SlideShare a Scribd company logo
1 of 39
Download to read offline
Matrix Algebra (Recap)
(for MSc & PhD Business, Management & Finance Students)
Lecturer: Farzad Javidanrad
First Draft: Sep. 2013
Revised: Sep. 2014
Basic level
Linear Transformation
โ€ข Matrix Algebra developed in relation to linear transformations such
as the following:
๐‘Ž๐‘ฅ + ๐‘๐‘ฆ = ๐‘‹
๐‘๐‘ฅ + ๐‘‘๐‘ฆ = ๐‘Œ
Where ๐‘Ž, ๐‘, ๐‘ and ๐‘‘ are real numbers. This transformation introduces
a function(mapping) by which an ordered pair ๐‘ฅ, ๐‘ฆ in ๐‘ฅ๐‘œ๐‘ฆ plane
transformed (associated) to another ordered pair (๐‘‹, ๐‘Œ) in ๐‘‹๐‘‚๐‘Œ plane.
๐’™ ๐‘ฟ
๐’€๐’š
๐’ ๐‘ถ
This linear transformation can
be done through the coefficients
of ๐‘ฅ and ๐‘ฆ . The square array
๐‘Ž ๐‘
๐‘ ๐‘‘
represents this
transformation which is one
among many other
transformations. Such an array
is called matrix.
Matrix Algebra
โ€ข Definition: A matrix is a rectangular or square array of
elements (usually numbers) arranged in rows and
columns.
โ€ข Matrices are usually shown by capital and bold letters
such as A, B, etc. Matrix A with 3 rows and 2 columns is
shown by ๐‘จ ๐Ÿ‘ร—๐Ÿ and matrix B with m rows and n columns
is shown by ๐‘ฉ ๐’Žร—๐’. Their elements are shown by small
letters with an index indicating the position of the
element in the matrix.
โ€ข ๐ด3ร—2 =
๐‘Ž11
๐‘Ž21
๐‘Ž31
๐‘Ž12
๐‘Ž22
๐‘Ž32
๐ต ๐‘šร—๐‘› =
๐‘11
๐‘21
โ‹ฎ
๐‘ ๐‘š1
๐‘12
๐‘22
โ‹ฎ
๐‘ ๐‘š2
๐‘13 โ€ฆ
๐‘23 โ€ฆ
โ‹ฎ โ‹ฏ
๐‘ ๐‘š3 โ‹ฏ
๐‘1๐‘›
๐‘2๐‘›
โ‹ฎ
๐‘ ๐‘š๐‘›
Matrix Algebra
โ€ข There are other ways of showing a matrix:
๐‘ฉ = ๐‘๐‘–๐‘— ๐‘šร—๐‘›
๐’๐’“ ๐‘ฉ ๐’Žร—๐’
The Order of a Matrix:
โ€ข The size and the shape of a matrix is given by its order
which is the multiplication of number of rows and
number of columns.
โ€ข In the previous examples the order of A is 3 ร— 2 and the
order of B is ๐‘š ร— ๐‘›.
โ€ข If ๐‘š = ๐‘› then the matrix is called a square matrix of order
๐‘š (๐‘œ๐‘Ÿ ๐‘›).
Vectors & Scalars
โ€ข A matrix with just one row or one column is called vector.
๐ด1ร—3 = 2 โˆ’10 3.5 is a row (horizontal) vector.
๐ต4ร—1 =
2
โˆ’1.65
7.2
5
is a column (vertical) vector.
โ€ข In matrix algebra any real number is called scalar. So, a
scalar in matrix algebra is a 1 ร— 1 matrix.
Types of Matrices
Null (zero) Matrix:
If all elements of a matrix is zero the matrix is called null or
zero matrix and it is shown by ๐ŸŽ .
๐ด2ร—2 =
0 0
0 0
๐ถ2ร—3 =
0 0 0
0 0 0
Diagonal Matrix:
A square matrix which have at least one nonzero element on
its main diagonal and zeros elsewhere is a diagonal matrix.
๐ด3ร—3 =
3 0 0
0 โˆ’1 0
0 0 2
Main Diagonal๐’Š = ๐’‹ โ†’ ๐’‚๐’Š๐’‹ โ‰  ๐ŸŽ
๐’Š โ‰  ๐’‹ โ†’ ๐’‚๐’Š๐’‹ = ๐ŸŽ
Types of Matrices
Identity (unit) Matrix:
A diagonal matrix whose all elements on the main diagonal
are equal to one is called identity or unit matrix. A unit
matrix is usually shown by letter I and its order.
๐ผ2ร—2 = ๐ผ2 =
1 0
0 1
๐ผ3ร—3 = ๐ผ3 =
1 0 0
0 1 0
0 0 1
Scalar Matrix:
In a diagonal matrix if all elements are equal the matrix is
called a scalar matrix.
๐ด3ร—3 =
3 0 0
0 3 0
0 0 3
Types of Matrices
Transpose Matrix:
For a matrix ๐‘จ ๐’Žร—๐’ the transpose is defined as ๐‘จโ€ฒ ๐’ร—๐’Ž (in some books ๐‘จ ๐’ร—๐’Ž
๐‘ป
)
where the rows and columns are interchanged.
๐ด2ร—4 =
1 4
3 โˆ’2
1
0
โˆ’3
1.2
โ†’ ๐ดโ€ฒ4ร—2 =
1
4
3
โˆ’2
1
โˆ’3
0
1.2
โ€ข Transposed of a row vector is a column vector and vice versa.
๐‘‹3ร—1 =
1
5
4
โ†’ ๐‘‹โ€ฒ1ร—3 = 1 5 4
Properties of Transpose Matrix:
๏‚ง By the definition of transpose matrix we can conclude ๐‘จโ€ฒ โ€ฒ = ๐‘จ.
๏‚ง By the definition, ๐‘ฐโ€ฒ = ๐‘ฐ. This property is true for all diagonal matrices.
๏‚ง For a square matrix ๐‘จ, if ๐‘จโ€ฒ
= ๐‘จ , then ๐‘จ is a symmetric matrix.
1 0.5
0.5 3
๏‚ง ๐’Œ๐‘จ โ€ฒ = ๐’Œ๐‘จโ€ฒ
Types of Matrices
Triangular Matrices:
If all elements above the main diagonal of a square matrix are
zero the matrix is called โ€œlower triangular matrixโ€.
e.g. ๐ด =
2 0 0
0 โˆ’1 0
4 3 5
if ๐‘– < ๐‘— , ๐‘Ž๐‘–๐‘— = 0
Alternatively, If all elements under the main diagonal of a
square matrix are zero the matrix is called โ€œupper triangular
matrixโ€.
e.g. ๐ต =
1 โˆ’3 1
2
0 4 7
0 0 โˆ’6
if ๐‘– > ๐‘— , ๐‘Ž๐‘–๐‘— = 0
Types of Matrices
Symmetric Matrix:
A square matrix is symmetric if ๐‘จ = ๐‘จโ€ฒ. This means that the
elements above the main diagonal in the matrix are the mirror
image of elements under the main diagonal (the main diagonal
works as a mirror)
๐ด3ร—3 =
3 1.2 2
1.2 โˆ’1 0
2 0 2
Equality in matrices:
โ€ข Two matrices ๐‘จ and ๐‘ฉ are equal if they have the same order
and their corresponding elements are equal.
๐‘จ = ๐‘ฉ โ†”
๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘จ = ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ(๐‘ฉ)
โˆ€๐‘–, ๐‘— โ†’ ๐‘Ž๐‘–๐‘— = ๐‘๐‘–๐‘—
Matrix Operation
Scalar Multiplication:
If ๐‘˜ is a scalar then
๐‘˜. ๐‘จ = ๐‘˜. ๐‘Ž๐‘–๐‘— ๐‘šร—๐‘›
This means that all elements of the matrix are multiplied by
the scalar ๐‘˜.
Matrix Addition & Subtraction:
Addition and subtraction are defined for the matrices of the
same order. It is not possible to add or subtract matrices
from different orders. In both cases the corresponding
elements are added or subtracted:
๐‘จ ๐’Žร—๐’ ยฑ ๐‘ฉ ๐’Žร—๐’ = ๐‘Ž๐‘–๐‘— ยฑ ๐‘๐‘–๐‘— ๐‘šร—๐‘›
Matrix Operations
e.g. ๐ด =
3 1 โˆ’2
2 4 1
and ๐ต =
7 โˆ’10 4
5 0 3
๐ด + ๐ต =
10 โˆ’9 2
7 4 4
๐ด โˆ’ ๐ต =
โˆ’4 11 โˆ’6
โˆ’3 4 โˆ’2
Properties of Addition & Subtraction:
๏‚ง ๐‘จ + ๐‘ฉ = ๐‘ฉ + ๐‘จ Commutative law
๏‚ง ๐‘จ ยฑ ๐‘ฉ ยฑ ๐‘ช = ๐‘จ ยฑ ๐‘ฉ ยฑ ๐‘ช Associative law
๏‚ง ๐’Œ. ๐‘จ ยฑ ๐‘ฉ = ๐’Œ๐‘จ ยฑ ๐’Œ๐‘ฉ (๐’Œ is a scalar)
๏‚ง ๐‘จ ยฑ ๐‘ฉ โ€ฒ = ๐‘จโ€ฒ ยฑ ๐‘ฉโ€ฒ can be extended to โ€œnโ€
matrices
Matrix Operations
โ€ข Matrix Multiplication:
Multiplication of two matrices ๐‘จ and ๐‘ฉ, in the form of ๐‘จ ร— ๐‘ฉ or ๐‘จ๐‘ฉ, is
possible if the number of columns in ๐‘จ is equal to the number of rows
in ๐‘ฉ. The result of this multiplication is another matrix ๐‘ช where the
number of its rows is equal to the number of rows in ๐‘จ and number of
its columns is equal to the number of columns in ๐‘ฉ; that is:
๐‘จ ๐’Žร—๐’ ร— ๐‘ฉ ๐’ร—๐’‘ = ๐‘ช ๐’Žร—๐’‘
Elements of ๐‘ช can be calculated by adding some multiplications;
multiplications of the elements in the i-th row of ๐‘จ by the
corresponding elements in the j-th column of ๐‘ฉ, that is:
๐‘ช๐’Š๐’‹ = ๐‘˜=1
๐‘›
๐‘Ž๐‘–๐‘˜ ๐‘ ๐‘˜๐‘— where
๐‘– = 1,2, โ‹ฏ , ๐‘š
๐‘— = 1,2, โ‹ฏ , ๐‘
Matrix Operations
โ€ข For example, matrix ๐‘จ ๐Ÿ‘ร—๐Ÿ‘ =
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
cannot be multiplied by a
horizontal vector ๐‘ฟ ๐Ÿร—๐Ÿ‘ = ๐‘ฅ ๐‘ฆ ๐‘ง but it can be multiplied by its
transpose which is a vertical vector; ๐‘ฟโ€ฒ ๐Ÿ‘ร—๐Ÿ =
๐‘ฅ
๐‘ฆ
๐‘ง
and the result is:
AX =
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
๐‘ฅ
๐‘ฆ
๐‘ง
=
๐‘Ž๐‘ฅ + ๐‘๐‘ฆ + ๐‘๐‘ง
๐‘‘๐‘ฅ + ๐‘’๐‘ฆ + ๐‘“๐‘ง
๐‘”๐‘ฅ + โ„Ž๐‘ฆ + ๐‘–๐‘ง
โ€ข In the above example:
๐‘ฟ๐‘ฟโ€ฒ
= ๐‘ฅ2
+ ๐‘ฆ2
+ ๐‘ง2
which is a scalar but ๐‘ฟโ€ฒ
๐‘ฟ =
๐‘ฅ2 ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง
๐‘ฆ๐‘ฅ ๐‘ฆ2 ๐‘ฆ๐‘ง
๐‘ง๐‘ฅ ๐‘ง๐‘ฆ ๐‘ง2
which is a symmetric matrix, why?
Matrix Operations
Properties of Matrix Multiplication:
๏‚ง In general, ๐‘จ๐‘ฉ โ‰  ๐‘ฉ๐‘จ if both exist, but there are special cases that
this property is not true.
๏‚ง If ๐‘ฐ is an identity matrix ๐‘ฐ๐‘ฉ = ๐‘ฉ๐‘ฐ = ๐‘ฉ.
๏‚ง ๐‘จ ๐‘ฉ + ๐‘ช = ๐‘จ๐‘ฉ + ๐‘จ๐‘ช and ๐‘ฉ + ๐‘ช ๐‘จ = ๐‘ฉ๐‘จ + ๐‘ช๐‘จ
๏‚ง ๐‘จ ๐‘ฉ๐‘ช = ๐‘จ๐‘ฉ ๐‘ช
๏‚ง If ๐‘จ๐‘ฉ exist then ๐‘จ๐‘ฉ โ€ฒ = ๐‘ฉโ€ฒ ๐‘จโ€ฒ (this can be extended to more than 2
matrices, i.e.: ๐‘จ๐‘ฉ๐‘ช โ€ฒ
= ๐‘ชโ€ฒ๐‘ฉโ€ฒ
๐‘จโ€ฒ
๏‚ง From ๐‘จ๐‘ฉ = ๐ŸŽ we cannot conclude necessarily that ๐‘จ = ๐ŸŽ๐‘œ๐‘Ÿ ๐‘ฉ = ๐ŸŽ.*
๏‚ง From ๐‘จ๐‘ฉ = ๐‘จ๐‘ช we cannot conclude necessarily that ๐‘ฉ = ๐‘ช.**
Determinant of a Matrix
โ€ข Consider the system of simultaneous equations
๐’‚๐’™ + ๐’ƒ๐’š = ๐’†
๐’„๐’™ + ๐’…๐’š = ๐’‡
Where ๐’‚, ๐’ƒ, โ€ฆ . , ๐’†, ๐’‡ are constants of the system. If the coefficients of
๐’™ and ๐’š in the first equation (i.e. ๐’‚ and ๐’ƒ )have a linear relationship
with the coefficients of the second equation (i.e. ๐’„ and ๐’… ), the system
either does not have a unique solutions for ๐’™ and ๐’š (when ๐’†, ๐’‡ also
have the same linear relationship) or there is no solution at all (the
system is not solvable as the equations are in contrary with each other).
โ€ข If
๐‘Ž
๐‘
=
๐‘
๐‘‘
