Subject :- Complex Variable & Numerical Method
(2141905)
Topic :- Transformations
Branch :- Mechanical
Semester :- 4th
•Made By :-
-Digvijasinh Gohil(150990119008)
-Jaimin Prajapati (150990119010)
-Abhijitsinh Kher (150990119012)
Guided By :-
Dr. Purvi Naik
Inversion
A transformation of the form 𝑤 =
1
𝑧
is called inversion.
This transformation maps circle & line into circle & line.
Ex.1:- Find the image of the line 𝑥 − 𝑦 = 1 under the transformation 𝑤 =
1
𝑧
.
Solution:
z
w
1

w
z
1

Comparing real & imaginary parts,
Given 𝑥 − 𝑦 = 1,
Substituting 𝑥 & 𝑦,
22
vu
ivu
iyx



22
vu
v
y



22
vu
u
x


12222









 vu
v
vu
u
vuvu  22
Which represents a circle with the centre at
1
2
,
1
2
and radius
1
2
.
022
 vuvu
2
1
2
1
2
1
22












 vu
Ex.2 :- Find the image of 𝑧 + 1 = 1 under the mapping 𝑤 =
1
𝑧
.
Solution:
z
w
1

w
z
1

ivu 

1
22
vu
ivu
iyx



Comparing real and imaginary parts,
Given
,22
vu
u
x


22
vu
v
y



11 z
11  iyx
1)1(
2
 iyx
1)1( 22
 yx
1222
 xyx
Substituting 𝑥 & 𝑦,
02
2
2222
2
22





















 vu
v
vu
u
vu
u
 
0
2
22222
22





vu
u
vu
vu
0
21
22



vu
u
021  u
2
1
u
Which represent a straight line.
Hence, the image of the circle 𝑧 + 1 = 1 in z-plane is the straight
line 𝑢 = −
1
2
in the w-plane .
Ex.3 :- Find the image of 𝑧 + 2𝑖 = 2 under the transformation 𝑤 =
1
𝑧
.
Solution:
z
w
1

w
z
1

ivu 

1
22
vu
ivu
iyx



Comparing real and imaginary parts,
Given,
,22
vu
u
x

 22
vu
v
y



22  iz
22  iiyx
4)2(
2
 yix
4)2( 22
 yx
0422
 yyx
Substituting 𝑥 & 𝑦,
04
2
2222
2
22





















