SlideShare a Scribd company logo
Lecture 210 – Output Amplifiers (3/27/10) Page 210-1 
LECTURE 210 – OUTPUT AMPLIFIERS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Class A Amplifiers 
• Push-Pull Amplifiers 
• Bipolar Junction Transistor Output Amplifiers 
• Using Negative Feedback to Reduce the Output Resistance 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 218-229 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-2 
INTRODUCTION 
General Considerations of Output Amplifiers 
f1(vIN) 
f2(vIN) 
VDD 
i1 
iOUT 
+ 
i2 RL vOUT 
VSS 
Buffer 
vIN 
- 
i1 
Class A 
i2=IQ iOUT 
t 
Current 
iOUT 
t 
Class AB 
Current 
i1 
i2 
iOUT 
t 
Class B 
Current 
i1 
i2 
Fig. 5.5-005 
Requirements: 
1.) Provide sufficient output power in the form of 
voltage or current. 
2.) Avoid signal distortion. 
3.) Be efficient 
4.) Provide protection from abnormal conditions 
(short circuit, over temperature, etc.) 
Types of Output Amplifiers: 
1.) Class A amplifiers 
2.) Source followers 
3.) Push-pull amplifiers 
4.) Substrate BJT amplifiers 
5.) Amplifiers using negative 
shunt feedback 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-3 
Output Current Requirements for an Output Amplifier 
Consider the current requirements placed by the load on the output amplifier: 
iOUT 
Output 
Amplifier + 
vOUT 
− 
CL RL 
Imax due to RL 
t 
070422-01 
vOUT 
Imax due to CL 
Imax due to RL 
Result: 
|iOUT| > CL·SR 
|iOUT| > 
vOUT(peak) 
RL 
Fortunately, the maximum current for the resistor and capacitor do not occur at the same 
time. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-4 
Output Resistance Requirements for an Output Amplifier 
In order to avoid attenuation of the amplifier voltage signal, the output resistance of the 
amplifier must be less than the load resistance. 
Output 
Amplifier 
+ 
RL vOUT 
− 
RL 
RL+Rout 
t 
vOA(t) 
070422-02 
Rout 
vOA 
vOA(t) 
Volts 
vOUT(t) = 
vIN 
To avoid attenuation of the amplifier voltage signal, Rout << RL. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-5 
Separation of the Amplifier Bias from the Load Resistance 
Unfortunately, when a low load resistance is connected to the output of an amplifier, the 
bias conditions can be changed. 
VDD 
VBP1 
Loss of bias 
current 
through RL 
vOUT 
vIN IQ RL 
070422-03 
Solution: 
1.) Use a coupling capacitance for singled-ended power supplies. 
2.) Redefine the output analog ground as (VDD/2). 
3.) Use dc coupling for split power supplies. 
VDD 
VBP1 
vOUT 
vIN IQ RL 
vOUT 
0V 
IDC = 0 
vIN IQ RL 
070422-04 
VDD 
VBP1 
VSS 
VDD 
VBP1 
vOUT 
vIN IQ RL 
0.5VDD 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-6 
CLASS A AMPLIFIERS 
Current source load inverter 
A Class A circuit has 
current flow in the MOSFETs 
during the entire period of a 
sinusoidal signal. 
Characteristics of Class A 
amplifiers: 
• Unsymmetrical sinking and 
sourcing 
• Linear 
• Poor efficiency 
Efficiency = 
PRL 
PSupply = 
VGG2 
vIN 
IQ iOUT 
iD1 
vOUT(peak)2 
2RL 
VDD 
M1 
VSS 
(VDD-VSS)IQ = 
M2 
CL RL 
vOUT 
IQ 
vOUT(peak)2 
2RL 
(VDD-VSS) 
iD VDD+|VSS| 
RL 
RL dominates 
as the load line 
IQRL IQRL 
 