โ†’ ๐‘Ž๐‘‘ = ๐‘๐‘ or ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ = 0 it means the
coefficients have a linear relationship and there is no
unique solutions for ๐‘ฅ and ๐‘ฆ. The value of ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘
determines whether a system of simultaneous equations
have a unique solutions or not.
Determinant of a Matrix
o For the system of simultaneous equations A:
2๐‘ฅ + 3๐‘ฆ = 12
4๐‘ฅ + 6๐‘ฆ = 24
and
B:
2๐‘ฅ + 3๐‘ฆ = 12
4๐‘ฅ + 6๐‘ฆ = โˆ’18
we have:
2
4
=
3
6
โ†’ 2 ร— 6 = 3 ร— 4 ๐’๐’“ 2 ร— 6 โˆ’ 3 ร— 4 = 0
So, both systems fail to provide unique
solutions for ๐‘ฅ and ๐‘ฆ but the difference
between them is that system A provides
infinite solutions (because there are, in fact,
one equation with two variables, which
geometrically means two lines coincide) but
the equations in system B are in contrary with
each other (geometrically means they are two
parallel lines and do not cross each other).
x
y
2๐‘ฅ + 3๐‘ฆ = 12
4๐‘ฅ + 6๐‘ฆ = 24
2๐‘ฅ + 3๐‘ฆ = 12
4๐‘ฅ + 6๐‘ฆ = โˆ’18
x
y
Infinite solutions
No solution
Determinant of a Matrix
โ€ข for matrix ๐‘จ ๐Ÿร—๐Ÿ =
๐‘Ž ๐‘
๐‘ ๐‘‘
, the value of ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ is called
โ€œdeterminantโ€ of the matrix and it is shown by det ๐‘จ or simply ๐‘จ .
๐‘จ ๐Ÿร—๐Ÿ=
๐‘Ž ๐‘
๐‘ ๐‘‘
โ†’ det ๐‘จ = ๐‘จ = ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘
โ€ข To every square matrix we can correspond a scalar which is called the
determinant of the matrix. So, determinant of a matrix represents a
function.
โ€ข What about if the square matrix is ๐Ÿ‘ ร— ๐Ÿ‘ or even ๐’ ร— ๐’?
In order to obtain the determinant of matrices of higher orders than 2
we need to introduce two concepts:
๏ƒ˜ Minors
๏ƒ˜ Cofactors
Determinant of Matrices of Higher Orders than 2
โ€ข Minors: For every element (such as ๐‘Ž๐‘–๐‘—) of a square matrix there
is a corresponding determinant, called โ€œminor of ๐’‚๐’Š๐’‹โ€ (shown by
๐‘€๐‘–๐‘—) derived from ignoring the elements in the same row and
column of ๐‘Ž๐‘–๐‘— (i.e. ๐‘– and ๐‘—).
โ€ข For matrix
๐‘Ž11 ๐‘Ž12 ๐‘Ž13
๐‘Ž21 ๐‘Ž22 ๐‘Ž23
๐‘Ž31 ๐‘Ž32 ๐‘Ž33
, minors are:
Minor of ๐‘Ž11 = ๐‘€11 =
๐‘Ž22 ๐‘Ž23
๐‘Ž32 ๐‘Ž33
= ๐‘Ž22 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž32
Minor of ๐‘Ž12 = ๐‘€12 =
๐‘Ž21 ๐‘Ž23
๐‘Ž31 ๐‘Ž33
= ๐‘Ž21 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž31
Minor of ๐‘Ž13 = ๐‘€13 =
๐‘Ž21 ๐‘Ž22
๐‘Ž31 ๐‘Ž32
= ๐‘Ž21 ๐‘Ž32 โˆ’ ๐‘Ž22 ๐‘Ž31
Minor of ๐‘Ž21 = ๐‘€21 =
๐‘Ž12 ๐‘Ž13
๐‘Ž32 ๐‘Ž33
= ๐‘Ž12 ๐‘Ž33 โˆ’ ๐‘Ž13 ๐‘Ž32
Determinant of Matrices of Higher Orders than 2
โ€ข Minor of ๐‘Ž22 = ๐‘€22 =
๐‘Ž11 ๐‘Ž13
๐‘Ž31 ๐‘Ž33
= ๐‘Ž11 ๐‘Ž33 โˆ’ ๐‘Ž13 ๐‘Ž31
โ€ข โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
โ€ข โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
โ€ข Minor of ๐‘Ž33 = ๐‘€33 =
๐‘Ž11 ๐‘Ž12
๐‘Ž21 ๐‘Ž22
= ๐‘Ž11 ๐‘Ž22 โˆ’ ๐‘Ž12 ๐‘Ž21
โ€ข Cofactors: Cofactors of each element ๐‘Ž๐‘–๐‘—, shown by ๐ถ๐‘–๐‘—, are minors with a
sign depending on the row and column of the element. i.e.:
๐ถ๐‘–๐‘— = โˆ’1 ๐‘–+๐‘— ๐‘€๐‘–๐‘—
So,
the cofactor of ๐‘Ž11 is ๐‘ช ๐Ÿ๐Ÿ = โˆ’1 1+1
๐‘€11 = ๐‘€11 = ๐‘Ž22 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž32
And
the cofactor of ๐‘Ž23 is
๐‘ช ๐Ÿ๐Ÿ‘ = โˆ’1 2+3 ๐‘€23 = โˆ’๐‘€23= โˆ’(๐‘Ž11 ๐‘Ž32 โˆ’ ๐‘Ž12 ๐‘Ž31) = โˆ’๐‘Ž11 ๐‘Ž32 + ๐‘Ž12 ๐‘Ž31
Determinant of Matrices of Higher Orders than 2
โ€ข The matrix of cofactors can be shown as:
๐ถ =
๐ถ11 ๐ถ12 ๐ถ13
๐ถ21 ๐ถ22 ๐ถ23
๐ถ31 ๐ถ32 ๐ถ33
=
๐‘€11 โˆ’๐‘€12 ๐‘€13
โˆ’๐‘€21 ๐‘€22 โˆ’๐‘€23
๐‘€31 โˆ’๐‘€32 ๐‘€33
Now, we can define and calculate the determinant of a matrix with
order higher than two.
Definition: Determinant of a ๐‘› ร— ๐‘› matrix is the summation of
products between elements of any row (or any column ) and their
corresponding cofactors. i.e.:
For a matrix ๐‘จ ๐’ร—๐’ we can write:
๐‘จ = ๐‘Ž11. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž12. ๐‘ช ๐Ÿ๐Ÿ + โ‹ฏ + ๐‘Ž1๐‘› . ๐‘ช ๐Ÿ๐’ Based on the 1st row
๐‘จ = ๐‘Ž1๐‘›. ๐‘ช ๐Ÿ๐’ + ๐‘Ž2๐‘›. ๐‘ช ๐Ÿ๐’ + โ‹ฏ + ๐‘Ž ๐‘›๐‘› . ๐‘ช ๐’๐’ Based on the nth column
Determinant of Matrices of Higher Orders than 2
o Find the determinant of ๐€ =
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
.
Based on the elimination of rows and columns using the elements
of the first row we have:
๐‘จ = ๐‘Ž.
๐‘’ ๐‘“
โ„Ž ๐‘–
โˆ’ ๐‘.
๐‘‘ ๐‘“
๐‘” ๐‘–
+ ๐‘.
๐‘‘ ๐‘’
๐‘” โ„Ž
= ๐‘Ž ๐‘’๐‘– โˆ’ ๐‘“โ„Ž โˆ’ ๐‘ ๐‘‘๐‘– โˆ’ ๐‘“๐‘” + ๐‘(๐‘‘โ„Ž โˆ’ ๐‘’๐‘”)
= ๐‘Ž๐‘’๐‘– โˆ’ ๐‘Ž๐‘“โ„Ž โˆ’ ๐‘๐‘‘๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ ๐‘๐‘’๐‘”
o The determinant of the unit matrix of order ๐‘› is:
๐‘ฐ ๐’ร—๐’ = ๐‘ฐ ๐’ =
1
0
0 โ€ฆ
1 โ‹ฏ
0
0
โ‹ฎ โ‹ฎ โ‹ฏ โ‹ฎ
0 0 โ€ฆ 1
๐‘ฐ ๐’ = ๐‘ฐ ๐’โˆ’๐Ÿ = โ‹ฏ = ๐‘ฐ ๐Ÿ = 1 , why?
Sarrusโ€™ Rule
โ€ข For a matrix ๐€ =
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
can be calculated through following steps:
1. Add the first 2 columns of the matrix to the right of the 3rd column:
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
๐‘Ž
๐‘‘
๐‘”
๐‘
๐‘’
โ„Ž
2. Subtract the sum of the products along the green arrows from the sum of
products along the blue arrows:
๐‘จ = ๐‘Ž๐‘’๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ (๐‘๐‘’๐‘” + ๐‘Ž๐‘“โ„Ž + ๐‘๐‘‘๐‘–)
โ€ข Note: It is also possible to add the first 2 rows of the matrix to the bottom of
the 3rd row:
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
(+) (-)
(+) (-)
๐‘จ = ๐‘Ž๐‘’๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ (๐‘๐‘’๐‘” + ๐‘Ž๐‘“โ„Ž + ๐‘๐‘‘๐‘–)
Properties of Determinants
1) Transposing a matrix does not change its determinant: ๐‘จ = ๐‘จโ€ฒ
๐‘Ž ๐‘
๐‘ ๐‘‘
=
๐‘Ž ๐‘
๐‘ ๐‘‘
= ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘
2) If all elements of a row (or column) of a square matrix are zero the
determinant of that matrix is zero. Why?
๐‘Ž 0 2
๐‘ 0 3
๐‘ 0 4
= 0
3) If two rows (or columns) of a square matrix have the same values or
make a linear relationship with each other the determinant of the
matrix is zero.
๐’‚ ๐’ƒ ๐’„
๐’‚ ๐’ƒ ๐’„
๐‘” โ„Ž ๐‘–
=
๐’‚ ๐’ƒ ๐’„
๐Ÿ๐’‚ ๐Ÿ๐’ƒ ๐Ÿ๐’„
๐‘” โ„Ž ๐‘–
= 0
Properties of Determinants
4) If the elements in a row (or in a column) of a square matrix
multiplied by a constant the determinant of the matrix is multiplied by
that constant but if the entire elements of a matrix multiplied by a
constant the determinant of the matrix multiplied by that constant to
the power of the order of the matrix, i.e.
If ๐€ =
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
then
๐‘˜. ๐‘Ž ๐‘ ๐‘
๐‘˜. ๐‘‘ ๐‘’ ๐‘“
๐‘˜. ๐‘” โ„Ž ๐‘–
= ๐‘˜. ๐‘จ and
๐‘˜. ๐‘Ž ๐‘˜. ๐‘ ๐‘˜. ๐‘
๐‘˜. ๐‘‘ ๐‘˜. ๐‘’ ๐‘˜. ๐‘“
๐‘˜. ๐‘” ๐‘˜. โ„Ž ๐‘˜. ๐‘–
=
๐‘˜3.
๐‘Ž ๐‘ ๐‘
๐‘‘ ๐‘’ ๐‘“
๐‘” โ„Ž ๐‘–
๐‘œ๐‘Ÿ ๐‘˜. ๐‘จ = ๐‘˜3. ๐‘จ
If matrix ๐‘จ was from
order of ๐‘› then
๐‘˜. ๐‘จ = ๐‘˜ ๐‘›. ๐‘จ
Properties of Determinants
5) For the square matrices ๐‘จ and ๐‘ฉ with the same orders
๐‘จ๐‘ฉ = ๐‘จ . ๐‘ฉ
6) If two rows (or two columns) of a square matrix are interchanged
the determinant of the matrix is multiplied by -1.
๐‘Ž ๐‘
๐‘ ๐‘‘
= โˆ’
๐‘ ๐‘‘
๐‘Ž ๐‘
๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘–๐‘›๐‘” ๐‘ก๐‘ค๐‘œ ๐‘Ÿ๐‘œ๐‘ค๐‘ 
7) If the elements of a row (or a column) of a square matrix is the sum
of two row (column) vectors, the determinant of the matrix can be
written as the sum of two determinants; each corresponded to one of
the vectors, i.e.:
๐‘Ž + ๐œ‡ ๐‘ + ๐œƒ
๐‘ ๐‘‘
=
๐‘Ž ๐‘
๐‘ ๐‘‘
+
๐œ‡ ๐œƒ
๐‘ ๐‘‘
๐‘Ž + ๐œ‡ ๐‘
๐‘ + ๐œƒ ๐‘‘
=
๐‘Ž ๐‘
๐‘ ๐‘‘
+
๐œ‡ ๐‘
๐œƒ ๐‘‘
8) Adding or subtracting a scalar multiple of a row (or a column) to
another row (column) does not change the determinant of the matrix.
๐‘Ž + ๐‘˜. ๐‘ ๐‘
๐‘ + ๐‘˜. ๐‘‘ ๐‘‘
=
๐‘Ž ๐‘
๐‘ ๐‘‘
+ ๐‘˜.
๐‘ ๐‘
๐‘‘ ๐‘‘
=
0
๐‘Ž ๐‘
๐‘ ๐‘‘
9) Determinant of a triangular, diagonal and scalar matrix is the
multiplication of the elements on the main diagonal.
Triangular matrix :
1 4 3
0 โˆ’2 5
0 0 3
= 1 ร— โˆ’2 ร— 3 = โˆ’6
Diagonal matrix:
1 0 0
0 โˆ’2 0
0 0 3
= 1 ร— โˆ’2 ร— 3 = โˆ’6
Scalar Matrix:
โˆ’2 0 0
0 โˆ’2 0
0 0 โˆ’2
= โˆ’2 ร— ๐ผ3 = โˆ’2 3 ร— ๐‘ฐ ๐Ÿ‘
1
= โˆ’8
Properties of Determinants
โ€ข The last two properties are sometimes used to facilitate the
calculation of determinant of a matrix.
o If ๐‘จ =
2 3 โˆ’1
1 4 0
โˆ’3 5 4
find ๐‘จ .
According to the property No. 8, if we substitute the last row (๐‘…3) by
4๐‘…1 + ๐‘…3 (multiplying the first row by 4 and adding it to the third
