DIFFERENTIATION OF
HYPERBOLIC FUNCTIONS
TRANSCENDENTAL FUNCTIONS
Kinds of transcendental functions:
1.logarithmic and exponential functions
2.trigonometric and inverse trigonometric
functions
3.hyperbolic and inverse hyperbolic functions
Note:
Each pair of functions above is an inverse to
each other.
HYPERBOLIC IDENTITIES
DIFFERENTIATION FORMULA
Derivative of Hyperbolic Function
A. Find the derivative of each of the following functions
and simplify the result:
x2coshxsinhy.1 =
)xcoshxsinh(xcosh'y
)xsinhx(coshxcosh)xcoshxsinh(xsinh'y
xcoshxcoshxsinhxsinh'y
22
22
5
22
222
+=
++=
+=
xhsecxy.2 =
xhsec)xtanhxhsec(x'y +−=
xhsecy.3 2
=
xtanhxhsecxhsec2'y −=
xhsecxcothy.5 =
)xhcsc(xhsec)xtanhxhsec(xcoth'y 2
−+−=
2
xsinhlny.4 =
2
2
xsinh
xcoshx2
'y =
EXAMPLE:
)xtanhx1(xhsec'y −=
xtanhxhsec2'y 2
−=
2
xcothx2'y =
[ ]xhcscxtanhxcothxhsec'y 2
+−=
[ ]xhcsc1xhsec'y 2
+−=
hxcscxcothy
xcothxhsec'y
'
−=
−= 2
xcothlny.6 2
=
xcoth
xhcscxcoth2
'y 2
2
−
=
xcotharccosy.7 =
xcoth1
xhcsc
'y
2
2
−
−
−=
xhcscxhcsc
xhcscxhcsc
'y
22
22
−•−
−•
=
xsinh
xcosh
xsinh
1
2
'y
2
−
=
2
2
xsinhxcosh
2
'y •
−
=
x2sinh
4
'y −=
x2hcsc4'y −=
xhcsc
xhcsc
'y
2
2
−
=
xhcsc'y 2
−=
)xharctan(siny.8 2
=
( )22
2
xcosh
xcoshx2
'y =
2
xhsecx2'y =
( )22
2
xsinh1
xcoshx2
'y
+
=
A. Find the derivative and simplify the result.
( ) 2
xsinhxf.1 =
( ) w4hsecwF.2 2
=
( ) 3
xtanhxG.3 =
( ) 3
tcoshtg.4 =
( )
x
1
cothxh.5 =
( ) ( )xtanhlnxg.6 =
EXERCISES:
( ) ( )ylncothyf.7 =
( ) xcoshexh.8 x
=
( ) ( )x2sinhtanxf.9 1−
=
( ) ( )x
xsinhxg.10 =
( ) ( )21
xtanhsinxg.11 −
=
( ) 0x,xxf.12 xsinh
>=
Hyperbolic Functions Trigonometric Functions
1xsinhxcosh 22
=−
xhsecxtanh1 22
=−
xhcsc1xcoth 22
=−
ysinhxcoshycoshxsinh)yxsinh( ±=±
( ) ysinhxsinhycoshxcoshyxcosh ±=±
( )
ytanhxtanh1
ytanhxtanh
yxtanh
±
±
=± ( )
ytanxtan1
ytanxtan
yxtan

±
=±
( ) ysinxsinycosxcosyxcos =±
( ) ysinxcosycosxsinyxsin ±=±
xx 22
sectan1 =+
1sincos 22
=+ xx
xcsc1xcot 22
=+
Identities: Hyperbolic Functions vs. Trigonometric Functions
Hyperbolic Functions Trigonometric Functions
Identities: Hyperbolic Functions vs. Trigonometric Functions
sinh 2x = 2 sinh x cosh x
( ) 2/1x2coshxsinh2
−=
( ) 2/1x2coshxcosh2
+=
x
exsinhxcosh =+
x
exsinhxcosh −
=−
( ) 2/x2cos1xcos2
+=
( ) 2/x2cos1xsin2
−=
cos 2x = cos2
x – sin2
x
sin 2x = 2sinx cosx
cosh 2x = cosh2
x +sinh2
x
Lesson 3 derivative of hyperbolic functions

