Block 2
The Wave Function
What is to be learned?
• How the wave function tactic sorts out
functions containing sine and cosine
Previously
Max value of 5sinx is
Min value of 5sinx is
5
-5
5
-5
How about 7cosx + 5sinx
Need to rewrite with just sine or cosine
y = 7cosx + 5sinx
change to y = R cos (x – α )
Need to find R and α
angle
sin max at x = 900
cos max at x = 00

y = 7cosx + 5sinx
change to y = R cos (x – α )
y = 7cosx + 5sinx
change to y = R Cos (x – α )
y = 7 cosx + 5 sinx
y = R cosx cosα + R sinx sinα
equating
coefficients
Use Cos(A – B)
y = 7cosx + 5sinx
change to y = R Cos (x – α )
y = 7 cosx + 5 sinx
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= 7
Use Cos(A – B)
y = 7cosx + 5sinx
change to y = R Cos (x – α )
y = 7 cosx + 5 sinx
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= 7 R sinα = 5
Need to find R and α
R2
sin2
x + R2
cos2
x
= R2
Use Cos(A – B)
= R2
(sin2
x + cos2
x)
1
y = 7cosx + 5sinx
change to y = R Cos (x – α )
y = 7 cosx + 5 sinx
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= 7 R sinα = 5
Need to find R and α
R2
= 72
+ 52
Sinx
Cosx
= Tanx
R
R= √74
Use Cos(A – B)
y = 7cosx + 5sinx
change to y = R Cos (x – α )
y = 7 cosx + 5 sinx
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= 7 R sinα = 5
Need to find R and α
R2
= 72
+ 52
Tan α = 5
7
= 0.714
Tan-1
(0.714) = 35.50
or 180 + 35.50
i , iv i , ii
√R = √74
Use Cos(A – B)
7cosx + 5sinx
= √74 cos(x – 35.50
)
Max = √74
Min = -√74
Phase Angle 35.50
Graph moves 35.50
to the right
The Wave Function
Rewriting functions containing sine and
cosine in form
R cos( x – α )
Expand using cos (A – B)
Equate Coefficients
R2
= (R cos α)2
+ (R sin α)2
Tan α = R sin α
or similar!
(formula sheet)
R cos α
There can be
only one α
y = 4cosx – 5sinx
change to y = R Cos (x – α )
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= 4 R sinα = -5
R2
= 42
+ (-5)2
Tan α = -5
4
= -1.25
Tan-1
(1.25) = 51.30
360 – 51.30
= 308.70
i , iv iii , iv
iv
R = √41
Min = -√41Max = √41
Becomes y = √41cos(x – 308.70
)
Use Cos(A – B)
Cos +ve Sin -ve
y = -4cosx + 7sinx
change to y = R Cos (x – α )
y = R cosx cosα + R sinx sinα
equating
coefficients R cosα= -4 R sinα = 7
R2
= (-4)2
+ 72
Tan α = 7
-4
= -1.75
Tan-1
(1.75) =600
180 – 600
= 1200
ii , iii i , ii
ii
R = √65
Min = -√65Max = √65
Becomes y = √65cos(x – 1200
)
Use Cos(A – B)
Cos -ve Sin +ve
Key Question
5cosx – 7sinx
change to Rsin(x – α ) = Rsinx cosα – Rcosx sinα
- 7sinx + 5cosxEquating
Coefficients
5cosx – 7sinx
change to Rsin(x – α ) = Rsinx cosα – Rcosx sinα
- 7sinx + 5cosxEquating
Coefficients
Rcos α = -7
5cosx – 7sinx
change to Rsin(x – α ) = Rsinx cosα – Rcosx sinα
- 7sinx + 5cosxEquating
Coefficients
Rcos α = -7 Rsin α = 5–
Rsin α = -5
Reminders
y = sinx y = cosx
Max at x = 900
Min at x = 2700
Max at x = 00
and 3600
Min at x = 1800
Max Values
Max value of
4sin(x – 30)0
Max value = 4
sinx has max when x = 900
so 4sin(x – 30)0
has max when x – 30 = 90