VSS 
(VDD-VSS) 
2RL 
=  
VDD 
vOUT 
Fig. 5.5-1 
vOUT(peak) 
VDD-VSS 
 
2 
Maximum efficiency occurs when vOUT(peak) = VDD = |VSS| which gives 25%. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-7 
Optimum Value of Load Resistor 
Depending on the value of RL, the signal swing can be symmetrical or asymmetrical. 
(This ignores the limitations of the transistor.) 
Larger RL 
vDS1 
Minimum RL for 
maximum swing 
Fig. 040-03 
iD1 
Smaller RL 
VDD+|VSS| 
VDD 
RL 
IQ 
0 
IQRL IQRL 
0 
VSS 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-8 
Small-Signal Performance of the Class A Amplifier 
Although we have considered the small-signal performance of the Class A amplifier as the 
current source load inverter, let us include the influence of the load. 
The modified small-signal model: 
+ 
C1 
vin rds1 rds2 RL 
gm1vin 
- 
+ 
C2 vout 
- 
Fig. 5.5-2 
The small-signal voltage gain is: 
vout 
vin 
= 
-gm1 
gds1+gds2+GL 
The small-signal frequency response includes: 
A zero at 
z = 
gm1 
Cgd1 
and a pole at 
p = 
-(gds1+gds2+GL) 
Cgd1+Cgd2+Cbd1+Cbd2+CL 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-9 
Example 210-1 - Design of a Simple Class-A Output Stage 
Assume that KN’=2KP’=100μA/V2, VTN = 0.5V and VTP = -0.5V. Design the W/L ratios 
of M1 and M2 so that a voltage swing of ±1V and a slew rate of 1 V/μs is achieved if RL 
= 1 k and CL = 1000 pF. Assume VDD = |VSS| = 2V and VGG2 = 0V. Let L = 1 μm and 
assume that Cgd1 = 100fF. Find the voltage gain and roots of this output amplifier. 
Solution 
Let us first consider the effects of RL and CL. 
iOUT(peak) = ±1V/1k = ±1000μA and CL·SR = 10-9·106 = 1000μA 
Since the current for CL and RL occur at different times, choose a bias current of 1mA. 
W1 
L1 = 
2(IOUT 
-+IQ) 
KN’(VDD+|VSS|-VTN)2 = 
4000 
100·(3.5)2  
3μm 
1μm 
and 
W2 
L2 = 
2IOUT 
+ 
KP’(VDD-VGG2-|VTP|)2 = 
2000 
50·(1.5)2  
18μm 
1μm 
The small-signal performance is Av = -0.775 V/V. 
The roots are, zero = gm1/Cgd1  1.23GHz and pole  1/(RLCL)  -159.15 kHz 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-10 
Broadband Harmonic Distortion 
The linearity of an amplifier can be characterized by its influence on a pure sinusoidal 
input signal. 
Assume the input is, 
Vin() = Vp sin(t) 
The output of an amplifier with distortion will be 
Vout() = a1Vp sin (t) + a2Vp sin (2t) +...+ anVp sin(nt) 
Harmonic distortion (HD) for the ith harmonic can be defined as the ratio of the 
magnitude of the ith harmonic to the magnitude of the fundamental. 
For example, second-harmonic distortion would be given as 
HD2 = 
a2 
a1 
Total harmonic distortion (THD) is defined as the square root of the ratio of the sum of al 
of the second and higher harmonics to the magnitude of the first or fundamental 
Thus, THD can be expressed as THD = 
[a 
22 
+a 
23 
+...+a 
2n 
]1/2 
a1 
The distortion of the class A amplifier is good for small signals and becomes poor at 
maximum output swings because of the nonlinearity of the voltage transfer curve for 
large-signal swing 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-11 
Class-A Source Follower 
The class-A source follower has lower output resistance and less attenuation of the 
amplifier voltage signal. 
N-Channel Source Follower Voltage transfer curve: 
with current sink bias: 
IQ 
M3 
vOUT 
RL 
Fig. 040-01 
VDD 
VDD 
vIN 
iOUT 
M1 
VSS 
M2 
VSS 
VSS 
vOUT 
VGS1 
VDD 
VDD-VON1 
Triode 
VDD-VGS 
VDD-VON1+VGS1 
IQRL|VSS|+VON2 
|VSS|+VON2 
|VSS|+VON2+VGS1 
Triode 
Maximum output voltage swings: 
vOUT(min)  VSS - VON2 (if RL is large) 
or vOUT(min)  -IQRL (if RL is small) 
vOUT(max) = VDD - VON1 (if vIN  VDD) or vOUT(max)  VDD - VGS1 
vIN 
Fig. 040-02 
|VSS| 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-12 
Output Voltage Swing of the Follower 
The previous results do not include the bulk effect on VT1 of VGS1. 
Therefore, 
VT1 = VT01 + [ 2|F|-vBS- 2|F|]  VT01+ vSB = VT01+1 vOUT(max)-VSS 
 vOUT(max)-VSS  VDD-VSS-VON1-VT1 = VDD-VSS-VON1-VT01-1 vOUT(max)-VSS 
Define vOUT(max)-VSS = vOUT’(max) 
which gives the quadratic, 
vOUT’(max)+1 vOUT’(max)-(VDD-VSS -VON1-VT01)=0 
Solving the quadratic gives, 
vOUT’(max)  
12 
4 - 
1 
2 12+4(VDD-VSS-VON1-VT01) + 
12+4(VDD-VSS-VON1-VT01) 
4 
If VDD = 2.5V, N = 0.4V1/2, VTN1= 0.7V, and VON1 = 0.2V, then vOUT’(max) = 3.661V 
and 
vOUT(max) = 3.661-2.5 = 0.8661V 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-13 
Maximum Sourcing and Sinking Currents for the Source Follower 
Maximum Sourcing Current (into a short circuit): 
We assume that the transistors are in saturation and 
VDD = -VSS = 2.5V , thus 
IOUT(sourcing) = 
K’1W1 
2L1 [VDD  vOUT VT1]2-IQ 
where vIN is assumed to be equal to VDD. 
If W1/L1 =10 and if vOUT = 0V, then 
VT1 = 1.08V  IOUT equal to 1.11 mA. 
IQ 
M3 
VDD 
VDD 
vIN 
M1 
VSS 
M2 
VSS 
VSS 
However, as vOUT increases above 0V, the current rapidly decreases. 
Maximum Sinking Current: 
For the current sink load, the sinking current is limited by the bias current. 
IOUT(sinking) = IQ 
Efficiency of the Class A, source follower: 
iOUT 
Same as the Class A, common source which is 25% maximum efficiency 
vOUT 
RL 
Fig. 040-01 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-14 
Small Signal Performance of the Source Follower 
Small-signal model: 
Vout 
Vin = 
+ 
vgs1 + - 
C1 
vin rds1 rds2 RL 
- 
gm1 
+ 
vgs1 + - 
C1 
vin rds1 rds2 RL 
gm1vgs1 
- 
gmbs1vbs1 
gm1vin 
gm1vout gmbs1vout 
gds1+gds2+gm1+gmbs1+GL  
gm1 
C2 vout 
gm1+gmbs1+GL  
+ 
- 
C2 vout 
gm1RL 
1+gm1RL 
+ 
- 
If VDD = -VSS = 2.5V, Vout = 0V, W1/L1 = 10μm/1 μm, W2/L2 = 1μm/1 μm, 
and ID = 500 μA, then: 
For the current sink load follower (RL = ): 
Vout 
Vin 
= 0.869V/V, if the bulk effect were ignored, then 
Vout 
Vin 
= 0.963V/V 
For a finite load, RL = 1000: 
Vout 
Vin 
= 0.512V/V 
Fig. 040-04 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-15 
Small Signal Performance of the Source Follower - Continued 
The output resistance is: 
Rout = 
1 
gm1+gmbs1+gds1+gds2 
For the current sink load follower: 
Rout = 830 
The frequency response of the source follower: 
Vout(s) 
Vin(s) = 
(gm1+sC1) 
gds1+gds2+gm1+gmbs1+GL+s(C1+C2) 
where 
C1 = capacitances connected between the input and output  CGS1 
C2 = Cbs1 +Cbd2 +Cgd2(or Cgs2) + CL 
z = - 
gm1 
C1 and p  - 
gm1+GL 
C1+C2 
The presence of a LHP zero leads to the possibility that in most cases the pole and zero 
will provide some degree of cancellation leading to a broadband response. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-16 
PUSH-PULL AMPLIFIERS 
Push-Pull Source Follower 
Can both sink and source 
current and provide a slightly 
lower output resistance. 
VDD 
vIN 
vOUT 
VSS 
iOUT 
M1 
M2 VDD 
VBias 
VBias 
VDD 
VSS 
iOUT 
M1 
VDD 
VGG 
M6 
M5 
VSS 
VDD M2 VDD 
RL M4 
RL 
Efficiency: 
Depends on how the transistors 
are biased. 
• Class B - one transistor has current flow for only 180° of the sinusoid (half period) 
 Efficiency = 
PRL 
PVDD = 
VSS VSS VSS 
vOUT(peak)2 
2RL 
(VDD-VSS) 
12 
 
