SlideShare a Scribd company logo
1 of 47
Download to read offline
Volumes of Solids
  of Revolution
 y
            y = f(x)


              x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
        of Revolution
           y
                                             y = f(x)


                 a                       b     x



Volume of a solid of revolution about;
Volumes of Solids
        of Revolution
            y
                                                 y = f(x)


                  a                         b      x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                            b
                                                           a
Volumes of Solids
        of Revolution
            y
                                                  y = f(x)


                  a                         b        x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                             b
                                                            a

                                        ii  y axis : V   c x 2 dy
                                                                 d
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0




                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0

                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                             m h  0 
                              1 2 3
                h x           3
                              1 2 3
                             m h
                              3
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                r
                             m h  0 
                              1 2 3
                h x           3
                              1 2 3
                             m h
                              3
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                       2 1 3 
                                    m  x 
                                         3  0
                       r
                                    m h  0 
                                     1 2 3
                       h x           3
                                     1 2 3
                                    m h
                                     3
                   r
                m
                   h
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                         2 1 3 
                                    m  x 
                                           3  0
                       r
                                    m h  0 
                                     1 2 3
                       h x           3
                                     1 2 3
                                    m h
                                     3        2
                   r
                                       h3
                m                   1 r
                                          
                   h                 3 h
                                     r 2 h 3
                                   
                                      3h 2
                                     r 2 h
                                   
                                       3
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0


                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
                                                      1  
                                      2  r 2 r   r 3   0
                                           
                                                     3  
                                          2 3
                                      2  r 
                                          3 
                                       4
                                      r 3
                                       3
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V       x 2 dy
                                           1
              1                           ydy
                                           0




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y    2 1
                                                     0

                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y     2 1
                                                      0

                           x
                                          
                                             1   2
                                                        0
                                          2
                                          
                                                 units    3

                                          2
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y
                      y  5x
      5



                     x
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
                                 25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
 OR                              25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                 1                    1 1 13 0
 OR V  r 2 h  r 2 h          25             
                 3                     3            
        2                         50
        5 1               
                2
                                       unit 3
        3                          3
        50
             units 3
          3
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                         x 2  12  2 x 2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
                         meet at  2, 4 
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
           1  
  V   6   y  dy  ydy
        0
             2      4
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6    y  dy    ydy
        0
              2        4
                    4         12

      6 y  y     y 
              1 2       1 2
        
             4 0      2 4
                       
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
     84 units3
Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad,
      12, 16a, 19 to 22, 24*, 25*

More Related Content

What's hot

Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplifiedmarwan a
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZSANTIAGO PABLO ALBERTO
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)Nigel Simmons
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADASEducación
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)Nigel Simmons
 
Diego vega deber 29 03-11
Diego vega deber 29 03-11Diego vega deber 29 03-11
Diego vega deber 29 03-11diego
 

What's hot (9)

Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
Diego vega deber 29 03-11
Diego vega deber 29 03-11Diego vega deber 29 03-11
Diego vega deber 29 03-11
 

Viewers also liked

PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesStephen Kwong
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areasJulio Banks
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bmSameer Mathur
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arcLawrence De Vera
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washersdicosmo178
 
Lesson 13 algebraic curves
Lesson 13    algebraic curvesLesson 13    algebraic curves
Lesson 13 algebraic curvesJean Leano
 
Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lawrence De Vera
 
Parametric equations
Parametric equationsParametric equations
Parametric equationsTarun Gehlot
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curvesJean Leano
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLawrence De Vera
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a bodyetcenterrbru
 
The washer method
The washer methodThe washer method
The washer methodRon Eick
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volumeLawrence De Vera
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equationsJean Leano
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioidsnicportugal
 

Viewers also liked (20)

Resume1
Resume1Resume1
Resume1
 
PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar Coordinates
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areas
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bm
 
Calc 7.2a
Calc 7.2aCalc 7.2a
Calc 7.2a
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers
 
Lesson 13 algebraic curves
Lesson 13    algebraic curvesLesson 13    algebraic curves
Lesson 13 algebraic curves
 
Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Parametric equations
Parametric equationsParametric equations
Parametric equations
 
C4 parametric curves_lesson
C4 parametric curves_lessonC4 parametric curves_lesson
C4 parametric curves_lesson
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curves
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
The washer method
The washer methodThe washer method
The washer method
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equations
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
 

Similar to 11 x1 t16 05 volumes (2012)

11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.Garden City
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De DecisionESCOM
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Testguest3952880
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 

Similar to 11 x1 t16 05 volumes (2012) (20)

11X1 T17 05 volumes
11X1 T17 05 volumes11X1 T17 05 volumes
11X1 T17 05 volumes
 
11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De Decision
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

11 x1 t16 05 volumes (2012)

  • 1. Volumes of Solids of Revolution y y = f(x) x
  • 2. Volumes of Solids of Revolution y y = f(x) a b x
  • 3. Volumes of Solids of Revolution y y = f(x) a b x
  • 4. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about;
  • 5. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a
  • 6. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a ii  y axis : V   c x 2 dy d
  • 7. e.g. (i) cone y y  mx h x
  • 8. e.g. (i) cone y y  mx h x
  • 9. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h x
  • 10. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 h x
  • 11. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0  m h  0  1 2 3 h x 3 1 2 3  m h 3
  • 12. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3
  • 13. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3 r m h
  • 14. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3 2 r     h3 m 1 r   h 3 h r 2 h 3  3h 2 r 2 h  3
  • 15. (ii) sphere y x2  y2  r 2 rx
  • 16. (ii) sphere y x2  y2  r 2 rx
  • 17. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 rx
  • 18. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0 
  • 19. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0   1    2  r 2 r   r 3   0   3   2 3  2  r  3  4  r 3 3
  • 20. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1.
  • 21. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 x
  • 22. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 23. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 24. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0 x
  • 25. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x
  • 26. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x   1 2  0 2   units 3 2
  • 27. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y y  5x 5 x
  • 28. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0
  • 29. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0 
  • 30. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 31. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0 OR  25      3  50  unit 3 3
  • 32. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 1 13 0 OR V  r 2 h  r 2 h  25     3  3  2 50   5 1  2 unit 3 3 3 50  units 3 3
  • 33. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1)
  • 34. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2
  • 35. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2
  • 36. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2  meet at  2, 4 
  • 37. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 38. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 39. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 40. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 41. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y V    x 2 dy
  • 42. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2
  • 43. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4
  • 44. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4 
  • 45. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2 
  • 46. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2   84 units3
  • 47. Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad, 12, 16a, 19 to 22, 24*, 25*