row) the result of the determinant does not change. So:
2 3 โˆ’1
1 4 0
โˆ’3 5 4
=
2 3 โˆ’1
1 4 0
5 17 0
= โˆ’1 ร—
1 4
5 17
= 3
โ€ข These type of operations are called elementary row/column
operations and they are useful to solve a system of simultaneous
equations . These types of operations will be discussed later.
Properties of Determinants
โ€ข The concept of inverse is very important in all branches of algebra.
Inverse of a real number, inverse of a function are just different aspects
of this concept.
โ€ข In matrix algebra the inverse of a square matrix ๐‘จ, which is shown by
๐‘จโˆ’๐Ÿ
(read ๐‘จ inverse), is the matrix of the same order such that:
๐‘จ๐‘จโˆ’๐Ÿ
= ๐‘จโˆ’๐Ÿ
๐‘จ = ๐‘ฐ
Where ๐‘ฐ is an identity matrix of the same order.
Note: Not all square matrices have an invers but if a square matrix is
invertible, the inverse matrix is unique.
Some properties of inverse matrices are as following:
๏‚ง ๐‘จโˆ’๐Ÿ โˆ’๐Ÿ
= ๐‘จ
๏‚ง ๐‘จ๐‘ฉ โˆ’๐Ÿ
= ๐‘ฉโˆ’๐Ÿ
๐‘จโˆ’๐Ÿ
๏‚ง ๐‘จโ€ฒ โˆ’๐Ÿ
= ๐‘จโˆ’๐Ÿ โ€ฒ
๏‚ง ๐‘จ๐‘จโˆ’๐Ÿ
= ๐‘ฐ โ†’ ๐‘จ . ๐‘จโˆ’๐Ÿ
= 1 โ†’ ๐‘จโˆ’๐Ÿ
=
1
๐‘จ
Invers of a Matrix
๏‚ง A square matrix ๐‘จ is invertible if and only if ๐‘จ โ‰  0. This is
necessary and sufficient condition for a square matrix to have an
inverse. If ๐‘จ โ‰  0, the matrix is called non-singular and singular
otherwise.
๏‚ง To find the inverse of a function we can follow one of these
methods:
a) Using the Definition:
o Find the inverse of the matrix ๐‘จ =
2 4
5 5
.
As ๐‘จ = โˆ’10, so, the inverse exists. According to the definition, if
๐‘จโˆ’๐Ÿ
=
๐‘Ž ๐‘
๐‘ ๐‘‘
then : ๐€๐‘จโˆ’๐Ÿ
=
2 4
5 5
๐‘Ž ๐‘
๐‘ ๐‘‘
=
1 0
0 1
= ๐‘ฐ. By
multiplication we have:
2๐‘Ž + 4๐‘ 2๐‘ + 4๐‘‘
5๐‘Ž + 5๐‘ 5๐‘ + 5๐‘‘
=
1 0
0 1
By solving the system of four simultaneous equations with four
variables we will have : ๐‘Ž = โˆ’0.5 , ๐‘ = โˆ’0.5 , ๐‘ = 0.5 and ๐‘‘ = โˆ’0.5.
Finding the Inverse of a Square Matrix
So, ๐‘จโˆ’๐Ÿ =
โˆ’0.5 โˆ’0.5
0.5 โˆ’0.5
. This method can be difficult for matrices of
orders bigger than two.
b) Gauss Method (Gaussian Elimination Method):
A prerequisite for using this method is to know the concept of
elementary raw (column) operations. If a matrix is associated to a
system of simultaneous linear equations (called coefficients matrix)
elementary raw (column)operations help to solve the system and find
the set of solutions easily. They can be also used to calculate the
determinant of a square matrix or to find its inverse, in case the
matrix is invertible.
Three types of these operations are:
I. Row (column) Switching: A row (column) in a matrix can be
switched with another row (column), i.e. ๐‘…๐‘– โ†” ๐‘…๐‘— (๐ถ๐‘– โ†” ๐ถ๐‘—)
Finding the Inverse of a Square Matrix
II. Row (column) Multiplication: all elements in a row (column) can
be multiplied by a non-zero scalar and be replaced by that, i.e.
๐‘˜. ๐‘…๐‘– โ†’ ๐‘…๐‘– (๐‘˜. ๐ถ๐‘– โ†’ ๐ถ๐‘–)
III. Row (column) Addition/Subtraction: A row (column) can be
replaced by the sum of that row (column) and a multiple of
another row (column), i.e. ๐‘…๐‘– ยฑ ๐‘˜. ๐‘…๐‘— โ†’ ๐‘…๐‘– (๐ถ๐‘– ยฑ ๐‘˜. ๐ถ๐‘— โ†’ ๐ถ๐‘–)
โ€ข The third elementary operation (no. III) does not change the
determinant of a matrix. Why?(Hint: focus on the properties of determinants)
โ€ข In order to find the inverse of a square matrix ๐‘จ through the
Gaussian elimination method we attach an identity matrix ๐‘ฐ (of the
same order) to ๐‘จ and then by using a sequence of elementary row
operations on both of them matrix ๐‘จ step by step transforms to an
identity matrix and the identity matrix transforms to ๐‘จโˆ’๐Ÿ
, i.e.
๐‘จ โ‹ฎ ๐‘ฐ โ†’ ๐‘ฐ โ‹ฎ ๐‘จโˆ’๐Ÿ
Why?(Hint: focus on the relationship between ๐‘จ, ๐‘ฐ and ๐‘จโˆ’๐Ÿ
)
Finding the Inverse of a Square Matrix
o Find the inverse of the matrix ๐‘จ =
2 3 4
1 6 9
โˆ’1 0 1
, if it is invertible.
Applying an elementary column operation, ๐‘จ can be easily calculated:
๐ถ3 + ๐ถ1 โ†’ ๐ถ1 :
2 3 4
1 6 9
โˆ’1 0 1
โ†’
6 3 4
10 6 9
0 0 1
; so, based on the
expansion of the last row ๐‘จ = 6. Therefore, matrix ๐‘จ is invertible.
To find ๐‘จโˆ’๐Ÿ, we need to make ๐‘จ โ‹ฎ ๐‘ฐ and then follow the following
sequence of elementary row operations:
2 3 4
1 6 9
โˆ’1 0 1
1 0 0
0 1 0
0 0 1
๐‘…1โ†”๐‘…2
1 6 9
2 3 4
โˆ’1 0 1
0 1 0
1 0 0
0 0 1
โˆ’2๐‘…1+๐‘…2โ†’๐‘…2
๐‘…1+๐‘…3โ†’๐‘…3
1 6 9
0 โˆ’9 โˆ’14
0 6 10
0 1 0
1 โˆ’2 0
0 1 1
โˆ’1
9
๐‘…2โ†’๐‘…2
1 6 9
0 1 14
9
0 6 10
0 1 0
โˆ’1
9
2
9 0
0 1 1
โˆ’6๐‘…2+๐‘…1โ†’๐‘…1
โˆ’6๐‘…2+๐‘…3โ†’๐‘…3
1 0 โˆ’1
3
0 1 14
9
0 0 2
3
2
3
โˆ’1
3
0
โˆ’1
9
2
9 0
2
3
โˆ’1
3
1
Finding the Inverse of a Square Matrix
1 0 โˆ’1
3
0 1 14
9
0 0 2
3
2
3
โˆ’1
3
0
โˆ’1
9
2
9
0
2
3
โˆ’1
3
1
3
2
๐‘…3โ†’๐‘…3
1 0 โˆ’1
3
0 1 14
9
0 0 1
2
3
โˆ’1
3
0
โˆ’1
9
2
9
0
1
โˆ’1
2
3
2
โˆ’14
9
๐‘…3+๐‘…2โ†’๐‘…2
1
3
๐‘…3+๐‘…1โ†’๐‘…1 1 0 0
0 1 0
0 0 1
1 โˆ’1
2
1
2
โˆ’5
3
1 โˆ’7
3
1 โˆ’1
2
3
2
โ€ข If the matrix ๐‘จ in the above example was representing a coefficients matrix
in the system of simultaneous equations such as the following
2๐‘ฅ + 3๐‘ฆ + 4๐‘ง = 5
๐‘ฅ + 6๐‘ฆ + 9๐‘ง = 0
โˆ’๐‘ฅ + ๐‘ง = โˆ’4
the system could be written in the matrix form as ๐‘จ๐‘ฟ = ๐‘ฉ, i.e.
2 3 4
1 6 9
โˆ’1 0 1
๐‘ฅ
๐‘ฆ
๐‘ง
=
5
0
โˆ’4
โ€ข And by using ๐‘จโˆ’๐Ÿ
, the unique set of solutions for the variables can be
found, because:
๐‘จ๐‘ฟ = ๐‘ฉ โŸน ๐‘จโˆ’๐Ÿ
๐‘จ๐‘ฟ = ๐‘จโˆ’๐Ÿ
๐‘ฉ โŸน ๐‘ฟ = ๐‘จโˆ’๐Ÿ
๐‘ฉ
Finding the Inverse of a Square Matrix
๐‘จโˆ’๐Ÿ๐‘ฐ
So,
๐‘ฅ
๐‘ฆ
๐‘ง
=
1 โˆ’1
2
1
2
โˆ’5
3
1 โˆ’7
3
1 โˆ’1
2
3
2
5
0
โˆ’4
=
3
1
โˆ’1
โ†’
๐‘ฅ = 3
๐‘ฆ = 1
๐‘ง = โˆ’1
.
โ€ข The same elementary raw operations could be used to reach to the
same results:
๐‘จ ๐‘ฉ โ†’ ๐‘จโˆ’๐Ÿ ๐‘จ ๐‘จโˆ’๐Ÿ ๐‘ฉ โ†’ ๐‘ฐ ๐‘ฟ
c) Adjoint (Adjugate) Matrix Method:
Recall from the definition of determinant of a 3 ร— 3 matrix :
๐‘จ = ๐‘Ž11. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž12. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž13. ๐‘ช ๐Ÿ๐Ÿ‘
And we know that if elements in a row (column) are multiplied by non-
associated cofactors the sum of these products is zero. Using these
properties, the multiplication of square matrix ๐‘จ by its transposed
cofactor matrix (called adjoint matrix, shown by adj(A))yields a scalar
matrix:
Finding the Inverse of a Square Matrix
Based on the elements of the 1st row
๐‘จ. ๐‘Ž๐‘‘๐‘— ๐‘จ =
๐‘Ž11 ๐‘Ž12 ๐‘Ž13
๐‘Ž21 ๐‘Ž22 ๐‘Ž23
๐‘Ž31 ๐‘Ž32 ๐‘Ž33
๐ถ11 ๐ถ21 ๐ถ31
๐ถ12 ๐ถ22 ๐ถ32
๐ถ13 ๐ถ23 ๐ถ33
=
๐‘จ 0 0
0 ๐‘จ 0
0 0 ๐‘จ
= ๐‘จ . ๐‘ฐ ๐Ÿ‘
So,
๐‘จ. ๐‘Ž๐‘‘๐‘— ๐‘จ = ๐‘จ . ๐‘ฐ
or
๐‘ฐ =
๐‘จ. ๐‘Ž๐‘‘๐‘—(๐‘จ)
๐‘จ
By multiplying both sides by ๐‘จโˆ’๐Ÿ, we have:
๐‘จโˆ’๐Ÿ =
๐‘Ž๐‘‘๐‘—(๐‘จ)
๐‘จ
=
1
๐‘จ
. ๐‘Ž๐‘‘๐‘— ๐‘จ =
1
๐‘จ
๐ถ11 ๐ถ21 ๐ถ31
๐ถ12 ๐ถ22 ๐ถ32
๐ถ13 ๐ถ23 ๐ถ33
Finding the Inverse of a Square Matrix
o Find the inverse of matrix ๐‘จ =
4 โˆ’1
2 โˆ’3
.
As ๐‘จ = โˆ’10, the matrix is invertible. The cofactor matrix for ๐‘จ can be easily
found as ๐‘ช =
โˆ’3 โˆ’2
1 4
and its transposed is ๐‘ชโ€ฒ =
โˆ’3 1
โˆ’2 4
.
So,
๐‘จโˆ’๐Ÿ =
1
โˆ’10
โˆ’3 1
โˆ’2 4
=
0.3 โˆ’0.1
0.2 โˆ’0.4
โ€ข Clearly, the adjoint of a 2 ร— 2 matrix can easily be obtained by
interchanging the elements on the main diagonal (without changing the
sign) and change the sign of elements on the other diagonal (without
changing their place), i.e.
๐‘ฉ =
๐‘Ž ๐‘
๐‘ ๐‘‘
โ†’ ๐‘Ž๐‘‘๐‘— ๐‘ฉ =
๐‘‘ โˆ’๐‘
โˆ’๐‘ ๐‘Ž
So,
๐‘ฉโˆ’๐Ÿ =
๐‘‘
๐‘ฉ
โˆ’๐‘
๐‘ฉ
โˆ’๐‘
๐‘ฉ
๐‘Ž
๐‘ฉ
Finding the Inverse of a Square Matrix
โ€ข Apart from the matrixโ€™s inverse method, Cramerโ€™s rule provides a
simple method of solving a simultaneous equations.
โ€ข According to this rule, the value of any variable in the system of
equation (provided that the system has a unique solution for each
variable), can be obtained through the division of two
determinants, i.e.:
๐‘ฅ =
๐‘จ ๐‘ฅ
๐‘จ
, ๐‘ฆ =
๐‘จ ๐‘ฆ
๐‘จ
and ๐‘ง =
๐‘จ ๐‘ง
๐‘จ
Where ๐‘จ ๐‘ฅ , ๐‘จ ๐‘ฆ and ๐‘จ ๐‘ง are specific determinants. If in ๐‘จ the
column vector associated to the coefficients of any of variables is
replaced by the column vector of constants, we can obtain these
specific determinants.
Cramerโ€™s Rule
โ€ข For example, for the system of equation
2 3 4
1 6 9
โˆ’1 0 1
๐‘ฅ
๐‘ฆ
๐‘ง
=
5
0
โˆ’4
the
Cramerโ€™s rule can be applied as:
๐‘ฅ =
5 3 4
0 6 9
โˆ’4 0 1
2 3 4
1 6 9
โˆ’1 0 1
= 3 , ๐‘ฆ =
2 5 4
1 0 9
โˆ’1 โˆ’4 1
2 3 4
1 6 9
โˆ’1 0 1
= 1
and
๐‘ง =
2 3 5
1 6 0
โˆ’1 0 โˆ’4
2 3 4
1 6 9
โˆ’1 0 1
= โˆ’1
Cramerโ€™s Rule