 
2vOUT(peak) 
 
RL  
= 
vIN 
2 
M3 
vOUT(peak) 
VDD-VSS 
Maximum efficiency occurs when vOUT(peak) =VDD and is 78.5% 
• Class AB - each transistor has current flow for more than 180° of the sinusoid. 
Maximum efficiency is between 25% and 78.5% 
vO 
Fig. 060-01 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-17 
Illustration of Class B and Class AB Push-Pull, Source Follower 
Output current and voltage characteristics of the push-pull, source follower (RL = 1k): 
2V 
1V 
0V 
-1V 
-2V 
vG1 
vout 
vG2 
iD1 
iD2 
-2 -1 0 1 2 
Vin(V) 
1mA 
0mA 
-1mA 
Class B, push-pull, source follower 
2V 
1V 
0V 
-1V 
-2V 
vG1 iD1 
vout 
iD2 
vG2 
-2 -1 0 1 2 
Vin(V) 
1mA 
0mA 
-1mA 
Class AB, push-pull, source follower Fig. 060-02 
Comments: 
• Note that vOUT cannot reach the extreme values of VDD and VSS 
• IOUT+(max) and IOUT-(max) is always less than VDD/RL or VSS/RL 
• For vOUT = 0V, there is quiescent current flowing in M1 and M2 for Class AB 
• Note that there is significant distortion at vIN =0V for the Class B push-pull follower 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-18 
Small-Signal Performance of the Push-Pull Follower 
Model: 
+ 
vgs1 + - 
C1 
vin rds1 rds2 RL 
gm1vgs1 
- 
+ 
C2 vout 
- 
Fig. 060-03 
gmbs1vbs1 gm2vgs2 
vgs1 + - 
C1 
gm1vin 
+ 
vin 
gmbs2vbs2 
1 
gm2 
rds1 rds2 
RL 
- 
+ 
C2 vout 
- 
gm1vout gmbs1vout 
gm2vin gm2vout gmbs2vout 
vout 
vin 
= 
gm1+gm2 
gds1+gds2+gm1+gmbs1+gm2+gmbs2+GL 
Rout = 
1 
gds1+gds2+gm1+gmbs1+gm2+gmbs2 
(does not include RL) 
If VDD = -VSS = 2.5V, Vout = 0V, ID1 = ID2 = 500μA, and W/L = 20μm/2μm, Av = 0.787 
(RL=) and Rout = 448. 
A zero and pole are located at 
z = 
-(gm1+gm2) 
C1 
p = 
-(gds1+gds2+gm1+gmbs1+gm2+gmbs2+GL) 
C1+C2 
. 
These roots will be at high frequencies because the associated resistances are small. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-19 
Push-Pull, Common Source Amplifiers 
Similar to the class A but can operate as class B providing higher efficiency. 
VDD 
M2 
iOUT 
VTR2 
vIN vOUT 
CL RL 
VTR1 
M1 
VSS Fig. 060-04 
Comments: 
• The batteries VTR1 and VTR2 are necessary to control the bias current in M1 and M2. 
• The efficiency is the same as the push-pull, source follower. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-20 
Illustration of Class B and Class AB Push-Pull, Inverting Amplifier 
Output current and voltage characteristics of the push-pull, inverting amplifier (RL = 
1k): 
2V 
1V 
0V 
-1V 
-2V 
iD1 
iD1 iD2 
iD2 
vG2 
vG1 
vOUT 
-2V -1V 0V 1V 2V 
2mA 
1mA 
0mA 
-1mA 
-2mA 
vIN 
Class B, push-pull, inverting amplifier. 
2V 
1V 
0V 
-1V 
-2V 
iD1 
iD1 
iD2 
vG2 
vG1 
vOUT 
iD2 
-2V -1V 0V 1V 2V 
2mA 
1mA 
0mA 
-1mA 
-2mA 
vIN 
Class AB, push-pull, inverting amplifier. Fig.060-06 
Comments: 
• Note that there is significant distortion at vIN =0V for the Class B inverter 
• Note that vOUT cannot reach the extreme values of VDD and VSS 
• IOUT+(max) and IOUT-(max) is always less than VDD/RL or VSS/RL 
• For vOUT = 0V, there is quiescent current flowing in M1 and M2 for Class AB 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-21 
Practical Implementation of the Push-Pull, Common Source Amplifier – Method 1 
M5 M6 
iOUT 
VDD 
M1 M3 
VGG3 
vIN vOUT 
CL RL 
M2 
M4 
VGG4 
M7 M8 
VSS Fig. 060-05 
VGG3 and VGG4 can be used to bias this amplifier in class AB or class B operation. 
Note, that the bias current in M6 and M8 is not dependent upon VDD or VSS (assuming 
VGG3 and VGG4 are not dependent on VDD and VSS). 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-22 
Practical Implementation of the Push-Pull, Common Source Amplifier – Method 2 
VDD 
I=2Ib 
M8 M9 
I=2Ib 
VSS 
Ib 
Ib 
M1 
M2 
M5 
M3 M4 
M6 
M7 
M10 
vin+ 
vin- 
Fig. 060-055 
In steady-state, the current through M5 and M6 is 2Ib. If W4/L4 = W9/L9 and W3/L3 = 
W8/L8, then the currents in M1 and M2 can be determined by the following relationship: 
I1 = I2 = Ib  
W1/L1 
W7/L7 
 