 vu
v
vu
u
vu
u
 
0
4
22222
22





vu
v
vu
vu
041  v
4
1
v
Which represent a straight line.
Hence, the image of the circle 𝑧 + 2𝑖 = 2 in z-plane is the straight line 𝑣 =
1
4
in the w-plane.
Square Transformation
 Let z=r𝑒 𝑖𝛉 & w=R𝑒 𝑖𝜙 than the square transformation is defined as w=𝑧2 .
R𝑒 𝑖𝜙=(r𝑒 𝑖𝛉)2
R=𝑟2, 𝜙=2𝛉
Ex.1:- Find the image of the triangular region bounded by the lines 𝑥 = 1, 𝑦 =
1, 𝑥 + 𝑦 = 1 under the transformation w=𝑧2
.
Solution: w=𝑧2
𝑢 + 𝑖𝑣 = (𝑥 + 𝑖𝑦)2
𝑢 + 𝑖𝑣 = 𝑥2
− 𝑦2
+ 2𝑖𝑥𝑦
Comparing real & imaginary parts,
𝑢 = 𝑥2
− 𝑦2
, 𝑣 = 2𝑥𝑦
1) When𝑥 = 1,
𝑢 = 1 − 𝑦2, 𝑣 = 2𝑦
∴y =
v
2
Substituting 𝑦 in 𝑢,
𝑢 = 1 −
𝑣2
4
4𝑢 = 4 − 𝑣2
∴ 𝑣2 = −4(𝑢 − 1)
Which represents a parabola with vertex (1,0) and opening to left of the vertex.
The image of the line 𝑥 = 1 is the parabola 𝑣2 = −4(𝑢 − 1).
2) When 𝑦 = 1,
𝑢 = 𝑥2
− 1, 𝑣 = 2𝑥
∴ 𝑥 =
𝑣
2
Substituting 𝑥 in 𝑢,
𝑢 =
𝑣2
4
− 1
4𝑢 = 𝑣2 − 4
∴ 𝑣2
= 4(𝑢 + 1)
Which represents a parabola with vertex (-1,0) and opening to right of the
vertex.
The image of the line y= 1 is the parabola 𝑣2 = 4(𝑢 + 1).
3) When 𝑥 + 𝑦 = 1,
𝑥 + 𝑦 2 = 1
𝑥2 + 𝑦2 + 2𝑥𝑦 = 1
𝑥2
+ 𝑦2 2
= 1 − 2𝑥𝑦 2
𝑥2 − 𝑦2 2=1 − 4𝑥𝑦
Substituting 𝑢 = (𝑥2
− 𝑦2
) and 𝑣 = 2𝑥𝑦,
𝑢2 = 1 − 2𝑣 = −2 𝑣 −
1
2
Which represents a parabola with vertex 0,
1
2
opening below the vertex.
The image of the line 𝑥 + 𝑦 = 1 is the parabola 𝑢2 = 1 − 2𝑣.
Ex2:- Find the image of the square with vertices (0,0), (2,0), (2,2), (0,2) in the z-
plane under the transformation 𝑤 = 𝑧2 .
Solution:
let ABCD be the square in the z-plane with vertices A(0,0), B(2,0), C(2,2), D(0,2) .
1) For AB y=0,
u = 𝑥2
, 𝑣 = 0
Which represents the right part of the right part of the u-axis where u>0.
The image of the line y=0 is the right part of the u-axis (u>0).
w=𝑧2
𝑢 + 𝑖𝑣 = (𝑥𝑖𝑦)2
𝑢 + 𝑖𝑣 = 𝑥2
− 𝑦2
+ 2𝑖𝑥𝑦
Comparing real & imaginary parts,
𝑢 = 𝑥2 − 𝑦2, 𝑣 = 2𝑥𝑦
2) For BC x=2,
𝑢 = 4 − 𝑦2 , 𝑦 = 4𝑦
𝑦 =
𝑣
4
Substituting y in u,
𝑢 = 4 −
𝑣2
16
∴ 𝑣2 = −16(𝑢 − 4)
Which represents a parabola with vertex (4,0) and opening to left of the vertex.
The image of the line x=2 is the parabola 𝑣2 = −16(𝑢 − 4).
3) for CD y=2,
𝑢 = 𝑥2
− 4, 𝑣 = 4𝑥
𝑥 =
𝑣
4
Substituting x in u,
𝑢 =
𝑣2
16
− 4
∴ 𝑣2
= 16(𝑢 + 4)
Which represents a parabola with vertex (-4,0) and opening to right of the
vertex.
The image of the line y=2 is the parabola 𝑣2
= 16(𝑢 + 4).
4) For DA x=0,
u = −𝑦2