More Related Content

What's hot

Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
ย 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
itutor
ย 
Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
ย 
Recurrence relations
Recurrence relationsRecurrence relations
Recurrence relations
IIUM
ย 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
Shakehand with Life
ย 

What's hot (20)

Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
ย 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
ย 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
ย 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
ย 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
ย 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
ย 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
ย 
Matrix Algebra seminar ppt
Matrix Algebra seminar pptMatrix Algebra seminar ppt
Matrix Algebra seminar ppt
ย 
Lagrange's method
Lagrange's methodLagrange's method
Lagrange's method
ย 
Set, Relations and Functions
Set, Relations and FunctionsSet, Relations and Functions
Set, Relations and Functions
ย 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
ย 
Matrices
Matrices Matrices
Matrices
ย 
Cramers rule
Cramers ruleCramers rule
Cramers rule
ย 
matrices basic operation.ppt
matrices basic operation.pptmatrices basic operation.ppt
matrices basic operation.ppt
ย 
Recurrence relations
Recurrence relationsRecurrence relations
Recurrence relations
ย 
Determinants
DeterminantsDeterminants
Determinants
ย 
Set Theory
Set TheorySet Theory
Set Theory
ย 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
ย 
Function and Its Types.
Function and Its Types.Function and Its Types.
Function and Its Types.
ย 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
ย 

Viewers also liked

12b applications
12b applications12b applications
12b applications
laiba javed
ย 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
Nigel Simmons
ย 

Viewers also liked (20)

Matrices
Matrices Matrices
Matrices
ย 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
ย 
Chapter 6 - Matrix Algebra
Chapter 6 - Matrix AlgebraChapter 6 - Matrix Algebra
Chapter 6 - Matrix Algebra
ย 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebra
ย 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
ย 
12b applications
12b applications12b applications
12b applications
ย 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
ย 
Final matrix ppt
Final matrix pptFinal matrix ppt
Final matrix ppt
ย 
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1
ย 
Excellent Solutions
Excellent SolutionsExcellent Solutions
Excellent Solutions
ย 
Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3
ย 
Online Advance Excel & VBA Training in India
 Online Advance Excel & VBA Training in India Online Advance Excel & VBA Training in India
Online Advance Excel & VBA Training in India
ย 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
ย 
Introductory maths analysis chapter 10 official
Introductory maths analysis   chapter 10 officialIntroductory maths analysis   chapter 10 official
Introductory maths analysis chapter 10 official
ย 
Chapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of IntegrationChapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of Integration
ย 
Systems of linear equations; matrices
Systems of linear equations; matricesSystems of linear equations; matrices
Systems of linear equations; matrices
ย 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
ย 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
ย 
Chapter 17 - Multivariable Calculus
Chapter 17 - Multivariable CalculusChapter 17 - Multivariable Calculus
Chapter 17 - Multivariable Calculus
ย 
Determinants
DeterminantsDeterminants
Determinants
ย 

Similar to Matrix algebra

University of duhok
University of duhokUniversity of duhok
University of duhok
Rwan Kamal
ย 
2415systems_odes
2415systems_odes2415systems_odes
2415systems_odes
Betsy McCall
ย 
Lecture_9_LA_Review.pptx
Lecture_9_LA_Review.pptxLecture_9_LA_Review.pptx
Lecture_9_LA_Review.pptx
Sunny432360
ย 