= Ib  
W2/L2 
W10/L10 
 
+ goes low, M5 pulls the gates of M1 and M2 high. M4 shuts off causing all of the 
If vin 
current flowing through M5 (2Ib) to flow through M3 shutting off M1. The gate of M2 is 
high allowing the buffer to strongly sink current. If vin 
- goes high, M6 pulls the gates of 
M1 and M2 low. As before, this shuts off M2 and turns on M1 allowing strong sourcing. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-23 
Additional Methods of Biasing the Push-Pull Common-Source Amplifier 
IBias 
VDD 
VB2 VB1 vOUT 
vIN 
050423-10 
VDD -VT+VSat 
VDD -VT+2VSat 
VT+2VSat 
vIN 
050423-08 
VDD 
vOUT 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-24 
BIPOLAR JUNCTION TRANSISTOR OUTPUT AMPLIFIERS 
What about the use of BJTs? 
vout 
CL 
VDD 
Q1 
M2 
vout 
CL 
VDD 
M2 
Q1 
iB 
iB 
M3 
VDD 
M3 
Comments: 
• Can use either 
VSS VSS VSS 
substrate or lateral 
p-well CMOS n-well CMOS 
Fig. 5.5-8A 
BJTs. 
• Small-signal output resistance is 1/gm which can easily be less than 100. 
• Unfortunately, only PNP or NPN BJTs are available but not both on a standard CMOS 
technology. 
• In order for the BJT to sink (or source) large currents, the base current, iB, must be 
large. Providing large currents as the voltage gets to extreme values is difficult for 
MOSFET circuits to accomplish. 
• If one considers the MOSFET driver, the emitter can only pull to within vBE+VON of the 
power supply rails. This value can be 1V or more. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-25 
Low Output Resistance using BJTs 
The output resistance of a class A BJT stage is: 
Rout = 
r1+RB 
1+F = 
1 
gm1 + 
RB 
1+F 
Note that the second term must be less than 1/gm1 in order 
to achieve the low output resistance possible. 
Consequently, the driver for the BJT should be a MOS 
follower as shown: 
Rout = 
r1+1/gm3 
1+F = 
1 
gm1 + 
1 
gm3(1+F)  
1 
gm1 
We will consider the BJT as an output stage in more detail 
later. 
vIN 
RB 
VDD 
Rout 
VBN1 
Q1 
M2 
070423-02 
VDD 
Q1 
VDD 
M3 
vIN Rout 
VBN1 
M2 
070423-03 
M4 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-26 
USING NEGATIVE FEEDBACK TO REDUCE THE OUTPUT RESISTANCE 
Concept 
Use negative shunt feedback – Class A implementation: 
VDD 
VBP1 
M2 
vIN vOUT 
- + 
A 
M1 
VDD 
VBP1 
M2 
VDD 
VBP1 
M7 
vIN vOUT 
M1 
M3 M4 
M5 M6 
070423-01 
Rout = 
rds1||rds2 
1+LoopGain  
1 
2gm 
2rds 
 10 if gm = 500μS and gmrds  100. 
The actual value of Rout will be influenced by the value of RL, particularly if it is small. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-27 
Push-Pull Implementation 
VDD 
M2 
iOUT 
Error 
Amplifier 
- + 
- + 
vIN vOUT 
CL RL 
M1 
Fig. 060-07 
Error 
Amplifier 
VSS 
Rout = 
rds1||rds2 
1+LoopGain 
Comments: 
• Can achieve output resistances as low as 10. 
• If the error amplifiers are not balanced, it is difficult to control the quiescent current in 
M1 and M2 
• Great linearity because of the strong feedback 
• Can be efficient if operated in class B or class AB 
• We will consider this circuit in more detail in a later lecture. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-28 
Simple Implementation of Neg., Shunt Feedback to Reduce the Output Resistance 
VDD 
M2 
iOUT 
R1 R2 
vIN vOUT 
CL RL 
M1 
Fig. 060-08 
VSS 
R1 
R1+R2 		 
Loop gain  		

 


 
gm1+gm2 
gds1+gds2+GL 
 Rout = 
rds1||rds2 
1+		 
R1 
R1+R2 		 


 
gm1+gm2 
gds1+gds2+GL  


 
Let R1 = R2, RL = , IBias = 500μA, W1/L1 = 100μm/1μm and W2/L2 = 200μm/1μm. 
Thus, gm1 = 3.316mS, gm2 = 3.162mS, rds1 = 50k and rds2 = 40k. 
 Rout = 
50k||40k 
1+0.5		 


3316+3162 
25+20 
= 
22.22k 
1+0.5(143.9) = 304 (Rout = 5.42k if RL = 1k) 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 210 – Output Amplifiers (3/27/10) Page 210-29 
Boosting the Transconductance of the Source Follower 
The following configuration allows the output resistance of the source follower to be 
decreased by a factor of K, where K is the current ratio between M4 and M3. 
VDD 
1:K 
vIN 
M3 M4 
vOUT 
VBN1 
M1 
M2 
Rout 
070423-04 
Rout = 
1 
gm1K 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 210 – Output Amplifiers (3/27/10) Page 210-30 
SUMMARY 
• The objectives are to provide output power in form of voltage and/or current. 
• In addition, the output amplifier should be linear and be efficient. 
• Low output resistance is required to provide power efficiently to a small load resistance 
• High source/sink currents are required to provide sufficient output voltage rate due to 
large load capacitances. 
• Types of output amplifiers considered: 
Class A amplifier 
Source follower 
Class B and AB amplifier 
Use of BJTs 
Negative shunt feedback 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