, 𝑣 = 0
Which represents the left part of the right part of the u-axis where u<0.
The image of the line x=0 is the right part of the u-axis (u<0).
Ex.3:- Find the image of the region bounded by 1 ≤ r ≤ 2 and
π
6
≤ 𝛉 ≤
𝜋
3
in the z-
plane under the transformation 𝑤 = 𝑧2
. Show the regions graphically.
Solution:
𝑤 = 𝑧2
Comparing both the sides,
Given 1 ≤ r ≤ 2 ,
1 ≤ 𝑟2 ≤ 2
1 ≤ R ≤ 2
R𝑒 𝑖𝜙=(r𝑒 𝑖𝛉)2
R=𝑟2, 𝜙=2𝛉
And
π
6
≤ 𝛉 ≤
𝜋
3
π
6
≤
𝜙
2
≤
≤ 𝜙 ≤
2𝜋
3
Hence, the image of the region bounded by 1 ≤ r ≤ 2 and
π
6
≤ 𝛉 ≤
𝜋
3
in the z-plane is
the region 1 ≤ R ≤ 2 and
π
3
≤ 𝜙 ≤
2𝜋
3
in the w-plane.
Example1 :- Find the image of 2x+y-3=0 under the transformation w=z=2i
Solution
W=z+2i
u+iv=x+iy+2i
=x+i(y+2)
Comparing real and imaginary parts,
u=x, v=y+2
x=u, y=v-2
Given
2x+y-3=0
2u+(v-2)-3=0
2u+v-5=0
Hence, the 2x+y-3=0 in the z-plane is mapped onto a line 2u+v-5=0 in
the w-plane
Example 2:- Detrmine and sketch the image of 𝑧 =1 under the transformation
w=z+i.
Solution :-
W=Z+I
u+iv = x+iy+I
= x+I (y+i)
Comparing real and imaginary parts,
u=x, v=y+1
x=u, y=v-1
𝑧 =1
𝑥2 +𝑦2 =1
𝑥2 +𝑦2 =1
𝑢2
+(𝑣 − 1)2
Hence the image of the circle 𝑧 =1 in the z- plane is the
circle 𝑢2
+(𝑣 − 1)2
with the centre at (0,1) and radius of 1 in the w-plane
Example 3:- Find the image of 𝑧 =2 under the mapping w=z+3+2i.
W=z+3+2i
u+iv = x+iy+3+2i
=(x+3i)+i(y+2)
Comparing real and imaginary parts,
u=x+3, v=y+2
x=u-3, y=v-2
𝑧 =2
𝑥2 +𝑦2 =2
𝑥2 +𝑦2 =4
(𝑢 − 3)2 +(𝑣 − 2)2=4
Hence, the circle 𝑧 =2 in the z- plane is the
circle with the centre at (3,2) and radius of 2 in the w-plane
Example 1:- Find the fixed points of the transformation W=
𝟔𝒁−𝟗
𝒁
.
Solution :-
The fixed points are obtained by putting w=z.
z=
6𝑍−9
𝑍
𝑧2=6z-9
𝑧2-6z+9=0
(𝑧 − 3)2
=0
Z=3,3
Example2 :- Find the invariant of the transformation W=
𝟏+𝒛
𝟏−𝒛
.
Solution:-
The invariant points are obtained by putting w=z.
Z=
1+𝑧
1−𝑧
z-𝑧2
=1+z
𝑧2
=-1
(Z=+i) and( z=-i)
Example 3:- find the invariant points of the transformation w=
𝟐𝒛+𝟔
𝒛+𝟕
.
Solution :-
The invariant points are obtained by putting w=z.
W=
2𝑧+6
𝑧+7
𝑧2+7z=2z+6
𝑧2+5z-6=0
(z+6)(z-1)=0
Z=-6,1
Examples 4:- Find the fixed points of the mapping w=
𝟏
𝒛+𝟐𝒊
.
Solution :-
The fixed point are obtained by putting w=z
Z=
1
𝑧+2𝑖
𝑧2+zi=1
𝑧2+2zi-1=0
Z=
−2𝑖± −4+4
2
=-i
Transformations (complex variable & numerical method)