x = 1200
Want this to
equal 900
Max Values
Max value of
7cos(x – 60)0
Max value = 7
cosx has max when x = 00
or 3600
7cos(x – 60)0
has max when x – 60 = 0 or 360
x = 600
or 4200
Want this to
equal 00
or 3600
outwith
limits
Min Values
Min value of
8cos(x – 30)0
Min value = -8
cosx has min when x = 1800
so 8cos(x – 30)0
has min when x – 30 = 180
x = 2100
Want this to
equal 1800
Min Values
Min value of
7sin(x – 70)0
Min value = -7
sinx has min when x = 2700
so 7sin(x – 70)0
has min when x – 70 = 270
x = 3400
Want this to
equal 2700
Solve 4cosx + 3sinx = 2
Rcos(x – α) = R cosx cosα + R sinx sinα
Rcosα = 4 Rsinα = 3
R2
= 32
+ 42
Tanα = ¾
R = 5 α = Tan-1
(¾) = 370
Equation becomes 5cos(x – 37) = 2
cos(x – 37) = 0.4
cosA = 0.4 where A = x – 37
cos-1
(0.4) = 660
A = 660
or 2940
x – 37 = 66 or 294
x = 1030
or 3310
Change to form Rcos (x – α)
Ignore for moment
i , iv i , ii

Uses of the Wave Function
Gets max and min values.
Helps us sketch the graph
and
Good format to solve Trig Equations
May not tell you to use wave function
- look for mix of sin and cos
If you are not told which expansion to use
– you get to choose!
Rcos(x – α) – very popular!
Solve 4cosx – 5sinx = 4
Change to
Gives √41cos(x – 308.70
) = 4
Then √41cos A = 4, where A = x – 308.70
cos A = 4
/√41
etc.
form Rcos(x – α)

The wave function

  • 1.
  • 2.
    What is tobe learned? • How the wave function tactic sorts out functions containing sine and cosine
  • 3.
    Previously Max value of5sinx is Min value of 5sinx is 5 -5 5 -5
  • 4.
    How about 7cosx+ 5sinx Need to rewrite with just sine or cosine y = 7cosx + 5sinx change to y = R cos (x – α ) Need to find R and α angle sin max at x = 900 cos max at x = 00 
  • 5.
    y = 7cosx+ 5sinx change to y = R cos (x – α )
  • 6.
    y = 7cosx+ 5sinx change to y = R Cos (x – α ) y = 7 cosx + 5 sinx y = R cosx cosα + R sinx sinα equating coefficients Use Cos(A – B)
  • 7.
    y = 7cosx+ 5sinx change to y = R Cos (x – α ) y = 7 cosx + 5 sinx y = R cosx cosα + R sinx sinα equating coefficients R cosα= 7 Use Cos(A – B)
  • 8.
    y = 7cosx+ 5sinx change to y = R Cos (x – α ) y = 7 cosx + 5 sinx y = R cosx cosα + R sinx sinα equating coefficients R cosα= 7 R sinα = 5 Need to find R and α R2 sin2 x + R2 cos2 x = R2 Use Cos(A – B) = R2 (sin2 x + cos2 x) 1
  • 9.
    y = 7cosx+ 5sinx change to y = R Cos (x – α ) y = 7 cosx + 5 sinx y = R cosx cosα + R sinx sinα equating coefficients R cosα= 7 R sinα = 5 Need to find R and α R2 = 72 + 52 Sinx Cosx = Tanx R R= √74 Use Cos(A – B)
  • 10.
    y = 7cosx+ 5sinx change to y = R Cos (x – α ) y = 7 cosx + 5 sinx y = R cosx cosα + R sinx sinα equating coefficients R cosα= 7 R sinα = 5 Need to find R and α R2 = 72 + 52 Tan α = 5 7 = 0.714 Tan-1 (0.714) = 35.50 or 180 + 35.50 i , iv i , ii √R = √74 Use Cos(A – B)
  • 11.
    7cosx + 5sinx =√74 cos(x – 35.50 ) Max = √74 Min = -√74 Phase Angle 35.50 Graph moves 35.50 to the right
  • 12.