Similar to Matrix algebra (20)

Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
ย 
Matrices
MatricesMatrices
Matrices
ย 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
ย 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
ย 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
ย 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
ย 
Operation on Matrices.pptx
Operation on Matrices.pptxOperation on Matrices.pptx
Operation on Matrices.pptx
ย 
University of duhok
University of duhokUniversity of duhok
University of duhok
ย 
Introduction to Business Mathematics
Introduction to Business MathematicsIntroduction to Business Mathematics
Introduction to Business Mathematics
ย 
MATRICES-MATHED204.pptx
MATRICES-MATHED204.pptxMATRICES-MATHED204.pptx
MATRICES-MATHED204.pptx
ย 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
ย 
2415systems_odes
2415systems_odes2415systems_odes
2415systems_odes
ย 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear Algebra
ย 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
ย 
Matrices and Determinants
Matrices and DeterminantsMatrices and Determinants
Matrices and Determinants
ย 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
ย 
Lecture_9_LA_Review.pptx
Lecture_9_LA_Review.pptxLecture_9_LA_Review.pptx
Lecture_9_LA_Review.pptx
ย 
Matrix
MatrixMatrix
Matrix
ย 
Lecture_10_SVD.pptx
Lecture_10_SVD.pptxLecture_10_SVD.pptx
Lecture_10_SVD.pptx
ย 

More from Farzad Javidanrad (13)

Lecture 5
Lecture 5Lecture 5
Lecture 5
ย 
Lecture 4
Lecture 4Lecture 4
Lecture 4
ย 
Lecture 3
Lecture 3Lecture 3
Lecture 3
ย 
Lecture 2
Lecture 2Lecture 2
Lecture 2
ย 
Lecture 1
Lecture 1Lecture 1
Lecture 1
ย 
Specific topics in optimisation
Specific topics in optimisationSpecific topics in optimisation
Specific topics in optimisation
ย 
Introduction to correlation and regression analysis
Introduction to correlation and regression analysisIntroduction to correlation and regression analysis
Introduction to correlation and regression analysis
ย 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
ย 
Statistics (recap)
Statistics (recap)Statistics (recap)
Statistics (recap)
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
ย 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
ย 
The Dynamic of Business Cycle in Kaleckiโ€™s Theory: Duality in the Nature of I...
The Dynamic of Business Cycle in Kaleckiโ€™s Theory: Duality in the Nature of I...The Dynamic of Business Cycle in Kaleckiโ€™s Theory: Duality in the Nature of I...
The Dynamic of Business Cycle in Kaleckiโ€™s Theory: Duality in the Nature of I...
ย 
Introductory Finance for Economics (Lecture 10)
Introductory Finance for Economics (Lecture 10)Introductory Finance for Economics (Lecture 10)
Introductory Finance for Economics (Lecture 10)
ย 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
ย 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
ย 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
ย 

Recently uploaded (20)

REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
ย 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
ย 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
ย 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
ย 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
ย 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
ย 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
ย 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
ย 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
ย 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
ย 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
ย 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
ย 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
ย 
Introduction to TechSoupโ€™s Digital Marketing Services and Use Cases
Introduction to TechSoupโ€™s Digital Marketing  Services and Use CasesIntroduction to TechSoupโ€™s Digital Marketing  Services and Use Cases
Introduction to TechSoupโ€™s Digital Marketing Services and Use Cases
ย 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
ย 
Economic Importance Of Fungi In Food Additives
Economic Importance Of Fungi In Food AdditivesEconomic Importance Of Fungi In Food Additives
Economic Importance Of Fungi In Food Additives
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 

