VECTOR CALCULUS
BY ARJUN RASTOGI
DEFINITION
• Vector calculus (or vector analysis) is a
branch of mathematics concerned with
differentiation and integration
of vector fields, primarily in 3-dimensional
Euclidean space
Basic objects
• Scalar fields
A scalar field associates a scalar value to every 
point in a space. The scalar may either be 
a mathematical number or a physical quantity 
• Vector fields
A vector field is an assignment of a vector to each 
point in a subset of space. A vector field in the 
plane, for instance, can be visualized as a 
collection of arrows with a given magnitude and 
direction each attached to a point in the plane. 
Vectors and pseudovectors
one further distinguishes pseudo 
vector fields and pseudo scalar fields, 
which are identical to vector fields and 
scalar fields except that they change sign 
under an orientation-reversing map .
Vector operations
• scalar vector multiplication
multiplication of a scalar field and a vector field,
yielding a vector field
Scalar vector addition
addition of two vector fields, yielding a
vector field:
• dot product
multiplication of two vector fields, yielding a
scalar field:
• cross product
multiplication of two vector fields, yielding a vector field:
• scalar triple product
the dot product of a vector and a cross product of two
vectors:
• vector triple product
the cross product of a vector and a cross product of two
vectors:
• cross product
multiplication of two vector fields, yielding a vector field:
• scalar triple product
the dot product of a vector and a cross product of two
vectors:
• vector triple product
the cross product of a vector and a cross product of two
vectors:

Vector calculus