Lesson 3 derivative of hyperbolic functions

  • 1.
  • 2.
    TRANSCENDENTAL FUNCTIONS Kinds oftranscendental functions: 1.logarithmic and exponential functions 2.trigonometric and inverse trigonometric functions 3.hyperbolic and inverse hyperbolic functions Note: Each pair of functions above is an inverse to each other.
  • 5.
  • 6.
  • 7.
    A. Find thederivative of each of the following functions and simplify the result: x2coshxsinhy.1 = )xcoshxsinh(xcosh'y )xsinhx(coshxcosh)xcoshxsinh(xsinh'y xcoshxcoshxsinhxsinh'y 22 22 5 22 222 += ++= += xhsecxy.2 = xhsec)xtanhxhsec(x'y +−= xhsecy.3 2 = xtanhxhsecxhsec2'y −= xhsecxcothy.5 = )xhcsc(xhsec)xtanhxhsec(xcoth'y 2 −+−= 2 xsinhlny.4 = 2 2 xsinh xcoshx2 'y = EXAMPLE: )xtanhx1(xhsec'y −= xtanhxhsec2'y 2 −= 2 xcothx2'y = [ ]xhcscxtanhxcothxhsec'y 2 +−= [ ]xhcsc1xhsec'y 2 +−= hxcscxcothy xcothxhsec'y ' −= −= 2
  • 8.
    xcothlny.6 2 = xcoth xhcscxcoth2 'y 2 2 − = xcotharccosy.7= xcoth1 xhcsc 'y 2 2 − − −= xhcscxhcsc xhcscxhcsc 'y 22 22 −•− −• = xsinh xcosh xsinh 1 2 'y 2 − = 2 2 xsinhxcosh 2 'y • − = x2sinh 4 'y −= x2hcsc4'y −= xhcsc xhcsc 'y 2 2 − = xhcsc'y 2 −=
  • 9.
    )xharctan(siny.8 2 = ( )22 2 xcosh xcoshx2 'y= 2 xhsecx2'y = ( )22 2 xsinh1 xcoshx2 'y + =
  • 10.
    A. Find thederivative and simplify the result. ( ) 2 xsinhxf.1 = ( ) w4hsecwF.2 2 = ( ) 3 xtanhxG.3 = ( ) 3 tcoshtg.4 = ( ) x 1 cothxh.5 = ( ) ( )xtanhlnxg.6 = EXERCISES: ( ) ( )ylncothyf.7 = ( ) xcoshexh.8 x = ( ) ( )x2sinhtanxf.9 1− = ( ) ( )x xsinhxg.10 = ( ) ( )21 xtanhsinxg.11 − = ( ) 0x,xxf.12 xsinh >=
  • 11.
    Hyperbolic Functions TrigonometricFunctions 1xsinhxcosh 22 =− xhsecxtanh1 22 =− xhcsc1xcoth 22 =− ysinhxcoshycoshxsinh)yxsinh( ±=± ( ) ysinhxsinhycoshxcoshyxcosh ±=± ( ) ytanhxtanh1 ytanhxtanh yxtanh ± ± =± ( ) ytanxtan1 ytanxtan yxtan  ± =± ( ) ysinxsinycosxcosyxcos =± ( ) ysinxcosycosxsinyxsin ±=± xx 22 sectan1 =+ 1sincos 22 =+ xx xcsc1xcot 22 =+ Identities: Hyperbolic Functions vs. Trigonometric Functions
  • 12.
    Hyperbolic Functions TrigonometricFunctions Identities: Hyperbolic Functions vs. Trigonometric Functions sinh 2x = 2 sinh x cosh x ( ) 2/1x2coshxsinh2 −= ( ) 2/1x2coshxcosh2 += x exsinhxcosh =+ x exsinhxcosh − =− ( ) 2/x2cos1xcos2 += ( ) 2/x2cos1xsin2 −= cos 2x = cos2 x – sin2 x sin 2x = 2sinx cosx cosh 2x = cosh2 x +sinh2 x