SlideShare a Scribd company logo
WEL COME
RAI SAHEB BHABAR SINGH COLLEGE
NASRULLAGANJ
Rala Narullaganj
Year – 2015-16
TOPIC – MEMORY
CLASS – B.sc-6sem Bio Technology
SUBMIT ED TO SUBMITED BY
MR. SANJAY SHINDHY SIR SHAMEEN KHAN , REENABAKARIYA
AAKRATI CHOUHAN, SHABI SHARMA
Date………………..
Computer memory, device that is used to store data or
programs (sequences of instructions) on a temporary or
permanent basis for use in an electronic digital computer.
Computers represent information in binary code, written as
sequences of 0s and 1s. Each binary digit (or “bit”) may be
stored by any physical system that can be in either of two
stable states, to represent 0 and 1. Such a system is called
bistable. This could be an on-off switch, an
electrical capacitor that can store or lose a charge, a magnet
with its polarity up or down, or a surface that can have a pit
or not. Today capacitors andtransistors, functioning as tiny
electrical switches, are used for temporary storage, and
either disks or tape with a magnetic coating, or plastic discs
with patterns of pits are used for long-term storage.
Main memory
The earliest memory devices were electro-mechanical switches, or relays (see computers: The first computer),
and electron tubes (see computers: The first stored-program machines). In the late 1940s the first stored-
program computers used ultrasonic waves in tubes of mercury or charges in special electron tubes as main
memory. The latter were the first random-access memory (RAM). RAM contains storage cells that can be
accessed directly for read and write operations, as opposed to serial access memory, such as magnetic tape, in
which each cell in sequence must be accessed till the required cell is located.
Magnetic drum memory
Magnetic drums, which had fixed read/write heads for each of many tracks on the outside surface of a
rotating cylinder coated with a ferromagnetic material, were used for both main and auxiliary memory in the
1950s, although their data access was serial.
Magnetic core memory
About 1952 the first relatively cheap RAM was developed: magnetic core memory, an arrangement of tiny
ferrite cores on a wire grid through which current could be directed to change individual core alignments.
Because of the inherent advantage of RAM, core memory was the principal form of main memory until
superseded by semiconductor memory in the late 1960s.
Semiconductor memory
There are two basic kinds of semiconductor memory. Static RAM (SRAM) consists of flip-flops, a bistable
circuit composed of four to six transistors. Once a flip-flop stores a bit, it keeps that value until the opposite
value is stored in it. SRAM gives fast access to data, but it is physically relatively large. It is used primarily for
small amounts of memory called registers in a computer’s central processing unit (CPU) and for fast “cache”
memory. Dynamic RAM (DRAM) stores each bit in an electrical capacitor rather than in a flip-flop, using
a transistor as a switch to charge or discharge the capacitor. Because it has fewer electrical components, a
DRAM storage cell is smaller than SRAM. However, access to its value is slower and, because capacitors
gradually leak charges, stored values must be recharged approximately 50 times per second. Nonetheless,
DRAM is generally used for main memory because the same size chip can hold several times as much DRAM as
SRAM.
END

More Related Content

Similar to MEMORY

Data remanence in semiconductor devices
Data remanence in semiconductor devicesData remanence in semiconductor devices
Data remanence in semiconductor devices
sergiococo1
 
Flash Memory OS
Flash Memory OSFlash Memory OS
Flash Memory OS
C.U
 
Magnetic ram
Magnetic ramMagnetic ram
Magnetic ram
vinod509
 

Similar to MEMORY (20)

Time and Low Power Operation Using Embedded Dram to Gain Cell Data Retention
Time and Low Power Operation Using Embedded Dram to Gain Cell Data RetentionTime and Low Power Operation Using Embedded Dram to Gain Cell Data Retention
Time and Low Power Operation Using Embedded Dram to Gain Cell Data Retention
 
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAMIMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
 
Digital 9 16
Digital 9 16Digital 9 16
Digital 9 16
 
Memory hierarchy of digital computer system
Memory hierarchy of digital computer systemMemory hierarchy of digital computer system
Memory hierarchy of digital computer system
 
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAMIMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
 
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAMIMPLEMENTATION OF LOW POWER ADIABATIC SRAM
IMPLEMENTATION OF LOW POWER ADIABATIC SRAM
 
Data remanence in semiconductor devices
Data remanence in semiconductor devicesData remanence in semiconductor devices
Data remanence in semiconductor devices
 
Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Spee...
 Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Spee... Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Spee...
Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Spee...
 
Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Speed...
Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Speed...Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Speed...
Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Speed...
 
presentation on memory units.
presentation on memory units.presentation on memory units.
presentation on memory units.
 
Chapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworldChapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworld
 
Internal memory
Internal memoryInternal memory
Internal memory
 
COMPUTER ORGANIZATION NOTES Unit 5
COMPUTER ORGANIZATION NOTES Unit 5COMPUTER ORGANIZATION NOTES Unit 5
COMPUTER ORGANIZATION NOTES Unit 5
 
Flash Memory OS
Flash Memory OSFlash Memory OS
Flash Memory OS
 
Unit IV Memory.pptx
Unit IV  Memory.pptxUnit IV  Memory.pptx
Unit IV Memory.pptx
 
Computer organization memory
Computer organization memoryComputer organization memory
Computer organization memory
 
Memorydevices 110602031611-phpapp02
Memorydevices 110602031611-phpapp02Memorydevices 110602031611-phpapp02
Memorydevices 110602031611-phpapp02
 
Flash drives
Flash drivesFlash drives
Flash drives
 
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIERSRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
SRAM BASED IN-MEMORY MATRIX VECTOR MULTIPLIER
 
Magnetic ram
Magnetic ramMagnetic ram
Magnetic ram
 

More from Rai Saheb Bhanwar Singh College Nasrullaganj

More from Rai Saheb Bhanwar Singh College Nasrullaganj (20)

lec34.ppt
lec34.pptlec34.ppt
lec34.ppt
 
lec33.ppt
lec33.pptlec33.ppt
lec33.ppt
 
lec31.ppt
lec31.pptlec31.ppt
lec31.ppt
 
lec32.ppt
lec32.pptlec32.ppt
lec32.ppt
 
lec42.ppt
lec42.pptlec42.ppt
lec42.ppt
 
lec41.ppt
lec41.pptlec41.ppt
lec41.ppt
 
lec39.ppt
lec39.pptlec39.ppt
lec39.ppt
 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
lec37.ppt
lec37.pptlec37.ppt
lec37.ppt
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
lec21.ppt
lec21.pptlec21.ppt
lec21.ppt
 
lec20.ppt
lec20.pptlec20.ppt
lec20.ppt
 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
 
lec18.ppt
lec18.pptlec18.ppt
lec18.ppt
 
lec17.ppt
lec17.pptlec17.ppt
lec17.ppt
 
lec16.ppt
lec16.pptlec16.ppt
lec16.ppt
 
lec30.ppt
lec30.pptlec30.ppt
lec30.ppt
 
lec28.ppt
lec28.pptlec28.ppt
lec28.ppt
 
lec27.ppt
lec27.pptlec27.ppt
lec27.ppt
 
lec26.ppt
lec26.pptlec26.ppt
lec26.ppt
 

Recently uploaded

Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
Avinash Rai
 

Recently uploaded (20)

2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTelling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matrices
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
 

MEMORY

  • 2. RAI SAHEB BHABAR SINGH COLLEGE NASRULLAGANJ Rala Narullaganj Year – 2015-16 TOPIC – MEMORY CLASS – B.sc-6sem Bio Technology SUBMIT ED TO SUBMITED BY MR. SANJAY SHINDHY SIR SHAMEEN KHAN , REENABAKARIYA AAKRATI CHOUHAN, SHABI SHARMA Date………………..
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18. Computer memory, device that is used to store data or programs (sequences of instructions) on a temporary or permanent basis for use in an electronic digital computer. Computers represent information in binary code, written as sequences of 0s and 1s. Each binary digit (or “bit”) may be stored by any physical system that can be in either of two stable states, to represent 0 and 1. Such a system is called bistable. This could be an on-off switch, an electrical capacitor that can store or lose a charge, a magnet with its polarity up or down, or a surface that can have a pit or not. Today capacitors andtransistors, functioning as tiny electrical switches, are used for temporary storage, and either disks or tape with a magnetic coating, or plastic discs with patterns of pits are used for long-term storage.
  • 19. Main memory The earliest memory devices were electro-mechanical switches, or relays (see computers: The first computer), and electron tubes (see computers: The first stored-program machines). In the late 1940s the first stored- program computers used ultrasonic waves in tubes of mercury or charges in special electron tubes as main memory. The latter were the first random-access memory (RAM). RAM contains storage cells that can be accessed directly for read and write operations, as opposed to serial access memory, such as magnetic tape, in which each cell in sequence must be accessed till the required cell is located. Magnetic drum memory Magnetic drums, which had fixed read/write heads for each of many tracks on the outside surface of a rotating cylinder coated with a ferromagnetic material, were used for both main and auxiliary memory in the 1950s, although their data access was serial. Magnetic core memory About 1952 the first relatively cheap RAM was developed: magnetic core memory, an arrangement of tiny ferrite cores on a wire grid through which current could be directed to change individual core alignments. Because of the inherent advantage of RAM, core memory was the principal form of main memory until superseded by semiconductor memory in the late 1960s. Semiconductor memory There are two basic kinds of semiconductor memory. Static RAM (SRAM) consists of flip-flops, a bistable circuit composed of four to six transistors. Once a flip-flop stores a bit, it keeps that value until the opposite value is stored in it. SRAM gives fast access to data, but it is physically relatively large. It is used primarily for small amounts of memory called registers in a computer’s central processing unit (CPU) and for fast “cache” memory. Dynamic RAM (DRAM) stores each bit in an electrical capacitor rather than in a flip-flop, using a transistor as a switch to charge or discharge the capacitor. Because it has fewer electrical components, a DRAM storage cell is smaller than SRAM. However, access to its value is slower and, because capacitors gradually leak charges, stored values must be recharged approximately 50 times per second. Nonetheless, DRAM is generally used for main memory because the same size chip can hold several times as much DRAM as SRAM.
  • 20. END