    The Wave Function Rewritingfunctions containing sine and cosine in form R cos( x – α ) Expand using cos (A – B) Equate Coefficients R2 = (R cos α)2 + (R sin α)2 Tan α = R sin α or similar! (formula sheet) R cos α There can be only one α
  • 13.
    y = 4cosx– 5sinx change to y = R Cos (x – α ) y = R cosx cosα + R sinx sinα equating coefficients R cosα= 4 R sinα = -5 R2 = 42 + (-5)2 Tan α = -5 4 = -1.25 Tan-1 (1.25) = 51.30 360 – 51.30 = 308.70 i , iv iii , iv iv R = √41 Min = -√41Max = √41 Becomes y = √41cos(x – 308.70 ) Use Cos(A – B) Cos +ve Sin -ve
  • 14.
    y = -4cosx+ 7sinx change to y = R Cos (x – α ) y = R cosx cosα + R sinx sinα equating coefficients R cosα= -4 R sinα = 7 R2 = (-4)2 + 72 Tan α = 7 -4 = -1.75 Tan-1 (1.75) =600 180 – 600 = 1200 ii , iii i , ii ii R = √65 Min = -√65Max = √65 Becomes y = √65cos(x – 1200 ) Use Cos(A – B) Cos -ve Sin +ve Key Question
  • 15.
    5cosx – 7sinx changeto Rsin(x – α ) = Rsinx cosα – Rcosx sinα - 7sinx + 5cosxEquating Coefficients
  • 16.
    5cosx – 7sinx changeto Rsin(x – α ) = Rsinx cosα – Rcosx sinα - 7sinx + 5cosxEquating Coefficients Rcos α = -7
  • 17.
    5cosx – 7sinx changeto Rsin(x – α ) = Rsinx cosα – Rcosx sinα - 7sinx + 5cosxEquating Coefficients Rcos α = -7 Rsin α = 5– Rsin α = -5
  • 18.
    Reminders y = sinxy = cosx Max at x = 900 Min at x = 2700 Max at x = 00 and 3600 Min at x = 1800
  • 19.
    Max Values Max valueof 4sin(x – 30)0 Max value = 4 sinx has max when x = 900 so 4sin(x – 30)0 has max when x – 30 = 90 x = 1200 Want this to equal 900
  • 20.
    Max Values Max valueof 7cos(x – 60)0 Max value = 7 cosx has max when x = 00 or 3600 7cos(x – 60)0 has max when x – 60 = 0 or 360 x = 600 or 4200 Want this to equal 00 or 3600 outwith limits
  • 21.
    Min Values Min valueof 8cos(x – 30)0 Min value = -8 cosx has min when x = 1800 so 8cos(x – 30)0 has min when x – 30 = 180 x = 2100 Want this to equal 1800
  • 22.
    Min Values Min valueof 7sin(x – 70)0 Min value = -7 sinx has min when x = 2700 so 7sin(x – 70)0 has min when x – 70 = 270 x = 3400 Want this to equal 2700
  • 23.
    Solve 4cosx +3sinx = 2 Rcos(x – α) = R cosx cosα + R sinx sinα Rcosα = 4 Rsinα = 3 R2 = 32 + 42 Tanα = ¾ R = 5 α = Tan-1 (¾) = 370 Equation becomes 5cos(x – 37) = 2 cos(x – 37) = 0.4 cosA = 0.4 where A = x – 37 cos-1 (0.4) = 660 A = 660 or 2940 x – 37 = 66 or 294 x = 1030 or 3310 Change to form Rcos (x – α) Ignore for moment i , iv i , ii 
  • 24.
    Uses of theWave Function Gets max and min values. Helps us sketch the graph and Good format to solve Trig Equations May not tell you to use wave function - look for mix of sin and cos If you are not told which expansion to use – you get to choose! Rcos(x – α) – very popular!
  • 25.
    Solve 4cosx –5sinx = 4 Change to Gives √41cos(x – 308.70 ) = 4 Then √41cos A = 4, where A = x – 308.70 cos A = 4 /√41 etc. form Rcos(x – α)