Matrix algebra

  • 1. Matrix Algebra (Recap) (for MSc & PhD Business, Management & Finance Students) Lecturer: Farzad Javidanrad First Draft: Sep. 2013 Revised: Sep. 2014 Basic level
  • 2. Linear Transformation โ€ข Matrix Algebra developed in relation to linear transformations such as the following: ๐‘Ž๐‘ฅ + ๐‘๐‘ฆ = ๐‘‹ ๐‘๐‘ฅ + ๐‘‘๐‘ฆ = ๐‘Œ Where ๐‘Ž, ๐‘, ๐‘ and ๐‘‘ are real numbers. This transformation introduces a function(mapping) by which an ordered pair ๐‘ฅ, ๐‘ฆ in ๐‘ฅ๐‘œ๐‘ฆ plane transformed (associated) to another ordered pair (๐‘‹, ๐‘Œ) in ๐‘‹๐‘‚๐‘Œ plane. ๐’™ ๐‘ฟ ๐’€๐’š ๐’ ๐‘ถ This linear transformation can be done through the coefficients of ๐‘ฅ and ๐‘ฆ . The square array ๐‘Ž ๐‘ ๐‘ ๐‘‘ represents this transformation which is one among many other transformations. Such an array is called matrix.
  • 3. Matrix Algebra โ€ข Definition: A matrix is a rectangular or square array of elements (usually numbers) arranged in rows and columns. โ€ข Matrices are usually shown by capital and bold letters such as A, B, etc. Matrix A with 3 rows and 2 columns is shown by ๐‘จ ๐Ÿ‘ร—๐Ÿ and matrix B with m rows and n columns is shown by ๐‘ฉ ๐’Žร—๐’. Their elements are shown by small letters with an index indicating the position of the element in the matrix. โ€ข ๐ด3ร—2 = ๐‘Ž11 ๐‘Ž21 ๐‘Ž31 ๐‘Ž12 ๐‘Ž22 ๐‘Ž32 ๐ต ๐‘šร—๐‘› = ๐‘11 ๐‘21 โ‹ฎ ๐‘ ๐‘š1 ๐‘12 ๐‘22 โ‹ฎ ๐‘ ๐‘š2 ๐‘13 โ€ฆ ๐‘23 โ€ฆ โ‹ฎ โ‹ฏ ๐‘ ๐‘š3 โ‹ฏ ๐‘1๐‘› ๐‘2๐‘› โ‹ฎ ๐‘ ๐‘š๐‘›
  • 4. Matrix Algebra โ€ข There are other ways of showing a matrix: ๐‘ฉ = ๐‘๐‘–๐‘— ๐‘šร—๐‘› ๐’๐’“ ๐‘ฉ ๐’Žร—๐’ The Order of a Matrix: โ€ข The size and the shape of a matrix is given by its order which is the multiplication of number of rows and number of columns. โ€ข In the previous examples the order of A is 3 ร— 2 and the order of B is ๐‘š ร— ๐‘›. โ€ข If ๐‘š = ๐‘› then the matrix is called a square matrix of order ๐‘š (๐‘œ๐‘Ÿ ๐‘›).
  • 5. Vectors & Scalars โ€ข A matrix with just one row or one column is called vector. ๐ด1ร—3 = 2 โˆ’10 3.5 is a row (horizontal) vector. ๐ต4ร—1 = 2 โˆ’1.65 7.2 5 is a column (vertical) vector. โ€ข In matrix algebra any real number is called scalar. So, a scalar in matrix algebra is a 1 ร— 1 matrix.
  • 6. Types of Matrices Null (zero) Matrix: If all elements of a matrix is zero the matrix is called null or zero matrix and it is shown by ๐ŸŽ . ๐ด2ร—2 = 0 0 0 0 ๐ถ2ร—3 = 0 0 0 0 0 0 Diagonal Matrix: A square matrix which have at least one nonzero element on its main diagonal and zeros elsewhere is a diagonal matrix. ๐ด3ร—3 = 3 0 0 0 โˆ’1 0 0 0 2 Main Diagonal๐’Š = ๐’‹ โ†’ ๐’‚๐’Š๐’‹ โ‰  ๐ŸŽ ๐’Š โ‰  ๐’‹ โ†’ ๐’‚๐’Š๐’‹ = ๐ŸŽ
  • 7. Types of Matrices Identity (unit) Matrix: A diagonal matrix whose all elements on the main diagonal are equal to one is called identity or unit matrix. A unit matrix is usually shown by letter I and its order. ๐ผ2ร—2 = ๐ผ2 = 1 0 0 1 ๐ผ3ร—3 = ๐ผ3 = 1 0 0 0 1 0 0 0 1 Scalar Matrix: In a diagonal matrix if all elements are equal the matrix is called a scalar matrix. ๐ด3ร—3 = 3 0 0 0 3 0 0 0 3
  • 8. Types of Matrices Transpose Matrix: For a matrix ๐‘จ ๐’Žร—๐’ the transpose is defined as ๐‘จโ€ฒ ๐’ร—๐’Ž (in some books ๐‘จ ๐’ร—๐’Ž ๐‘ป ) where the rows and columns are interchanged. ๐ด2ร—4 = 1 4 3 โˆ’2 1 0 โˆ’3 1.2 โ†’ ๐ดโ€ฒ4ร—2 = 1 4 3 โˆ’2 1 โˆ’3 0 1.2 โ€ข Transposed of a row vector is a column vector and vice versa. ๐‘‹3ร—1 = 1 5 4 โ†’ ๐‘‹โ€ฒ1ร—3 = 1 5 4 Properties of Transpose Matrix: ๏‚ง By the definition of transpose matrix we can conclude ๐‘จโ€ฒ โ€ฒ = ๐‘จ. ๏‚ง By the definition, ๐‘ฐโ€ฒ = ๐‘ฐ. This property is true for all diagonal matrices. ๏‚ง For a square matrix ๐‘จ, if ๐‘จโ€ฒ = ๐‘จ , then ๐‘จ is a symmetric matrix. 1 0.5 0.5 3 ๏‚ง ๐’Œ๐‘จ โ€ฒ = ๐’Œ๐‘จโ€ฒ
  • 9. Types of Matrices Triangular Matrices: If all elements above the main diagonal of a square matrix are zero the matrix is called โ€œlower triangular matrixโ€. e.g. ๐ด = 2 0 0 0 โˆ’1 0 4 3 5 if ๐‘– < ๐‘— , ๐‘Ž๐‘–๐‘— = 0 Alternatively, If all elements under the main diagonal of a square matrix are zero the matrix is called โ€œupper triangular matrixโ€. e.g. ๐ต = 1 โˆ’3 1 2 0 4 7 0 0 โˆ’6 if ๐‘– > ๐‘— , ๐‘Ž๐‘–๐‘— = 0
  • 10. Types of Matrices Symmetric Matrix: A square matrix is symmetric if ๐‘จ = ๐‘จโ€ฒ. This means that the elements above the main diagonal in the matrix are the mirror image of elements under the main diagonal (the main diagonal works as a mirror) ๐ด3ร—3 = 3 1.2 2 1.2 โˆ’1 0 2 0 2 Equality in matrices: โ€ข Two matrices ๐‘จ and ๐‘ฉ are equal if they have the same order and their corresponding elements are equal. ๐‘จ = ๐‘ฉ โ†” ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘จ = ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ(๐‘ฉ) โˆ€๐‘–, ๐‘— โ†’ ๐‘Ž๐‘–๐‘— = ๐‘๐‘–๐‘—
  • 11. Matrix Operation Scalar Multiplication: If ๐‘˜ is a scalar then ๐‘˜. ๐‘จ = ๐‘˜. ๐‘Ž๐‘–๐‘— ๐‘šร—๐‘› This means that all elements of the matrix are multiplied by the scalar ๐‘˜. Matrix Addition & Subtraction: Addition and subtraction are defined for the matrices of the same order. It is not possible to add or subtract matrices from different orders. In both cases the corresponding elements are added or subtracted: ๐‘จ ๐’Žร—๐’ ยฑ ๐‘ฉ ๐’Žร—๐’ = ๐‘Ž๐‘–๐‘— ยฑ ๐‘๐‘–๐‘— ๐‘šร—๐‘›
  • 12. Matrix Operations e.g. ๐ด = 3 1 โˆ’2 2 4 1 and ๐ต = 7 โˆ’10 4 5 0 3 ๐ด + ๐ต = 10 โˆ’9 2 7 4 4 ๐ด โˆ’ ๐ต = โˆ’4 11 โˆ’6 โˆ’3 4 โˆ’2 Properties of Addition & Subtraction: ๏‚ง ๐‘จ + ๐‘ฉ = ๐‘ฉ + ๐‘จ Commutative law ๏‚ง ๐‘จ ยฑ ๐‘ฉ ยฑ ๐‘ช = ๐‘จ ยฑ ๐‘ฉ ยฑ ๐‘ช Associative law ๏‚ง ๐’Œ. ๐‘จ ยฑ ๐‘ฉ = ๐’Œ๐‘จ ยฑ ๐’Œ๐‘ฉ (๐’Œ is a scalar) ๏‚ง ๐‘จ ยฑ ๐‘ฉ โ€ฒ = ๐‘จโ€ฒ ยฑ ๐‘ฉโ€ฒ can be extended to โ€œnโ€ matrices
  • 13. Matrix Operations โ€ข Matrix Multiplication: Multiplication of two matrices ๐‘จ and ๐‘ฉ, in the form of ๐‘จ ร— ๐‘ฉ or ๐‘จ๐‘ฉ, is possible if the number of columns in ๐‘จ is equal to the number of rows in ๐‘ฉ. The result of this multiplication is another matrix ๐‘ช where the number of its rows is equal to the number of rows in ๐‘จ and number of its columns is equal to the number of columns in ๐‘ฉ; that is: ๐‘จ ๐’Žร—๐’ ร— ๐‘ฉ ๐’ร—๐’‘ = ๐‘ช ๐’Žร—๐’‘ Elements of ๐‘ช can be calculated by adding some multiplications; multiplications of the elements in the i-th row of ๐‘จ by the corresponding elements in the j-th column of ๐‘ฉ, that is: ๐‘ช๐’Š๐’‹ = ๐‘˜=1 ๐‘› ๐‘Ž๐‘–๐‘˜ ๐‘ ๐‘˜๐‘— where ๐‘– = 1,2, โ‹ฏ , ๐‘š ๐‘— = 1,2, โ‹ฏ , ๐‘
  • 14. Matrix Operations โ€ข For example, matrix ๐‘จ ๐Ÿ‘ร—๐Ÿ‘ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– cannot be multiplied by a horizontal vector ๐‘ฟ ๐Ÿร—๐Ÿ‘ = ๐‘ฅ ๐‘ฆ ๐‘ง but it can be multiplied by its transpose which is a vertical vector; ๐‘ฟโ€ฒ ๐Ÿ‘ร—๐Ÿ = ๐‘ฅ ๐‘ฆ ๐‘ง and the result is: AX = ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– ๐‘ฅ ๐‘ฆ ๐‘ง = ๐‘Ž๐‘ฅ + ๐‘๐‘ฆ + ๐‘๐‘ง ๐‘‘๐‘ฅ + ๐‘’๐‘ฆ + ๐‘“๐‘ง ๐‘”๐‘ฅ + โ„Ž๐‘ฆ + ๐‘–๐‘ง โ€ข In the above example: ๐‘ฟ๐‘ฟโ€ฒ = ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 which is a scalar but ๐‘ฟโ€ฒ ๐‘ฟ = ๐‘ฅ2 ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฅ ๐‘ฆ2 ๐‘ฆ๐‘ง ๐‘ง๐‘ฅ ๐‘ง๐‘ฆ ๐‘ง2 which is a symmetric matrix, why?
  • 15. Matrix Operations Properties of Matrix Multiplication: ๏‚ง In general, ๐‘จ๐‘ฉ โ‰  ๐‘ฉ๐‘จ if both exist, but there are special cases that this property is not true. ๏‚ง If ๐‘ฐ is an identity matrix ๐‘ฐ๐‘ฉ = ๐‘ฉ๐‘ฐ = ๐‘ฉ. ๏‚ง ๐‘จ ๐‘ฉ + ๐‘ช = ๐‘จ๐‘ฉ + ๐‘จ๐‘ช and ๐‘ฉ + ๐‘ช ๐‘จ = ๐‘ฉ๐‘จ + ๐‘ช๐‘จ ๏‚ง ๐‘จ ๐‘ฉ๐‘ช = ๐‘จ๐‘ฉ ๐‘ช ๏‚ง If ๐‘จ๐‘ฉ exist then ๐‘จ๐‘ฉ โ€ฒ = ๐‘ฉโ€ฒ ๐‘จโ€ฒ (this can be extended to more than 2 matrices, i.e.: ๐‘จ๐‘ฉ๐‘ช โ€ฒ = ๐‘ชโ€ฒ๐‘ฉโ€ฒ ๐‘จโ€ฒ ๏‚ง From ๐‘จ๐‘ฉ = ๐ŸŽ we cannot conclude necessarily that ๐‘จ = ๐ŸŽ๐‘œ๐‘Ÿ ๐‘ฉ = ๐ŸŽ.* ๏‚ง From ๐‘จ๐‘ฉ = ๐‘จ๐‘ช we cannot conclude necessarily that ๐‘ฉ = ๐‘ช.**
  • 16. Determinant of a Matrix โ€ข Consider the system of simultaneous equations ๐’‚๐’™ + ๐’ƒ๐’š = ๐’† ๐’„๐’™ + ๐’…๐’š = ๐’‡ Where ๐’‚, ๐’ƒ, โ€ฆ . , ๐’†, ๐’‡ are constants of the system. If the coefficients of ๐’™ and ๐’š in the first equation (i.e. ๐’‚ and ๐’ƒ )have a linear relationship with the coefficients of the second equation (i.e. ๐’„ and ๐’… ), the system either does not have a unique solutions for ๐’™ and ๐’š (when ๐’†, ๐’‡ also have the same linear relationship) or there is no solution at all (the system is not solvable as the equations are in contrary with each other). โ€ข If ๐‘Ž ๐‘ = ๐‘ ๐‘‘ โ†’ ๐‘Ž๐‘‘ = ๐‘๐‘ or ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ = 0 it means the coefficients have a linear relationship and there is no unique solutions for ๐‘ฅ and ๐‘ฆ. The value of ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ determines whether a system of simultaneous equations have a unique solutions or not.
