Section	3.4
     Exponential	Growth	and	Decay

                  V63.0121.027, Calculus	I



                      October	27, 2009



Announcements
   Quiz	3	this	week	in	recitation

                                         .   .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Derivatives	of	exponential	and	logarithmic	functions




                       y        y′
                       ex       ex
                       ax    (ln a)ax
                                1
                       ln x
                                 x
                               1 1
                      loga x       ·
                             ln a x




                                        .   .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.




                                           .   .    .   .   .    .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).




                                           .   .    .   .    .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).
    In	a	spring, F(x) = −kx, where x is	displacement	from
    equilibrium	and k is	a	constant. So

                                         k
                   −kx = mx′′ =⇒ x′′ +     = 0.
                                         m




                                           .   .    .   .    .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).
    In	a	spring, F(x) = −kx, where x is	displacement	from
    equilibrium	and k is	a	constant. So

                                            k
                    −kx = mx′′ =⇒ x′′ +       = 0.
                                            m


    The	most	general	solution	is x(t) = A sin ω t + B cos ω t, where
        √
    ω = k/m.


                                             .    .    .   .    .      .
The	equation y′ = ky



   Example
      Find a solution	to y′ (t) = y(t).
      Find	the most	general solution	to y′ (t) = y(t).




                                               .    .    .   .   .   .
The	equation y′ = ky



   Example
       Find a solution	to y′ (t) = y(t).
       Find	the most	general solution	to y′ (t) = y(t).

   Solution
       A solution	is y(t) = et .




                                                .    .    .   .   .   .
The	equation y′ = ky



   Example
       Find a solution	to y′ (t) = y(t).
       Find	the most	general solution	to y′ (t) = y(t).

   Solution
       A solution	is y(t) = et .
       The	general	solution	is y = Cet , not y = et + C.
   (check	this)




                                                .    .     .   .   .   .
In	general

   Example
      Find	a	solution	to y′ = ky.
      Find	the	general	solution	to y′ = ky.




                                              .   .   .   .   .   .
In	general

   Example
       Find	a	solution	to y′ = ky.
       Find	the	general	solution	to y′ = ky.

   Solution
       y = ekt
       y = Cekt




                                               .   .   .   .   .   .
In	general

   Example
        Find	a	solution	to y′ = ky.
        Find	the	general	solution	to y′ = ky.

   Solution
        y = ekt
        y = Cekt

   Remark
   What	is C? Plug	in t = 0:

                         y(0) = Cek·0 = C · 1 = C,

   so y(0) = y0 , the initial	value of y.
                                                .    .   .   .   .   .
Exponential	Growth


      It	means	the	rate	of	change	(derivative)	is	proportional	to	the
      current	value
      Examples: Natural	population	growth, compounded	interest,
      social	networks




                                               .   .    .    .    .     .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Bacteria



     Since	you	need	bacteria
     to	make	bacteria, the
     amount	of	new	bacteria
     at	any	moment	is
     proportional	to	the	total
     amount	of	bacteria.
     This	means	bacteria
     populations	grow
     exponentially.




                                 .   .   .   .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?




                                              .    .   .    .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?

  Solution
  Since y′ = ky for	bacteria, we	have y = y0 ekt . We	have

             10, 000 = y0 ek·3          40, 000 = y0 ek·5




                                               .   .    .    .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?

  Solution
  Since y′ = ky for	bacteria, we	have y = y0 ekt . We	have

             10, 000 = y0 ek·3           40, 000 = y0 ek·5

  Dividing	the	first	into	the	second	gives
  4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Now	we	have

                     10, 000 = y0 eln 2·3 = y0 · 8

            10, 000
  So y0 =           = 1250.
               8
                                               .     .   .   .   .   .
Could	you	do	that	again	please?

   We	have

                            10, 000 = y0 ek·3
                            40, 000 = y0 ek·5

   Dividing	the	first	into	the	second	gives

                40, 000  y e5k
                        = 0 3k
                10, 000  y0 e
                       4 = e2k
                    ln 4 = ln(e2k ) = 2k
                            ln 4   ln 22   2 ln 2
                       k=        =       =        = ln 2
                             2       2        2


                                                .   .      .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Modeling	radioactive	decay

   Radioactive	decay	occurs	because	many	large	atoms
   spontaneously	give	off	particles.




