DEFINITE INTEGRALS
OBJECTIVES
At the end of the lesson, the students are expected to:
• define and interpret definite integral.
• identify and distinguish the different properties of the definite
integrals.
• evaluate definite integrals.
• understand and use the mean Value Theorem for Integrals.
• find the average value of a function over a closed interval.
If F(x) is the integral of f(x)dx, that is, F’(x) = f(x)dx and if a and b are
constants, then the definite integral is:
 
)a(F)b(F
xFdx)x(f
b
a
b
a


where a and b are called lower and upper limits of
integration, respectively.
The definite integral link the concept of area to other important
concepts such as length, volume, density, probability, and other
work.
THE DEFINITE INTEGRAL
0 1
23 2
 xy
It can be used to find an area bounded, in part, by a curve
e.g.
 
1
0
2
23 dxx gives the area shaded on the graph
The limits of integration . . .
Definite integration results in a value.
Areas
. . . give the boundaries of the area.
The limits of integration . . .
0 1
23 2
 xy
It can be used to find an area bounded, in part, by a curve
Definite integration results in a value.
Areas
x = 0 is the lower limit
( the left hand boundary )
x = 1 is the upper limit
(the right hand boundary )
   dxx 23 2
0
1
e.g. gives the area shaded on the graph
0 1
23 2
 xy
Finding an area
the shaded area equals 3
The units are usually unknown in this type of question
  
1
0
2
23 dxxSince
3
1
0



 xx 23

xxy 22
xxy 22

Finding an area
 


0
1
2
2 dxxxAarea
A B
  
1
0
2
2 dxxxBarea
For parts of the curve below the x-
axis, the definite integral is negative,
so
EXAMPLE
EXERCISES
INTEGRATION OF ABSOLUTE VALUE FUNCTION
0xif
0xif
xRe






x
x
call
INTEGRATION OF ABSOLUTE VALUE FUNCTION
EXAMPLE dxx.1
4
2
1082
0
2
)4(
2
)2(
0
22
x
224
0
20
2
2
4
0
0
2
4
2






 









 
xx
xdxxdxdx
1st solution
0xif
0xif
x






x
x
0 1-2 32 4-1
0x
0x
2nd solution
(4,4)4;(4)f
(0,0)0;(0)f
,2)(-22;f(-2)
y)(x,
xf(x)



let
-1 1-2 432
(4,4)
(-2,2)
0
8)4)(4(
2
1
2)2)(2(
2
1
2
1


A
A
10
82
21
4
2



AAdxx


3
3
1.2 dxx
1st solution
 





1x0,x-1if1
1x0,x-1if1
1
x
x
x
   
10
2
20
2
1
2
3
2
15
2
1
22
x
-x
111
3
1
21
3
2
3
1
1
3
3
3










 
x
x
dxxdxxdxx
2nd solution
(3,2)2;(3)f
(1,0)0;(1)f
,4)(-34;f(-3)
y)(x,
x-1f(x)



let
-1 1-2-3 32
(3,2)
(-3,4)
0
2)2)(2(
2
1
8)4)(4(
2
1
2
1


A
A
10
28
1 21
3
3



AAdxx
EXERCISES
INTEGRATION OF ODD AND EVEN FUNCTIONS
 
 x-integers,oddFor
;x-integers,evenFor
:Re
nn
nn
x
x
call


fofdomainxallforf(x)f(-x)ifevenbetosaidis Function
fofdomainxallforf(x)f(-x)ifoddbetosaidis Function
The graph of an even function is symmetric about the y-axis.
The graph of an odd function is symmetric about the origin.
oddisfunctionthebecausedt
t
t
0
1
3
3 2
3


EXAMPLE
INTEGRATION OF PIECEWISE FUNCTION
EXAMPLE








4x0,2
2
1
0x2-,2
f(x);)(.1
2
4
2
x
x
dxxf
solution
 
3
56
x2
4
x
3
x
x2
dx2x
2
1
dxx2dx)x(f
4
0
20
2
3
0
2
4
0
2
4
2















  









6
6
0
0
2-
.
4
2
2
)(.)(.
)()(.
0,2
0,2
)(
int,.1
dxxfddxxfb
dxxfcdxxfa
xifx
xifx
xf
thatgivenegraltheevaluateparteachIn
EXERCISES









5
10
1
1
0
.
2
1
1
1
)(.)(.
)()(.
1,2
1,2
)(
int,.2
dxxfddxxfb
dxxfcdxxfa
xif
xifx
xf
thatgivenegraltheevaluateparteachIn
EXERCISES
b c
Area =0.8
Area =2.6
Area =1.5


d
a
c
b
c
a
b
a
dx)x(f.ddx)x(f.b
f(x)dx.cdx)x(f.a
findtofiguretheinshownareastheUse
d
a
Answers :
0.8dx)x(f.a
b
a

2.6dx)x(f.b
c
b

-0.32.6-1.50.8dx)x(f.d
d
a

1.8-2.6-0.8f(x)dx.c
c
a

OTHER EXAMPLE
Find the definite integral of the following
The mean value theorem for integrals state that somewhere
“between” the inscribed and the circumscribed rectangles there is a
rectangle whose area is precisely equal to the area of the region
under the curve.
EXRCISES
Find the value(s) of c guaranteed by the Mean Value Theorem for
Integrals for the function over the given interval.
Find the average value of the function over the given interval.
EXRCISES

Lesson 8 the definite integrals