  • 17. Determinant of a Matrix o For the system of simultaneous equations A: 2๐‘ฅ + 3๐‘ฆ = 12 4๐‘ฅ + 6๐‘ฆ = 24 and B: 2๐‘ฅ + 3๐‘ฆ = 12 4๐‘ฅ + 6๐‘ฆ = โˆ’18 we have: 2 4 = 3 6 โ†’ 2 ร— 6 = 3 ร— 4 ๐’๐’“ 2 ร— 6 โˆ’ 3 ร— 4 = 0 So, both systems fail to provide unique solutions for ๐‘ฅ and ๐‘ฆ but the difference between them is that system A provides infinite solutions (because there are, in fact, one equation with two variables, which geometrically means two lines coincide) but the equations in system B are in contrary with each other (geometrically means they are two parallel lines and do not cross each other). x y 2๐‘ฅ + 3๐‘ฆ = 12 4๐‘ฅ + 6๐‘ฆ = 24 2๐‘ฅ + 3๐‘ฆ = 12 4๐‘ฅ + 6๐‘ฆ = โˆ’18 x y Infinite solutions No solution
  • 18. Determinant of a Matrix โ€ข for matrix ๐‘จ ๐Ÿร—๐Ÿ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ , the value of ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ is called โ€œdeterminantโ€ of the matrix and it is shown by det ๐‘จ or simply ๐‘จ . ๐‘จ ๐Ÿร—๐Ÿ= ๐‘Ž ๐‘ ๐‘ ๐‘‘ โ†’ det ๐‘จ = ๐‘จ = ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ โ€ข To every square matrix we can correspond a scalar which is called the determinant of the matrix. So, determinant of a matrix represents a function. โ€ข What about if the square matrix is ๐Ÿ‘ ร— ๐Ÿ‘ or even ๐’ ร— ๐’? In order to obtain the determinant of matrices of higher orders than 2 we need to introduce two concepts: ๏ƒ˜ Minors ๏ƒ˜ Cofactors
  • 19. Determinant of Matrices of Higher Orders than 2 โ€ข Minors: For every element (such as ๐‘Ž๐‘–๐‘—) of a square matrix there is a corresponding determinant, called โ€œminor of ๐’‚๐’Š๐’‹โ€ (shown by ๐‘€๐‘–๐‘—) derived from ignoring the elements in the same row and column of ๐‘Ž๐‘–๐‘— (i.e. ๐‘– and ๐‘—). โ€ข For matrix ๐‘Ž11 ๐‘Ž12 ๐‘Ž13 ๐‘Ž21 ๐‘Ž22 ๐‘Ž23 ๐‘Ž31 ๐‘Ž32 ๐‘Ž33 , minors are: Minor of ๐‘Ž11 = ๐‘€11 = ๐‘Ž22 ๐‘Ž23 ๐‘Ž32 ๐‘Ž33 = ๐‘Ž22 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž32 Minor of ๐‘Ž12 = ๐‘€12 = ๐‘Ž21 ๐‘Ž23 ๐‘Ž31 ๐‘Ž33 = ๐‘Ž21 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž31 Minor of ๐‘Ž13 = ๐‘€13 = ๐‘Ž21 ๐‘Ž22 ๐‘Ž31 ๐‘Ž32 = ๐‘Ž21 ๐‘Ž32 โˆ’ ๐‘Ž22 ๐‘Ž31 Minor of ๐‘Ž21 = ๐‘€21 = ๐‘Ž12 ๐‘Ž13 ๐‘Ž32 ๐‘Ž33 = ๐‘Ž12 ๐‘Ž33 โˆ’ ๐‘Ž13 ๐‘Ž32
  • 20. Determinant of Matrices of Higher Orders than 2 โ€ข Minor of ๐‘Ž22 = ๐‘€22 = ๐‘Ž11 ๐‘Ž13 ๐‘Ž31 ๐‘Ž33 = ๐‘Ž11 ๐‘Ž33 โˆ’ ๐‘Ž13 ๐‘Ž31 โ€ข โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ€ข โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ€ข Minor of ๐‘Ž33 = ๐‘€33 = ๐‘Ž11 ๐‘Ž12 ๐‘Ž21 ๐‘Ž22 = ๐‘Ž11 ๐‘Ž22 โˆ’ ๐‘Ž12 ๐‘Ž21 โ€ข Cofactors: Cofactors of each element ๐‘Ž๐‘–๐‘—, shown by ๐ถ๐‘–๐‘—, are minors with a sign depending on the row and column of the element. i.e.: ๐ถ๐‘–๐‘— = โˆ’1 ๐‘–+๐‘— ๐‘€๐‘–๐‘— So, the cofactor of ๐‘Ž11 is ๐‘ช ๐Ÿ๐Ÿ = โˆ’1 1+1 ๐‘€11 = ๐‘€11 = ๐‘Ž22 ๐‘Ž33 โˆ’ ๐‘Ž23 ๐‘Ž32 And the cofactor of ๐‘Ž23 is ๐‘ช ๐Ÿ๐Ÿ‘ = โˆ’1 2+3 ๐‘€23 = โˆ’๐‘€23= โˆ’(๐‘Ž11 ๐‘Ž32 โˆ’ ๐‘Ž12 ๐‘Ž31) = โˆ’๐‘Ž11 ๐‘Ž32 + ๐‘Ž12 ๐‘Ž31
  • 21. Determinant of Matrices of Higher Orders than 2 โ€ข The matrix of cofactors can be shown as: ๐ถ = ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ21 ๐ถ22 ๐ถ23 ๐ถ31 ๐ถ32 ๐ถ33 = ๐‘€11 โˆ’๐‘€12 ๐‘€13 โˆ’๐‘€21 ๐‘€22 โˆ’๐‘€23 ๐‘€31 โˆ’๐‘€32 ๐‘€33 Now, we can define and calculate the determinant of a matrix with order higher than two. Definition: Determinant of a ๐‘› ร— ๐‘› matrix is the summation of products between elements of any row (or any column ) and their corresponding cofactors. i.e.: For a matrix ๐‘จ ๐’ร—๐’ we can write: ๐‘จ = ๐‘Ž11. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž12. ๐‘ช ๐Ÿ๐Ÿ + โ‹ฏ + ๐‘Ž1๐‘› . ๐‘ช ๐Ÿ๐’ Based on the 1st row ๐‘จ = ๐‘Ž1๐‘›. ๐‘ช ๐Ÿ๐’ + ๐‘Ž2๐‘›. ๐‘ช ๐Ÿ๐’ + โ‹ฏ + ๐‘Ž ๐‘›๐‘› . ๐‘ช ๐’๐’ Based on the nth column
  • 22. Determinant of Matrices of Higher Orders than 2 o Find the determinant of ๐€ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– . Based on the elimination of rows and columns using the elements of the first row we have: ๐‘จ = ๐‘Ž. ๐‘’ ๐‘“ โ„Ž ๐‘– โˆ’ ๐‘. ๐‘‘ ๐‘“ ๐‘” ๐‘– + ๐‘. ๐‘‘ ๐‘’ ๐‘” โ„Ž = ๐‘Ž ๐‘’๐‘– โˆ’ ๐‘“โ„Ž โˆ’ ๐‘ ๐‘‘๐‘– โˆ’ ๐‘“๐‘” + ๐‘(๐‘‘โ„Ž โˆ’ ๐‘’๐‘”) = ๐‘Ž๐‘’๐‘– โˆ’ ๐‘Ž๐‘“โ„Ž โˆ’ ๐‘๐‘‘๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ ๐‘๐‘’๐‘” o The determinant of the unit matrix of order ๐‘› is: ๐‘ฐ ๐’ร—๐’ = ๐‘ฐ ๐’ = 1 0 0 โ€ฆ 1 โ‹ฏ 0 0 โ‹ฎ โ‹ฎ โ‹ฏ โ‹ฎ 0 0 โ€ฆ 1 ๐‘ฐ ๐’ = ๐‘ฐ ๐’โˆ’๐Ÿ = โ‹ฏ = ๐‘ฐ ๐Ÿ = 1 , why?
  • 23. Sarrusโ€™ Rule โ€ข For a matrix ๐€ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– can be calculated through following steps: 1. Add the first 2 columns of the matrix to the right of the 3rd column: ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– ๐‘Ž ๐‘‘ ๐‘” ๐‘ ๐‘’ โ„Ž 2. Subtract the sum of the products along the green arrows from the sum of products along the blue arrows: ๐‘จ = ๐‘Ž๐‘’๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ (๐‘๐‘’๐‘” + ๐‘Ž๐‘“โ„Ž + ๐‘๐‘‘๐‘–) โ€ข Note: It is also possible to add the first 2 rows of the matrix to the bottom of the 3rd row: ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ (+) (-) (+) (-) ๐‘จ = ๐‘Ž๐‘’๐‘– + ๐‘๐‘“๐‘” + ๐‘๐‘‘โ„Ž โˆ’ (๐‘๐‘’๐‘” + ๐‘Ž๐‘“โ„Ž + ๐‘๐‘‘๐‘–)
  • 24. Properties of Determinants 1) Transposing a matrix does not change its determinant: ๐‘จ = ๐‘จโ€ฒ ๐‘Ž ๐‘ ๐‘ ๐‘‘ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ = ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘ 2) If all elements of a row (or column) of a square matrix are zero the determinant of that matrix is zero. Why? ๐‘Ž 0 2 ๐‘ 0 3 ๐‘ 0 4 = 0 3) If two rows (or columns) of a square matrix have the same values or make a linear relationship with each other the determinant of the matrix is zero. ๐’‚ ๐’ƒ ๐’„ ๐’‚ ๐’ƒ ๐’„ ๐‘” โ„Ž ๐‘– = ๐’‚ ๐’ƒ ๐’„ ๐Ÿ๐’‚ ๐Ÿ๐’ƒ ๐Ÿ๐’„ ๐‘” โ„Ž ๐‘– = 0
  • 25. Properties of Determinants 4) If the elements in a row (or in a column) of a square matrix multiplied by a constant the determinant of the matrix is multiplied by that constant but if the entire elements of a matrix multiplied by a constant the determinant of the matrix multiplied by that constant to the power of the order of the matrix, i.e. If ๐€ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– then ๐‘˜. ๐‘Ž ๐‘ ๐‘ ๐‘˜. ๐‘‘ ๐‘’ ๐‘“ ๐‘˜. ๐‘” โ„Ž ๐‘– = ๐‘˜. ๐‘จ and ๐‘˜. ๐‘Ž ๐‘˜. ๐‘ ๐‘˜. ๐‘ ๐‘˜. ๐‘‘ ๐‘˜. ๐‘’ ๐‘˜. ๐‘“ ๐‘˜. ๐‘” ๐‘˜. โ„Ž ๐‘˜. ๐‘– = ๐‘˜3. ๐‘Ž ๐‘ ๐‘ ๐‘‘ ๐‘’ ๐‘“ ๐‘” โ„Ž ๐‘– ๐‘œ๐‘Ÿ ๐‘˜. ๐‘จ = ๐‘˜3. ๐‘จ If matrix ๐‘จ was from order of ๐‘› then ๐‘˜. ๐‘จ = ๐‘˜ ๐‘›. ๐‘จ
  • 26. Properties of Determinants 5) For the square matrices ๐‘จ and ๐‘ฉ with the same orders ๐‘จ๐‘ฉ = ๐‘จ . ๐‘ฉ 6) If two rows (or two columns) of a square matrix are interchanged the determinant of the matrix is multiplied by -1. ๐‘Ž ๐‘ ๐‘ ๐‘‘ = โˆ’ ๐‘ ๐‘‘ ๐‘Ž ๐‘ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘–๐‘›๐‘” ๐‘ก๐‘ค๐‘œ ๐‘Ÿ๐‘œ๐‘ค๐‘  7) If the elements of a row (or a column) of a square matrix is the sum of two row (column) vectors, the determinant of the matrix can be written as the sum of two determinants; each corresponded to one of the vectors, i.e.: ๐‘Ž + ๐œ‡ ๐‘ + ๐œƒ ๐‘ ๐‘‘ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ + ๐œ‡ ๐œƒ ๐‘ ๐‘‘ ๐‘Ž + ๐œ‡ ๐‘ ๐‘ + ๐œƒ ๐‘‘ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ + ๐œ‡ ๐‘ ๐œƒ ๐‘‘
  • 27. 8) Adding or subtracting a scalar multiple of a row (or a column) to another row (column) does not change the determinant of the matrix. ๐‘Ž + ๐‘˜. ๐‘ ๐‘ ๐‘ + ๐‘˜. ๐‘‘ ๐‘‘ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ + ๐‘˜. ๐‘ ๐‘ ๐‘‘ ๐‘‘ = 0 ๐‘Ž ๐‘ ๐‘ ๐‘‘ 9) Determinant of a triangular, diagonal and scalar matrix is the multiplication of the elements on the main diagonal. Triangular matrix : 1 4 3 0 โˆ’2 5 0 0 3 = 1 ร— โˆ’2 ร— 3 = โˆ’6 Diagonal matrix: 1 0 0 0 โˆ’2 0 0 0 3 = 1 ร— โˆ’2 ร— 3 = โˆ’6 Scalar Matrix: โˆ’2 0 0 0 โˆ’2 0 0 0 โˆ’2 = โˆ’2 ร— ๐ผ3 = โˆ’2 3 ร— ๐‘ฐ ๐Ÿ‘ 1 = โˆ’8 Properties of Determinants