                                            .   .      .   .   .   .
Modeling	radioactive	decay

   Radioactive	decay	occurs	because	many	large	atoms
   spontaneously	give	off	particles.

  This	means	that	in	a	sample
  of	a	bunch	of	atoms, we	can
  assume	a	certain	percentage
  of	them	will	“go	off”	at	any
  point. (For	instance, if	all
  atom	of	a	certain	radioactive
  element	have	a	20%	chance
  of	decaying	at	any	point,
  then	we	can	expect	in	a
  sample	of	100	that	20	of
  them	will	be	decaying.)


                                            .   .      .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative.




                                               .   .   .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative. So

                      y′ = ky =⇒ y = y0 ekt

again!




                                               .   .   .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative. So

                      y′ = ky =⇒ y = y0 ekt

again!
It’s	customary	to	express	the	relative	rate	of	decay	in	the	units	of
half-life: the	amount	of	time	it	takes	a	pure	sample	to	decay	to
one	which	is	only	half	pure.




                                               .   .    .    .    .    .
Example
The	half-life	of	polonium-210	is	about	138	days. How	much	of	a
100	g	sample	remains	after t years?




                                          .   .   .    .   .     .
Example
The	half-life	of	polonium-210	is	about	138	days. How	much	of	a
100	g	sample	remains	after t years?

Solution
We	have y = y0 ekt , where y0 = y(0) = 100 grams. Then

                                                   365 · ln 2
            50 = 100ek·138/365 =⇒ k = −                       .
                                                     138
Therefore
                            365·ln 2
             y(t) = 100e−     138
                                     t
                                         = 100 · 2−365t/138 .




                                                    .    .      .   .   .   .
Carbon-14	Dating

                   The	ratio	of	carbon-14	to
                   carbon-12	in	an	organism
                   decays	exponentially:

                              p(t) = p0 e−kt .

                   The	half-life	of	carbon-14	is
                   about	5700	years. So	the
                   equation	for p(t) is
                                           ln2
                          p(t) = p0 e− 5700 t

                   Another	way	to	write	this
                   would	be

                         p(t) = p0 2−t/5700

                          .       .    .    .    .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?




                                           .    .   .    .      .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                           p(t)
                                = 0.1
                           p(0)




                                              .   .   .   .     .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                           p(t)
                                = 0.1
                           p(0)

From	the	equation	we	have

                         2−t/5700 = 0.1
                          t
                      −        ln 2 = ln 0.1
                        5700
                      ln 0.1
                   t=        · 5700 ≈ 18, 940
                       ln 2

                                              .   .   .   .     .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                            p(t)
                                 = 0.1
                            p(0)

From	the	equation	we	have

                         2−t/5700 = 0.1
                          t
                      −        ln 2 = ln 0.1
                        5700
                      ln 0.1
                   t=        · 5700 ≈ 18, 940
                       ln 2
So	the	fossil	is	almost	19,000	years	old.
                                              .   .   .   .     .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Newton’s	Law	of	Cooling

     Newton’s	Law	of
     Cooling states	that	the
     rate	of	cooling	of	an
     object	is	proportional	to
     the	temperature
     difference	between	the
     object	and	its
     surroundings.




                                 .   .   .   .   .   .
Newton’s	Law	of	Cooling

     Newton’s	Law	of
     Cooling states	that	the
     rate	of	cooling	of	an
     object	is	proportional	to
     the	temperature
     difference	between	the
     object	and	its
     surroundings.
     This	gives	us	a
     differential	equation	of
     the	form
          dT
             = k (T − T s )
          dt
     (where k < 0 again).

                                 .   .   .   .   .   .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt




                                                .   .    .    .   .    .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt
  which	we	can	solve:

                                y = Cekt
                          T − Ts = Cekt
                          =⇒ T = Cekt + Ts




                                                .   .    .    .   .    .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt
  which	we	can	solve:

                                y = Cekt
                            T − Ts = Cekt
                            =⇒ T = Cekt + Ts

  Here C = y0 = T0 − Ts .



                                                .   .    .    .   .    .
Example
A hard-boiled	egg	at 98◦ C is	put	in	a	sink	of 18◦ C water. After	5
minutes, the	egg’s	temperature	is 38◦ C. Assuming	the	water	has
not	warmed	appreciably, how	much	longer	will	it	take	the	egg	to
reach 20◦ C?