Transformations (complex variable & numerical method)

  • 1.
    Subject :- ComplexVariable & Numerical Method (2141905) Topic :- Transformations Branch :- Mechanical Semester :- 4th •Made By :- -Digvijasinh Gohil(150990119008) -Jaimin Prajapati (150990119010) -Abhijitsinh Kher (150990119012) Guided By :- Dr. Purvi Naik
  • 2.
    Inversion A transformation ofthe form 𝑤 = 1 𝑧 is called inversion. This transformation maps circle & line into circle & line. Ex.1:- Find the image of the line 𝑥 − 𝑦 = 1 under the transformation 𝑤 = 1 𝑧 . Solution: z w 1  w z 1 
  • 3.
    Comparing real &imaginary parts, Given 𝑥 − 𝑦 = 1, Substituting 𝑥 & 𝑦, 22 vu ivu iyx    22 vu v y    22 vu u x   12222           vu v vu u
  • 4.
    vuvu  22 Whichrepresents a circle with the centre at 1 2 , 1 2 and radius 1 2 . 022  vuvu 2 1 2 1 2 1 22              vu
  • 5.
    Ex.2 :- Findthe image of 𝑧 + 1 = 1 under the mapping 𝑤 = 1 𝑧 . Solution: z w 1  w z 1  ivu   1 22 vu ivu iyx   
  • 6.
    Comparing real andimaginary parts, Given ,22 vu u x   22 vu v y    11 z 11  iyx 1)1( 2  iyx 1)1( 22  yx 1222  xyx
  • 7.
    Substituting 𝑥 &𝑦, 02 2 2222 2 22                       vu v vu u vu u   0 2 22222 22      vu u vu vu 0 21 22    vu u 021  u 2 1 u
  • 8.
    Which represent astraight line. Hence, the image of the circle 𝑧 + 1 = 1 in z-plane is the straight line 𝑢 = − 1 2 in the w-plane .
  • 9.
    Ex.3 :- Findthe image of 𝑧 + 2𝑖 = 2 under the transformation 𝑤 = 1 𝑧 . Solution: z w 1  w z 1  ivu   1 22 vu ivu iyx   
  • 10.
    Comparing real andimaginary parts, Given, ,22 vu u x   22 vu v y    22  iz 22  iiyx 4)2( 2  yix 4)2( 22  yx 0422  yyx
  • 11.
    Substituting 𝑥 &𝑦, 04 2 2222 2 22                       vu v vu u vu u   0 4 22222 22      vu v vu vu 041  v 4 1 v Which represent a straight line. Hence, the image of the circle 𝑧 + 2𝑖 = 2 in z-plane is the straight line 𝑣 = 1 4 in the w-plane.
  • 13.
    Square Transformation  Letz=r𝑒 𝑖𝛉 & w=R𝑒 𝑖𝜙 than the square transformation is defined as w=𝑧2 . R𝑒 𝑖𝜙=(r𝑒 𝑖𝛉)2 R=𝑟2, 𝜙=2𝛉 Ex.1:- Find the image of the triangular region bounded by the lines 𝑥 = 1, 𝑦 = 1, 𝑥 + 𝑦 = 1 under the transformation w=𝑧2 . Solution: w=𝑧2 𝑢 + 𝑖𝑣 = (𝑥 + 𝑖𝑦)2 𝑢 + 𝑖𝑣 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦
  • 14.
    Comparing real &imaginary parts, 𝑢 = 𝑥2 − 𝑦2 , 𝑣 = 2𝑥𝑦 1) When𝑥 = 1, 𝑢 = 1 − 𝑦2, 𝑣 = 2𝑦 ∴y = v 2 Substituting 𝑦 in 𝑢, 𝑢 = 1 − 𝑣2 4 4𝑢 = 4 − 𝑣2 ∴ 𝑣2 = −4(𝑢 − 1) Which represents a parabola with vertex (1,0) and opening to left of the vertex. The image of the line 𝑥 = 1 is the parabola 𝑣2 = −4(𝑢 − 1).
  • 15.
    2) When 𝑦= 1, 𝑢 = 𝑥2 − 1, 𝑣 = 2𝑥 ∴ 𝑥 = 𝑣 2 Substituting 𝑥 in 𝑢, 𝑢 = 𝑣2 4 − 1 4𝑢 = 𝑣2 − 4 ∴ 𝑣2 = 4(𝑢 + 1) Which represents a parabola with vertex (-1,0) and opening to right of the vertex. The image of the line y= 1 is the parabola 𝑣2 = 4(𝑢 + 1).
  • 16.
    3) When 𝑥+ 𝑦 = 1, 𝑥 + 𝑦 2 = 1 𝑥2 + 𝑦2 + 2𝑥𝑦 = 1 𝑥2 + 𝑦2 2 = 1 − 2𝑥𝑦 2 𝑥2 − 𝑦2 2=1 − 4𝑥𝑦 Substituting 𝑢 = (𝑥2 − 𝑦2 ) and 𝑣 = 2𝑥𝑦, 𝑢2 = 1 − 2𝑣 = −2 𝑣 − 1 2 Which represents a parabola with vertex 0, 1 2 opening below the vertex. The image of the line 𝑥 + 𝑦 = 1 is the parabola 𝑢2 = 1 − 2𝑣.
  • 18.