  • 28. โ€ข The last two properties are sometimes used to facilitate the calculation of determinant of a matrix. o If ๐‘จ = 2 3 โˆ’1 1 4 0 โˆ’3 5 4 find ๐‘จ . According to the property No. 8, if we substitute the last row (๐‘…3) by 4๐‘…1 + ๐‘…3 (multiplying the first row by 4 and adding it to the third row) the result of the determinant does not change. So: 2 3 โˆ’1 1 4 0 โˆ’3 5 4 = 2 3 โˆ’1 1 4 0 5 17 0 = โˆ’1 ร— 1 4 5 17 = 3 โ€ข These type of operations are called elementary row/column operations and they are useful to solve a system of simultaneous equations . These types of operations will be discussed later. Properties of Determinants
  • 29. โ€ข The concept of inverse is very important in all branches of algebra. Inverse of a real number, inverse of a function are just different aspects of this concept. โ€ข In matrix algebra the inverse of a square matrix ๐‘จ, which is shown by ๐‘จโˆ’๐Ÿ (read ๐‘จ inverse), is the matrix of the same order such that: ๐‘จ๐‘จโˆ’๐Ÿ = ๐‘จโˆ’๐Ÿ ๐‘จ = ๐‘ฐ Where ๐‘ฐ is an identity matrix of the same order. Note: Not all square matrices have an invers but if a square matrix is invertible, the inverse matrix is unique. Some properties of inverse matrices are as following: ๏‚ง ๐‘จโˆ’๐Ÿ โˆ’๐Ÿ = ๐‘จ ๏‚ง ๐‘จ๐‘ฉ โˆ’๐Ÿ = ๐‘ฉโˆ’๐Ÿ ๐‘จโˆ’๐Ÿ ๏‚ง ๐‘จโ€ฒ โˆ’๐Ÿ = ๐‘จโˆ’๐Ÿ โ€ฒ ๏‚ง ๐‘จ๐‘จโˆ’๐Ÿ = ๐‘ฐ โ†’ ๐‘จ . ๐‘จโˆ’๐Ÿ = 1 โ†’ ๐‘จโˆ’๐Ÿ = 1 ๐‘จ Invers of a Matrix
  • 30. ๏‚ง A square matrix ๐‘จ is invertible if and only if ๐‘จ โ‰  0. This is necessary and sufficient condition for a square matrix to have an inverse. If ๐‘จ โ‰  0, the matrix is called non-singular and singular otherwise. ๏‚ง To find the inverse of a function we can follow one of these methods: a) Using the Definition: o Find the inverse of the matrix ๐‘จ = 2 4 5 5 . As ๐‘จ = โˆ’10, so, the inverse exists. According to the definition, if ๐‘จโˆ’๐Ÿ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ then : ๐€๐‘จโˆ’๐Ÿ = 2 4 5 5 ๐‘Ž ๐‘ ๐‘ ๐‘‘ = 1 0 0 1 = ๐‘ฐ. By multiplication we have: 2๐‘Ž + 4๐‘ 2๐‘ + 4๐‘‘ 5๐‘Ž + 5๐‘ 5๐‘ + 5๐‘‘ = 1 0 0 1 By solving the system of four simultaneous equations with four variables we will have : ๐‘Ž = โˆ’0.5 , ๐‘ = โˆ’0.5 , ๐‘ = 0.5 and ๐‘‘ = โˆ’0.5. Finding the Inverse of a Square Matrix
  • 31. So, ๐‘จโˆ’๐Ÿ = โˆ’0.5 โˆ’0.5 0.5 โˆ’0.5 . This method can be difficult for matrices of orders bigger than two. b) Gauss Method (Gaussian Elimination Method): A prerequisite for using this method is to know the concept of elementary raw (column) operations. If a matrix is associated to a system of simultaneous linear equations (called coefficients matrix) elementary raw (column)operations help to solve the system and find the set of solutions easily. They can be also used to calculate the determinant of a square matrix or to find its inverse, in case the matrix is invertible. Three types of these operations are: I. Row (column) Switching: A row (column) in a matrix can be switched with another row (column), i.e. ๐‘…๐‘– โ†” ๐‘…๐‘— (๐ถ๐‘– โ†” ๐ถ๐‘—) Finding the Inverse of a Square Matrix
  • 32. II. Row (column) Multiplication: all elements in a row (column) can be multiplied by a non-zero scalar and be replaced by that, i.e. ๐‘˜. ๐‘…๐‘– โ†’ ๐‘…๐‘– (๐‘˜. ๐ถ๐‘– โ†’ ๐ถ๐‘–) III. Row (column) Addition/Subtraction: A row (column) can be replaced by the sum of that row (column) and a multiple of another row (column), i.e. ๐‘…๐‘– ยฑ ๐‘˜. ๐‘…๐‘— โ†’ ๐‘…๐‘– (๐ถ๐‘– ยฑ ๐‘˜. ๐ถ๐‘— โ†’ ๐ถ๐‘–) โ€ข The third elementary operation (no. III) does not change the determinant of a matrix. Why?(Hint: focus on the properties of determinants) โ€ข In order to find the inverse of a square matrix ๐‘จ through the Gaussian elimination method we attach an identity matrix ๐‘ฐ (of the same order) to ๐‘จ and then by using a sequence of elementary row operations on both of them matrix ๐‘จ step by step transforms to an identity matrix and the identity matrix transforms to ๐‘จโˆ’๐Ÿ , i.e. ๐‘จ โ‹ฎ ๐‘ฐ โ†’ ๐‘ฐ โ‹ฎ ๐‘จโˆ’๐Ÿ Why?(Hint: focus on the relationship between ๐‘จ, ๐‘ฐ and ๐‘จโˆ’๐Ÿ ) Finding the Inverse of a Square Matrix
  • 33. o Find the inverse of the matrix ๐‘จ = 2 3 4 1 6 9 โˆ’1 0 1 , if it is invertible. Applying an elementary column operation, ๐‘จ can be easily calculated: ๐ถ3 + ๐ถ1 โ†’ ๐ถ1 : 2 3 4 1 6 9 โˆ’1 0 1 โ†’ 6 3 4 10 6 9 0 0 1 ; so, based on the expansion of the last row ๐‘จ = 6. Therefore, matrix ๐‘จ is invertible. To find ๐‘จโˆ’๐Ÿ, we need to make ๐‘จ โ‹ฎ ๐‘ฐ and then follow the following sequence of elementary row operations: 2 3 4 1 6 9 โˆ’1 0 1 1 0 0 0 1 0 0 0 1 ๐‘…1โ†”๐‘…2 1 6 9 2 3 4 โˆ’1 0 1 0 1 0 1 0 0 0 0 1 โˆ’2๐‘…1+๐‘…2โ†’๐‘…2 ๐‘…1+๐‘…3โ†’๐‘…3 1 6 9 0 โˆ’9 โˆ’14 0 6 10 0 1 0 1 โˆ’2 0 0 1 1 โˆ’1 9 ๐‘…2โ†’๐‘…2 1 6 9 0 1 14 9 0 6 10 0 1 0 โˆ’1 9 2 9 0 0 1 1 โˆ’6๐‘…2+๐‘…1โ†’๐‘…1 โˆ’6๐‘…2+๐‘…3โ†’๐‘…3 1 0 โˆ’1 3 0 1 14 9 0 0 2 3 2 3 โˆ’1 3 0 โˆ’1 9 2 9 0 2 3 โˆ’1 3 1 Finding the Inverse of a Square Matrix
  • 34. 1 0 โˆ’1 3 0 1 14 9 0 0 2 3 2 3 โˆ’1 3 0 โˆ’1 9 2 9 0 2 3 โˆ’1 3 1 3 2 ๐‘…3โ†’๐‘…3 1 0 โˆ’1 3 0 1 14 9 0 0 1 2 3 โˆ’1 3 0 โˆ’1 9 2 9 0 1 โˆ’1 2 3 2 โˆ’14 9 ๐‘…3+๐‘…2โ†’๐‘…2 1 3 ๐‘…3+๐‘…1โ†’๐‘…1 1 0 0 0 1 0 0 0 1 1 โˆ’1 2 1 2 โˆ’5 3 1 โˆ’7 3 1 โˆ’1 2 3 2 โ€ข If the matrix ๐‘จ in the above example was representing a coefficients matrix in the system of simultaneous equations such as the following 2๐‘ฅ + 3๐‘ฆ + 4๐‘ง = 5 ๐‘ฅ + 6๐‘ฆ + 9๐‘ง = 0 โˆ’๐‘ฅ + ๐‘ง = โˆ’4 the system could be written in the matrix form as ๐‘จ๐‘ฟ = ๐‘ฉ, i.e. 2 3 4 1 6 9 โˆ’1 0 1 ๐‘ฅ ๐‘ฆ ๐‘ง = 5 0 โˆ’4 โ€ข And by using ๐‘จโˆ’๐Ÿ , the unique set of solutions for the variables can be found, because: ๐‘จ๐‘ฟ = ๐‘ฉ โŸน ๐‘จโˆ’๐Ÿ ๐‘จ๐‘ฟ = ๐‘จโˆ’๐Ÿ ๐‘ฉ โŸน ๐‘ฟ = ๐‘จโˆ’๐Ÿ ๐‘ฉ Finding the Inverse of a Square Matrix ๐‘จโˆ’๐Ÿ๐‘ฐ
  • 35. So, ๐‘ฅ ๐‘ฆ ๐‘ง = 1 โˆ’1 2 1 2 โˆ’5 3 1 โˆ’7 3 1 โˆ’1 2 3 2 5 0 โˆ’4 = 3 1 โˆ’1 โ†’ ๐‘ฅ = 3 ๐‘ฆ = 1 ๐‘ง = โˆ’1 . โ€ข The same elementary raw operations could be used to reach to the same results: ๐‘จ ๐‘ฉ โ†’ ๐‘จโˆ’๐Ÿ ๐‘จ ๐‘จโˆ’๐Ÿ ๐‘ฉ โ†’ ๐‘ฐ ๐‘ฟ c) Adjoint (Adjugate) Matrix Method: Recall from the definition of determinant of a 3 ร— 3 matrix : ๐‘จ = ๐‘Ž11. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž12. ๐‘ช ๐Ÿ๐Ÿ + ๐‘Ž13. ๐‘ช ๐Ÿ๐Ÿ‘ And we know that if elements in a row (column) are multiplied by non- associated cofactors the sum of these products is zero. Using these properties, the multiplication of square matrix ๐‘จ by its transposed cofactor matrix (called adjoint matrix, shown by adj(A))yields a scalar matrix: Finding the Inverse of a Square Matrix Based on the elements of the 1st row
  • 36. ๐‘จ. ๐‘Ž๐‘‘๐‘— ๐‘จ = ๐‘Ž11 ๐‘Ž12 ๐‘Ž13 ๐‘Ž21 ๐‘Ž22 ๐‘Ž23 ๐‘Ž31 ๐‘Ž32 ๐‘Ž33 ๐ถ11 ๐ถ21 ๐ถ31 ๐ถ12 ๐ถ22 ๐ถ32 ๐ถ13 ๐ถ23 ๐ถ33 = ๐‘จ 0 0 0 ๐‘จ 0 0 0 ๐‘จ = ๐‘จ . ๐‘ฐ ๐Ÿ‘ So, ๐‘จ. ๐‘Ž๐‘‘๐‘— ๐‘จ = ๐‘จ . ๐‘ฐ or ๐‘ฐ = ๐‘จ. ๐‘Ž๐‘‘๐‘—(๐‘จ) ๐‘จ By multiplying both sides by ๐‘จโˆ’๐Ÿ, we have: ๐‘จโˆ’๐Ÿ = ๐‘Ž๐‘‘๐‘—(๐‘จ) ๐‘จ = 1 ๐‘จ . ๐‘Ž๐‘‘๐‘— ๐‘จ = 1 ๐‘จ ๐ถ11 ๐ถ21 ๐ถ31 ๐ถ12 ๐ถ22 ๐ถ32 ๐ถ13 ๐ถ23 ๐ถ33 Finding the Inverse of a Square Matrix
  • 37. o Find the inverse of matrix ๐‘จ = 4 โˆ’1 2 โˆ’3 . As ๐‘จ = โˆ’10, the matrix is invertible. The cofactor matrix for ๐‘จ can be easily found as ๐‘ช = โˆ’3 โˆ’2 1 4 and its transposed is ๐‘ชโ€ฒ = โˆ’3 1 โˆ’2 4 . So, ๐‘จโˆ’๐Ÿ = 1 โˆ’10 โˆ’3 1 โˆ’2 4 = 0.3 โˆ’0.1 0.2 โˆ’0.4 โ€ข Clearly, the adjoint of a 2 ร— 2 matrix can easily be obtained by interchanging the elements on the main diagonal (without changing the sign) and change the sign of elements on the other diagonal (without changing their place), i.e. ๐‘ฉ = ๐‘Ž ๐‘ ๐‘ ๐‘‘ โ†’ ๐‘Ž๐‘‘๐‘— ๐‘ฉ = ๐‘‘ โˆ’๐‘ โˆ’๐‘ ๐‘Ž So, ๐‘ฉโˆ’๐Ÿ = ๐‘‘ ๐‘ฉ โˆ’๐‘ ๐‘ฉ โˆ’๐‘ ๐‘ฉ ๐‘Ž ๐‘ฉ Finding the Inverse of a Square Matrix
  • 38. โ€ข Apart from the matrixโ€™s inverse method, Cramerโ€™s rule provides a simple method of solving a simultaneous equations. โ€ข According to this rule, the value of any variable in the system of equation (provided that the system has a unique solution for each variable), can be obtained through the division of two determinants, i.e.: ๐‘ฅ = ๐‘จ ๐‘ฅ ๐‘จ , ๐‘ฆ = ๐‘จ ๐‘ฆ ๐‘จ and ๐‘ง = ๐‘จ ๐‘ง ๐‘จ Where ๐‘จ ๐‘ฅ , ๐‘จ ๐‘ฆ and ๐‘จ ๐‘ง are specific determinants. If in ๐‘จ the column vector associated to the coefficients of any of variables is replaced by the column vector of constants, we can obtain these specific determinants. Cramerโ€™s Rule
  • 39. โ€ข For example, for the system of equation 2 3 4 1 6 9 โˆ’1 0 1 ๐‘ฅ ๐‘ฆ ๐‘ง = 5 0 โˆ’4 the Cramerโ€™s rule can be applied as: ๐‘ฅ = 5 3 4 0 6 9 โˆ’4 0 1 2 3 4 1 6 9 โˆ’1 0 1 = 3 , ๐‘ฆ = 2 5 4 1 0 9 โˆ’1 โˆ’4 1 2 3 4 1 6 9 โˆ’1 0 1 = 1 and ๐‘ง = 2 3 5 1 6 0 โˆ’1 0 โˆ’4 2 3 4 1 6 9 โˆ’1 0 1 = โˆ’1 Cramerโ€™s Rule