The document discusses the chi-square test, which is used to determine if an observed frequency distribution differs from an expected theoretical distribution. It can be used as a test of independence to determine if two variables are associated, and as a test of goodness of fit to assess how well an expected distribution fits observed data. The steps of the chi-square test are outlined, including calculating the test statistic, determining degrees of freedom, and comparing the statistic to critical values to determine if the null hypothesis can be rejected. An example of a chi-square test of independence is shown to test if perceptions of fairness of performance evaluation methods are independent of each other.