    Ex2:- Find theimage of the square with vertices (0,0), (2,0), (2,2), (0,2) in the z- plane under the transformation 𝑤 = 𝑧2 . Solution: let ABCD be the square in the z-plane with vertices A(0,0), B(2,0), C(2,2), D(0,2) . 1) For AB y=0, u = 𝑥2 , 𝑣 = 0 Which represents the right part of the right part of the u-axis where u>0. The image of the line y=0 is the right part of the u-axis (u>0). w=𝑧2 𝑢 + 𝑖𝑣 = (𝑥𝑖𝑦)2 𝑢 + 𝑖𝑣 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 Comparing real & imaginary parts, 𝑢 = 𝑥2 − 𝑦2, 𝑣 = 2𝑥𝑦
  • 19.
    2) For BCx=2, 𝑢 = 4 − 𝑦2 , 𝑦 = 4𝑦 𝑦 = 𝑣 4 Substituting y in u, 𝑢 = 4 − 𝑣2 16 ∴ 𝑣2 = −16(𝑢 − 4) Which represents a parabola with vertex (4,0) and opening to left of the vertex. The image of the line x=2 is the parabola 𝑣2 = −16(𝑢 − 4).
  • 20.
    3) for CDy=2, 𝑢 = 𝑥2 − 4, 𝑣 = 4𝑥 𝑥 = 𝑣 4 Substituting x in u, 𝑢 = 𝑣2 16 − 4 ∴ 𝑣2 = 16(𝑢 + 4) Which represents a parabola with vertex (-4,0) and opening to right of the vertex. The image of the line y=2 is the parabola 𝑣2 = 16(𝑢 + 4).
  • 21.
    4) For DAx=0, u = −𝑦2 , 𝑣 = 0 Which represents the left part of the right part of the u-axis where u<0. The image of the line x=0 is the right part of the u-axis (u<0).
  • 22.
    Ex.3:- Find theimage of the region bounded by 1 ≤ r ≤ 2 and π 6 ≤ 𝛉 ≤ 𝜋 3 in the z- plane under the transformation 𝑤 = 𝑧2 . Show the regions graphically. Solution: 𝑤 = 𝑧2 Comparing both the sides, Given 1 ≤ r ≤ 2 , 1 ≤ 𝑟2 ≤ 2 1 ≤ R ≤ 2 R𝑒 𝑖𝜙=(r𝑒 𝑖𝛉)2 R=𝑟2, 𝜙=2𝛉
  • 23.
    And π 6 ≤ 𝛉 ≤ 𝜋 3 π 6 ≤ 𝜙 2 ≤ ≤𝜙 ≤ 2𝜋 3 Hence, the image of the region bounded by 1 ≤ r ≤ 2 and π 6 ≤ 𝛉 ≤ 𝜋 3 in the z-plane is the region 1 ≤ R ≤ 2 and π 3 ≤ 𝜙 ≤ 2𝜋 3 in the w-plane.
  • 24.
    Example1 :- Findthe image of 2x+y-3=0 under the transformation w=z=2i Solution W=z+2i u+iv=x+iy+2i =x+i(y+2) Comparing real and imaginary parts, u=x, v=y+2 x=u, y=v-2 Given 2x+y-3=0 2u+(v-2)-3=0 2u+v-5=0
  • 25.
    Hence, the 2x+y-3=0in the z-plane is mapped onto a line 2u+v-5=0 in the w-plane
  • 26.
    Example 2:- Detrmineand sketch the image of 𝑧 =1 under the transformation w=z+i. Solution :- W=Z+I u+iv = x+iy+I = x+I (y+i) Comparing real and imaginary parts, u=x, v=y+1 x=u, y=v-1 𝑧 =1 𝑥2 +𝑦2 =1 𝑥2 +𝑦2 =1 𝑢2 +(𝑣 − 1)2
  • 27.
    Hence the imageof the circle 𝑧 =1 in the z- plane is the circle 𝑢2 +(𝑣 − 1)2 with the centre at (0,1) and radius of 1 in the w-plane
  • 28.
    Example 3:- Findthe image of 𝑧 =2 under the mapping w=z+3+2i. W=z+3+2i u+iv = x+iy+3+2i =(x+3i)+i(y+2) Comparing real and imaginary parts, u=x+3, v=y+2 x=u-3, y=v-2 𝑧 =2 𝑥2 +𝑦2 =2 𝑥2 +𝑦2 =4 (𝑢 − 3)2 +(𝑣 − 2)2=4
  • 29.
    Hence, the circle𝑧 =2 in the z- plane is the circle with the centre at (3,2) and radius of 2 in the w-plane
  • 31.
    Example 1:- Findthe fixed points of the transformation W= 𝟔𝒁−𝟗 𝒁 . Solution :- The fixed points are obtained by putting w=z. z= 6𝑍−9 𝑍 𝑧2=6z-9 𝑧2-6z+9=0 (𝑧 − 3)2 =0 Z=3,3
  • 32.
    Example2 :- Findthe invariant of the transformation W= 𝟏+𝒛 𝟏−𝒛 . Solution:- The invariant points are obtained by putting w=z. Z= 1+𝑧 1−𝑧 z-𝑧2 =1+z 𝑧2 =-1 (Z=+i) and( z=-i)
  • 33.
    Example 3:- findthe invariant points of the transformation w= 𝟐𝒛+𝟔 𝒛+𝟕 . Solution :- The invariant points are obtained by putting w=z. W= 2𝑧+6 𝑧+7 𝑧2+7z=2z+6 𝑧2+5z-6=0 (z+6)(z-1)=0 Z=-6,1
  • 34.
    Examples 4:- Findthe fixed points of the mapping w= 𝟏 𝒛+𝟐𝒊 . Solution :- The fixed point are obtained by putting w=z Z= 1 𝑧+2𝑖 𝑧2+zi=1 𝑧2+2zi-1=0 Z= −2𝑖± −4+4 2 =-i