S1. Fixed point iteration is a numerical method for solving equations of the form x = g(x) by making an initial guess x0 and repeatedly substituting xn into the right side to obtain xn+1.
S2. The method converges if |g'(α)| < 1, where α is the root and g' is the derivative of g. This ensures the error decreases at each iteration.
S3. Examples show the method can converge rapidly, as in Newton's method, or diverge, depending on the properties of g near the root. Aitken extrapolation can provide a better estimate of the root than the current iterate xn.