What's hot

Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Tha Mike
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
Tha Mike
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
Tha Mike
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
Tha Mike
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
Tha Mike
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
Tha Mike
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Ldo project
Ldo projectLdo project
Ldo projectaltaf423
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)aicdesign
 
Chapter 18
Chapter 18Chapter 18
Chapter 18
Tha Mike
 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04a
Tha Mike
 
Transformer
TransformerTransformer
Transformer
Jayaprakash P
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
Tha Mike
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
Simen Li
 
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010Steve Mappus
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
Simen Li
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
Tha Mike
 

What's hot (20)

Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
Ldo project
Ldo projectLdo project
Ldo project
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
Chapter 18
Chapter 18Chapter 18
Chapter 18
 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04a
 
Transformer
TransformerTransformer
Transformer
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 

Viewers also liked

Diff Amps
Diff AmpsDiff Amps
Diff Amps
muneer.k
 
Differential amplifiers
Differential amplifiersDifferential amplifiers
Differential amplifiers
prasadpawaskar
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
Jayadeep Kumar
 
Mosfet
MosfetMosfet
Mosfet
Pooja Shukla
 

Viewers also liked (7)

Source & sink flow
Source & sink flowSource & sink flow
Source & sink flow
 
current mirrors
current mirrorscurrent mirrors
current mirrors
 
Diff Amps
Diff AmpsDiff Amps
Diff Amps
 
Tarun
TarunTarun
Tarun
 
Differential amplifiers
Differential amplifiersDifferential amplifiers
Differential amplifiers
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
Mosfet
MosfetMosfet
Mosfet
 

Similar to Lect2 up210 (100327)

Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
girishgandhi4
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
Rai Saheb Bhanwar Singh College Nasrullaganj
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusSteve Mappus
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)aicdesign
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
ShivamChaturvedi67
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
MdSazibMollik
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
EngrMaheshMaheshwari1
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)aicdesign
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
ShivamChaturvedi67
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 

Similar to Lect2 up210 (100327) (20)

Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
Ad598
Ad598Ad598
Ad598
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Power amplifier
Power amplifierPower amplifier
Power amplifier
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (16)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Lect2 up210 (100327)