                                             .    .   .    .    .     .
Example
A hard-boiled	egg	at 98◦ C is	put	in	a	sink	of 18◦ C water. After	5
minutes, the	egg’s	temperature	is 38◦ C. Assuming	the	water	has
not	warmed	appreciably, how	much	longer	will	it	take	the	egg	to
reach 20◦ C?

Solution
We	know	that	the	temperature	function	takes	the	form

              T(t) = (T0 − Ts )ekt + Ts = 80ekt + 18

To	find k, plug	in t = 5:

                     38 = T(5) = 80e5k + 18

and	solve	for k.


                                             .    .    .   .    .     .
Finding k


                38 = T(5) = 80e5k + 18
                 20 = 80e5k
                  1
                    = e5k
               ( )4
                1
            ln      = 5k
                4
                        1
              =⇒ k = − ln 4.
                        5




                                   .     .   .   .   .   .
Finding k


                          38 = T(5) = 80e5k + 18
                        20 = 80e5k
                         1
                           = e5k
                      ( )4
                       1
                   ln      = 5k
                       4
                               1
                     =⇒ k = − ln 4.
                               5
   Now	we	need	to	solve
                                      t
                   20 = T(t) = 80e− 5 ln 4 + 18

   for t.
                                             .     .   .   .   .   .
Finding t



                            t
                20 = 80e− 5 ln 4 + 18
                            t
                  2 = 80e− 5 ln 4
                 1       t
                    = e− 5 ln 4
                40
                        t
            − ln 40 = − ln 4
                        5

                       ln 40    5 ln 40
             =⇒ t =    1
                              =         ≈ 13 min
                       5 ln 4     ln 4




                                         .   .     .   .   .   .
Example
A murder	victim	is
discovered	at	midnight	and
the	temperature	of	the	body
is	recorded	as 31 ◦ C. One
hour	later, the	temperature	of
the	body	is 29 ◦ C. Assume
that	the	surrounding	air
temperature	remains
constant	at 21 ◦ C. Calculate
the	victim’s	time	of	death.
(The	“normal”	temperature	of
a	living	human	being	is
approximately 37 ◦ C.)


                                 .   .   .   .   .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.




                                         .   .   .   .      .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.
    To	find k:

                29 = 10ek·1 + 21 =⇒ k = ln 0.8




                                         .   .   .   .      .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.
    To	find k:

                 29 = 10ek·1 + 21 =⇒ k = ln 0.8


    To	find t:

                     37 = 10et·ln(0.8) + 21
                     1.6 = et·ln(0.8)
                           ln(1.6)
                       t=             ≈ −2.10 hr
                           ln(0.8)

    So	the	time	of	death	was	just	before	10:00pm.

                                              .    .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.




                                              .   .    .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.
       For	different	amounts	of	compounding, this	will	change. As
       n → ∞, we	get continously	compounded	interest
                                 (    r )nt
                    A(t) = lim A0 1 +       = A0 ert .
                          n→∞         n




                                              .   .      .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.
       For	different	amounts	of	compounding, this	will	change. As
       n → ∞, we	get continously	compounded	interest
                                 (    r )nt
                    A(t) = lim A0 1 +       = A0 ert .
                          n→∞         n


       Thus	dollars	are	like	bacteria.


                                              .   .      .   .   .   .
Example
How	long	does	it	take	an	initial	deposit	of	$100, compounded
continuously, to	double?




                                          .   .    .   .   .   .
Example
How	long	does	it	take	an	initial	deposit	of	$100, compounded
continuously, to	double?

Solution
We	need t such	that A(t) = 200. In	other	words

                                                         ln 2
    200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =               .
                                                           r
For	instance, if r = 6% = 0.06, we	have

                  ln 2   0.69   69
             t=        ≈      =    = 11.5 years.
                  0.06   0.06   6




                                          .      .   .     .      .   .
I-banking	interview	tip	of	the	day

                  ln 2
     The	fraction      can
                    r
     also	be	approximated	as
     either	70	or	72	divided
     by	the	percentage	rate
     (as	a	number	between	0
     and	100, not	a	fraction
     between	0	and	1.)
     This	is	sometimes	called
     the rule	of	70 or rule	of
     72.
     72	has	lots	of	factors	so
     it’s	used	more	often.


                                     .   .   .   .   .   .

Lesson 16: Exponential Growth and Decay