  -2 -1 x
  • 21. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1
  • 22. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0 
  • 23. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0   2 1  14   13   12    1  2 4   2 3   2 2   0     4   4  1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 x y 4 1 2 x
  • 30. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 e.g. y y  x4 1 x y 4 1 2 x
  • 31. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 1 2 x
  • 32. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 4  5 5  16 4  14  5  1 2 x 124  units 2 5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a
  • 39. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a b    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 x  0 or x  1
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 1 1 2  1 1 6   0    x  0 or x  1  2 6  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4.
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x    3 2 1 
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2 
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  9  units 2 2
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2 
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2     5  units 2   6
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*