  • 1. Lecture 210 – Output Amplifiers (3/27/10) Page 210-1 LECTURE 210 – OUTPUT AMPLIFIERS LECTURE ORGANIZATION Outline • Introduction • Class A Amplifiers • Push-Pull Amplifiers • Bipolar Junction Transistor Output Amplifiers • Using Negative Feedback to Reduce the Output Resistance • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 218-229 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-2 INTRODUCTION General Considerations of Output Amplifiers f1(vIN) f2(vIN) VDD i1 iOUT + i2 RL vOUT VSS Buffer vIN - i1 Class A i2=IQ iOUT t Current iOUT t Class AB Current i1 i2 iOUT t Class B Current i1 i2 Fig. 5.5-005 Requirements: 1.) Provide sufficient output power in the form of voltage or current. 2.) Avoid signal distortion. 3.) Be efficient 4.) Provide protection from abnormal conditions (short circuit, over temperature, etc.) Types of Output Amplifiers: 1.) Class A amplifiers 2.) Source followers 3.) Push-pull amplifiers 4.) Substrate BJT amplifiers 5.) Amplifiers using negative shunt feedback CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 210 – Output Amplifiers (3/27/10) Page 210-3 Output Current Requirements for an Output Amplifier Consider the current requirements placed by the load on the output amplifier: iOUT Output Amplifier + vOUT − CL RL Imax due to RL t 070422-01 vOUT Imax due to CL Imax due to RL Result: |iOUT| > CL·SR |iOUT| > vOUT(peak) RL Fortunately, the maximum current for the resistor and capacitor do not occur at the same time. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-4 Output Resistance Requirements for an Output Amplifier In order to avoid attenuation of the amplifier voltage signal, the output resistance of the amplifier must be less than the load resistance. Output Amplifier + RL vOUT − RL RL+Rout t vOA(t) 070422-02 Rout vOA vOA(t) Volts vOUT(t) = vIN To avoid attenuation of the amplifier voltage signal, Rout << RL. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 210 – Output Amplifiers (3/27/10) Page 210-5 Separation of the Amplifier Bias from the Load Resistance Unfortunately, when a low load resistance is connected to the output of an amplifier, the bias conditions can be changed. VDD VBP1 Loss of bias current through RL vOUT vIN IQ RL 070422-03 Solution: 1.) Use a coupling capacitance for singled-ended power supplies. 2.) Redefine the output analog ground as (VDD/2). 3.) Use dc coupling for split power supplies. VDD VBP1 vOUT vIN IQ RL vOUT 0V IDC = 0 vIN IQ RL 070422-04 VDD VBP1 VSS VDD VBP1 vOUT vIN IQ RL 0.5VDD CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-6 CLASS A AMPLIFIERS Current source load inverter A Class A circuit has current flow in the MOSFETs during the entire period of a sinusoidal signal. Characteristics of Class A amplifiers: • Unsymmetrical sinking and sourcing • Linear • Poor efficiency Efficiency = PRL PSupply = VGG2 vIN IQ iOUT iD1 vOUT(peak)2 2RL VDD M1 VSS (VDD-VSS)IQ = M2 CL RL vOUT IQ vOUT(peak)2 2RL (VDD-VSS) iD VDD+|VSS| RL RL dominates as the load line IQRL IQRL VSS (VDD-VSS) 2RL = VDD vOUT Fig. 5.5-1 vOUT(peak) VDD-VSS 2 Maximum efficiency occurs when vOUT(peak) = VDD = |VSS| which gives 25%. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 210 – Output Amplifiers (3/27/10) Page 210-7 Optimum Value of Load Resistor Depending on the value of RL, the signal swing can be symmetrical or asymmetrical. (This ignores the limitations of the transistor.) Larger RL vDS1 Minimum RL for maximum swing Fig. 040-03 iD1 Smaller RL VDD+|VSS| VDD RL IQ 0 IQRL IQRL 0 VSS CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-8 Small-Signal Performance of the Class A Amplifier Although we have considered the small-signal performance of the Class A amplifier as the current source load inverter, let us include the influence of the load. The modified small-signal model: + C1 vin rds1 rds2 RL gm1vin - + C2 vout - Fig. 5.5-2 The small-signal voltage gain is: vout vin = -gm1 gds1+gds2+GL The small-signal frequency response includes: A zero at z = gm1 Cgd1 and a pole at p = -(gds1+gds2+GL) Cgd1+Cgd2+Cbd1+Cbd2+CL CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 210 – Output Amplifiers (3/27/10) Page 210-9 Example 210-1 - Design of a Simple Class-A Output Stage Assume that KN’=2KP’=100μA/V2, VTN = 0.5V and VTP = -0.5V. Design the W/L ratios of M1 and M2 so that a voltage swing of ±1V and a slew rate of 1 V/μs is achieved if RL = 1 k and CL = 1000 pF. Assume VDD = |VSS| = 2V and VGG2 = 0V. Let L = 1 μm and assume that Cgd1 = 100fF. Find the voltage gain and roots of this output amplifier. Solution Let us first consider the effects of RL and CL. iOUT(peak) = ±1V/1k = ±1000μA and CL·SR = 10-9·106 = 1000μA Since the current for CL and RL occur at different times, choose a bias current of 1mA. W1 L1 = 2(IOUT -+IQ) KN’(VDD+|VSS|-VTN)2 = 4000 100·(3.5)2 3μm 1μm and W2 L2 = 2IOUT + KP’(VDD-VGG2-|VTP|)2 = 2000 50·(1.5)2 18μm 1μm The small-signal performance is Av = -0.775 V/V. The roots are, zero = gm1/Cgd1 1.23GHz and pole 1/(RLCL) -159.15 kHz CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-10 Broadband Harmonic Distortion The linearity of an amplifier can be characterized by its influence on a pure sinusoidal input signal. Assume the input is, Vin() = Vp sin(t) The output of an amplifier with distortion will be Vout() = a1Vp sin (t) + a2Vp sin (2t) +...+ anVp sin(nt) Harmonic distortion (HD) for the ith harmonic can be defined as the ratio of the magnitude of the ith harmonic to the magnitude of the fundamental. For example, second-harmonic distortion would be given as HD2 = a2 a1 Total harmonic distortion (THD) is defined as the square root of the ratio of the sum of al of the second and higher harmonics to the magnitude of the first or fundamental Thus, THD can be expressed as THD = [a 22 +a 23 +...+a 2n ]1/2 a1 The distortion of the class A amplifier is good for small signals and becomes poor at maximum output swings because of the nonlinearity of the voltage transfer curve for large-signal swing CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 210 – Output Amplifiers (3/27/10) Page 210-11 Class-A Source Follower The class-A source follower has lower output resistance and less attenuation of the amplifier voltage signal. N-Channel Source Follower Voltage transfer curve: with current sink bias: IQ M3 vOUT RL Fig. 040-01 VDD VDD vIN iOUT M1 VSS M2 VSS VSS vOUT VGS1 VDD VDD-VON1 Triode VDD-VGS VDD-VON1+VGS1 IQRL|VSS|+VON2 |VSS|+VON2 |VSS|+VON2+VGS1 Triode Maximum output voltage swings: vOUT(min) VSS - VON2 (if RL is large) or vOUT(min) -IQRL (if RL is small) vOUT(max) = VDD - VON1 (if vIN VDD) or vOUT(max) VDD - VGS1 vIN Fig. 040-02 |VSS| CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-12 Output Voltage Swing of the Follower The previous results do not include the bulk effect on VT1 of VGS1. Therefore, VT1 = VT01 + [ 2|F|-vBS- 2|F|] VT01+ vSB = VT01+1 vOUT(max)-VSS vOUT(max)-VSS VDD-VSS-VON1-VT1 = VDD-VSS-VON1-VT01-1 vOUT(max)-VSS Define vOUT(max)-VSS = vOUT’(max) which gives the quadratic, vOUT’(max)+1 vOUT’(max)-(VDD-VSS -VON1-VT01)=0 Solving the quadratic gives, vOUT’(max) 12 4 - 1 2 12+4(VDD-VSS-VON1-VT01) + 12+4(VDD-VSS-VON1-VT01) 4 If VDD = 2.5V, N = 0.4V1/2, VTN1= 0.7V, and VON1 = 0.2V, then vOUT’(max) = 3.661V and vOUT(max) = 3.661-2.5 = 0.8661V CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 210 – Output Amplifiers (3/27/10) Page 210-13 Maximum Sourcing and Sinking Currents for the Source Follower Maximum Sourcing Current (into a short circuit): We assume that the transistors are in saturation and VDD = -VSS = 2.5V , thus IOUT(sourcing) = K’1W1 2L1 [VDD vOUT VT1]2-IQ where vIN is assumed to be equal to VDD. If W1/L1 =10 and if vOUT = 0V, then VT1 = 1.08V IOUT equal to 1.11 mA. IQ M3 VDD VDD vIN M1 VSS M2 VSS VSS However, as vOUT increases above 0V, the current rapidly decreases. Maximum Sinking Current: For the current sink load, the sinking current is limited by the bias current. IOUT(sinking) = IQ Efficiency of the Class A, source follower: iOUT Same as the Class A, common source which is 25% maximum efficiency vOUT RL Fig. 040-01 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-14 Small Signal Performance of the Source Follower Small-signal model: Vout Vin = + vgs1 + - C1 vin rds1 rds2 RL - gm1 + vgs1 + - C1 vin rds1 rds2 RL gm1vgs1 - gmbs1vbs1 gm1vin gm1vout gmbs1vout gds1+gds2+gm1+gmbs1+GL gm1 C2 vout gm1+gmbs1+GL + - C2 vout gm1RL 1+gm1RL + - If VDD = -VSS = 2.5V, Vout = 0V, W1/L1 = 10μm/1 μm, W2/L2 = 1μm/1 μm, and ID = 500 μA, then: For the current sink load follower (RL = ): Vout Vin = 0.869V/V, if the bulk effect were ignored, then Vout Vin = 0.963V/V For a finite load, RL = 1000: Vout Vin = 0.512V/V Fig. 040-04 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 210 – Output Amplifiers (3/27/10) Page 210-15 Small Signal Performance of the Source Follower - Continued The output resistance is: Rout = 1 gm1+gmbs1+gds1+gds2 For the current sink load follower: Rout = 830 The frequency response of the source follower: Vout(s) Vin(s) = (gm1+sC1) gds1+gds2+gm1+gmbs1+GL+s(C1+C2) where C1 = capacitances connected between the input and output CGS1 C2 = Cbs1 +Cbd2 +Cgd2(or Cgs2) + CL z = - gm1 C1 and p - gm1+GL C1+C2 The presence of a LHP zero leads to the possibility that in most cases the pole and zero will provide some degree of cancellation leading to a broadband response. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-16 PUSH-PULL AMPLIFIERS Push-Pull Source Follower Can both sink and source current and provide a slightly lower output resistance. VDD vIN vOUT VSS iOUT M1 M2 VDD VBias VBias VDD VSS iOUT M1 VDD VGG M6 M5 VSS VDD M2 VDD RL M4 RL Efficiency: Depends on how the transistors are biased. • Class B - one transistor has current flow for only 180° of the sinusoid (half period) Efficiency = PRL PVDD = VSS VSS VSS vOUT(peak)2 2RL (VDD-VSS) 12 2vOUT(peak) RL = vIN 2 M3 vOUT(peak) VDD-VSS Maximum efficiency occurs when vOUT(peak) =VDD and is 78.5% • Class AB - each transistor has current flow for more than 180° of the sinusoid. Maximum efficiency is between 25% and 78.5% vO Fig. 060-01 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 210 – Output Amplifiers (3/27/10) Page 210-17 Illustration of Class B and Class AB Push-Pull, Source Follower Output current and voltage characteristics of the push-pull, source follower (RL = 1k): 2V 1V 0V -1V -2V vG1 vout vG2 iD1 iD2 -2 -1 0 1 2 Vin(V) 1mA 0mA -1mA Class B, push-pull, source follower 2V 1V 0V -1V -2V vG1 iD1 vout iD2 vG2 -2 -1 0 1 2 Vin(V) 1mA 0mA -1mA Class AB, push-pull, source follower Fig. 060-02 Comments: • Note that vOUT cannot reach the extreme values of VDD and VSS • IOUT+(max) and IOUT-(max) is always less than VDD/RL or VSS/RL • For vOUT = 0V, there is quiescent current flowing in M1 and M2 for Class AB • Note that there is significant distortion at vIN =0V for the Class B push-pull follower CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-18 Small-Signal Performance of the Push-Pull Follower Model: + vgs1 + - C1 vin rds1 rds2 RL gm1vgs1 - + C2 vout - Fig. 060-03 gmbs1vbs1 gm2vgs2 vgs1 + - C1 gm1vin + vin gmbs2vbs2 1 gm2 rds1 rds2 RL - + C2 vout - gm1vout gmbs1vout gm2vin gm2vout gmbs2vout vout vin = gm1+gm2 gds1+gds2+gm1+gmbs1+gm2+gmbs2+GL Rout = 1 gds1+gds2+gm1+gmbs1+gm2+gmbs2 (does not include RL) If VDD = -VSS = 2.5V, Vout = 0V, ID1 = ID2 = 500μA, and W/L = 20μm/2μm, Av = 0.787 (RL=) and Rout = 448. A zero and pole are located at z = -(gm1+gm2) C1 p = -(gds1+gds2+gm1+gmbs1+gm2+gmbs2+GL) C1+C2 . These roots will be at high frequencies because the associated resistances are small. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 210 – Output Amplifiers (3/27/10) Page 210-19 Push-Pull, Common Source Amplifiers Similar to the class A but can operate as class B providing higher efficiency. VDD M2 iOUT VTR2 vIN vOUT CL RL VTR1 M1 VSS Fig. 060-04 Comments: • The batteries VTR1 and VTR2 are necessary to control the bias current in M1 and M2. • The efficiency is the same as the push-pull, source follower. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-20 Illustration of Class B and Class AB Push-Pull, Inverting Amplifier Output current and voltage characteristics of the push-pull, inverting amplifier (RL = 1k): 2V 1V 0V -1V -2V iD1 iD1 iD2 iD2 vG2 vG1 vOUT -2V -1V 0V 1V 2V 2mA 1mA 0mA -1mA -2mA vIN Class B, push-pull, inverting amplifier. 2V 1V 0V -1V -2V iD1 iD1 iD2 vG2 vG1 vOUT iD2 -2V -1V 0V 1V 2V 2mA 1mA 0mA -1mA -2mA vIN Class AB, push-pull, inverting amplifier. Fig.060-06 Comments: • Note that there is significant distortion at vIN =0V for the Class B inverter • Note that vOUT cannot reach the extreme values of VDD and VSS • IOUT+(max) and IOUT-(max) is always less than VDD/RL or VSS/RL • For vOUT = 0V, there is quiescent current flowing in M1 and M2 for Class AB CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 210 – Output Amplifiers (3/27/10) Page 210-21 Practical Implementation of the Push-Pull, Common Source Amplifier – Method 1 M5 M6 iOUT VDD M1 M3 VGG3 vIN vOUT CL RL M2 M4 VGG4 M7 M8 VSS Fig. 060-05 VGG3 and VGG4 can be used to bias this amplifier in class AB or class B operation. Note, that the bias current in M6 and M8 is not dependent upon VDD or VSS (assuming VGG3 and VGG4 are not dependent on VDD and VSS). CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-22 Practical Implementation of the Push-Pull, Common Source Amplifier – Method 2 VDD I=2Ib M8 M9 I=2Ib VSS Ib Ib M1 M2 M5 M3 M4 M6 M7 M10 vin+ vin- Fig. 060-055 In steady-state, the current through M5 and M6 is 2Ib. If W4/L4 = W9/L9 and W3/L3 = W8/L8, then the currents in M1 and M2 can be determined by the following relationship: I1 = I2 = Ib W1/L1 W7/L7 = Ib W2/L2 W10/L10 + goes low, M5 pulls the gates of M1 and M2 high. M4 shuts off causing all of the If vin current flowing through M5 (2Ib) to flow through M3 shutting off M1. The gate of M2 is high allowing the buffer to strongly sink current. If vin - goes high, M6 pulls the gates of M1 and M2 low. As before, this shuts off M2 and turns on M1 allowing strong sourcing. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 210 – Output Amplifiers (3/27/10) Page 210-23 Additional Methods of Biasing the Push-Pull Common-Source Amplifier IBias VDD VB2 VB1 vOUT vIN 050423-10 VDD -VT+VSat VDD -VT+2VSat VT+2VSat vIN 050423-08 VDD vOUT CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-24 BIPOLAR JUNCTION TRANSISTOR OUTPUT AMPLIFIERS What about the use of BJTs? vout CL VDD Q1 M2 vout CL VDD M2 Q1 iB iB M3 VDD M3 Comments: • Can use either VSS VSS VSS substrate or lateral p-well CMOS n-well CMOS Fig. 5.5-8A BJTs. • Small-signal output resistance is 1/gm which can easily be less than 100. • Unfortunately, only PNP or NPN BJTs are available but not both on a standard CMOS technology. • In order for the BJT to sink (or source) large currents, the base current, iB, must be large. Providing large currents as the voltage gets to extreme values is difficult for MOSFET circuits to accomplish. • If one considers the MOSFET driver, the emitter can only pull to within vBE+VON of the power supply rails. This value can be 1V or more. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 210 – Output Amplifiers (3/27/10) Page 210-25 Low Output Resistance using BJTs The output resistance of a class A BJT stage is: Rout = r1+RB 1+F = 1 gm1 + RB 1+F Note that the second term must be less than 1/gm1 in order to achieve the low output resistance possible. Consequently, the driver for the BJT should be a MOS follower as shown: Rout = r1+1/gm3 1+F = 1 gm1 + 1 gm3(1+F) 1 gm1 We will consider the BJT as an output stage in more detail later. vIN RB VDD Rout VBN1 Q1 M2 070423-02 VDD Q1 VDD M3 vIN Rout VBN1 M2 070423-03 M4 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-26 USING NEGATIVE FEEDBACK TO REDUCE THE OUTPUT RESISTANCE Concept Use negative shunt feedback – Class A implementation: VDD VBP1 M2 vIN vOUT - + A M1 VDD VBP1 M2 VDD VBP1 M7 vIN vOUT M1 M3 M4 M5 M6 070423-01 Rout = rds1||rds2 1+LoopGain 1 2gm 2rds 10 if gm = 500μS and gmrds 100. The actual value of Rout will be influenced by the value of RL, particularly if it is small. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 210 – Output Amplifiers (3/27/10) Page 210-27 Push-Pull Implementation VDD M2 iOUT Error Amplifier - + - + vIN vOUT CL RL M1 Fig. 060-07 Error Amplifier VSS Rout = rds1||rds2 1+LoopGain Comments: • Can achieve output resistances as low as 10. • If the error amplifiers are not balanced, it is difficult to control the quiescent current in M1 and M2 • Great linearity because of the strong feedback • Can be efficient if operated in class B or class AB • We will consider this circuit in more detail in a later lecture. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-28 Simple Implementation of Neg., Shunt Feedback to Reduce the Output Resistance VDD M2 iOUT R1 R2 vIN vOUT CL RL M1 Fig. 060-08 VSS R1 R1+R2 Loop gain gm1+gm2 gds1+gds2+GL Rout = rds1||rds2 1+ R1 R1+R2 gm1+gm2 gds1+gds2+GL Let R1 = R2, RL = , IBias = 500μA, W1/L1 = 100μm/1μm and W2/L2 = 200μm/1μm. Thus, gm1 = 3.316mS, gm2 = 3.162mS, rds1 = 50k and rds2 = 40k. Rout = 50k||40k 1+0.5 3316+3162 25+20 = 22.22k 1+0.5(143.9) = 304 (Rout = 5.42k if RL = 1k) CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 210 – Output Amplifiers (3/27/10) Page 210-29 Boosting the Transconductance of the Source Follower The following configuration allows the output resistance of the source follower to be decreased by a factor of K, where K is the current ratio between M4 and M3. VDD 1:K vIN M3 M4 vOUT VBN1 M1 M2 Rout 070423-04 Rout = 1 gm1K CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 210 – Output Amplifiers (3/27/10) Page 210-30 SUMMARY • The objectives are to provide output power in form of voltage and/or current. • In addition, the output amplifier should be linear and be efficient. • Low output resistance is required to provide power efficiently to a small load resistance • High source/sink currents are required to provide sufficient output voltage rate due to large load capacitances. • Types of output amplifiers considered: Class A amplifier Source follower Class B and AB amplifier Use of BJTs Negative shunt feedback CMOS Analog Circuit Design © P.E. Allen - 2010