SlideShare a Scribd company logo
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-1 
LECTURE 180 – INVERTING AMPLIFIERS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Active Load Inverting Amplifier 
• Current Source Load Inverting Amplifier 
• Push-Pull Inverting Amplifier 
• Noise Analysis of Inverting Amplifiers 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 168-180 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-2 
INTRODUCTION 
Types of Amplifiers 
Type of Amplifier Gain = 
Output 
Input 
Ideal Input 
Resistance 
Ideal Output 
Resistance 
Voltage Av = 
OutputVoltage 
InputVoltage Infinite Zero 
Current Ai = 
OutputCurrent 
InputCurrent Zero Infinite 
Transconductance Gm = 
OutputCurrent 
InputVoltage Infinite Infinite 
Transresistance Rm = 
OutputVoltage 
InputCurrent Zero Zero 
Most CMOS amplifiers fit naturally into the transconductance amplifier category as they 
have large input resistance and fairly large output resistance. 
If the load resistance is high, the CMOS transconductance amplifier is essentially a 
voltage amplifier. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-3 
Amplifier Notation 
Voltage 
Amplifier 
Input 
Voltage 
060607-02 
Output 
Voltage 
VDD 
VSS 
Split Power Supplies 
Voltage 
Amplifier 
Input 
Voltage 
Output 
Voltage 
VDD 
Single Power Supply 
Simpler notation: 
VDD 
Voltage 
Amplifier 
Input 
Voltage 
060607-03 
Output 
Voltage 
VSS 
Split Power Supplies 
VDD 
Voltage 
Amplifier 
Input 
Voltage 
Output 
Voltage 
Single Power Supply 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-4 
Characterization of an Amplifier 
1.) Large signal static characterization: 
• Plot of output versus input (transfer curve) 
• Large signal gain 
• Output and input swing limits 
2.) Small signal static characterization: 
• AC gain 
• AC input resistance 
• AC output resistance 
3.) Small signal dynamic characterization: 
• Bandwidth 
• Noise 
• Power supply rejection 
4.) Large signal dynamic characterization: 
• Slew rate 
• Nonlinearity 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-5 
Components of a CMOS Voltage/Transconductance Amplifier 
1.) A transconductance stage that converts the input voltage to current. 
2.) A transresistance stage (load) that converts the current from the transconductance 
stage back to voltage. 
Output 
Voltage 
Transresistance 
060607-01 
Voltage 
Amplifier 
Input 
Voltage 
Transconductance 
Stage 
Stage 
Input 
Voltage Current-to 
Output 
Voltage Voltage-to 
Current 
Conversion 
Voltage 
Conversion 
Current 
Voltage Amplifier 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-6 
Inverting and Noninverting Amplifiers 
The types of amplifiers are based on the various configurations of the actual transistors. 
If we assume that one terminal of the transistor is grounded, then three possibilities 
result: 
vin 
+ 
060608-01 
VDD 
Load 
vout 
− 
Common 
Source 
VDD 
vin 
vout 
+ 
Load 
+ 
Common 
Gate 
VDD 
vin 
+ vout 
Load 
+ 
Common 
Drain 
Note that there are two categories of amplifiers: 
1.) Noninverting - Those whose input and output are in phase (common gate and 
common drain) 
2.) Inverting - Those whose input and output are out of phase (common source) 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-7 
ACTIVE LOAD INVERTING AMPLIFIER 
Voltage Transfer Characteristic of the Active Load Inverter 
vIN=5.0V 
vIN=4.5V 
vIN=4.0V 
C A,B 
vIN=3.5V 
vIN=3.0V 
M2 
D 
E 
F 
K J 
I 
H 
G 
0 1 2 3 4 5 
ID (mA) 
vIN=2.5V 
vIN=2.0V 
vIN=1.5V 
vIN=1.0V 
5 
4 
3 
2 
1 
0 
A B 
C 
+ 
M2 cutoff 
M2 saturated 
D 
5V 
M2 
M1 
vIN 
E 
W2 
L2 
ID 
=1μm 
1μm 
+ 
vOUT 
=2μm 
1μm 
M1 saturated 
M1 active 
H I K 
F 
- 
W1 
L1 
- 
J 
G 
0 1 2 3 4 5 
vOUT 
vIN 
Fig. 320-02 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
vOUT 
The boundary between active and saturation operation for M1 is 
vDS1  vGS1 - VTN  vOUT  vIN - 0.7V 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-8 
Large-Signal Voltage Swing Limits of the Active Load Inverter 
Maximum output voltage, vOUT(max): 
vOUT(max)VDD-|VTP| 
(ignores subthreshold current influence on the MOSFET) 
Minimum output voltage, vOUT(min): 
Assume that M1 is nonsaturated and that VT1 = |VT2| = VT. 
vDS1  vGS1 - VTN  vOUT  vIN - 0.7V 
The current through M1 is 
iD = 1

 
2 
DS1 
2 = 1 

 
	 
v 
(vGS1VT)vDS1 
(vOUT)2 
	 
(VDDVT)(vOUT) 
2 
and the current through M2 is 
iD = 
2 
2 (vSG2  VT)2 = 
2 
2 (VDD  vOUT  VT)2 = 
2 
2 (vOUT + VT  VDD)2 
Equating these currents gives the minimum vOUT as, 
vOUT(min)=VDDVT 
VDDVT 
1+(2/1) 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-9 
Small-Signal Midband Performance of the Active Load Inverter 
The development of the small-signal model for the active load inverter is shown below: 
VDD 
M2 
vOUT ID 
M1 
vIN 
gm2vgs2 
D1=D2=G2 
gm1vgs1 
S2=B2 
rds2 
rds1 
G1 
+ 
vin 
- 
S1=B1 
+ 
+ 
vout gm1vin rds1 
- 
vin 
- 
Rout 
+ 
vout 
- 
gm2vout rds2 
Fig. 320-03 
Sum the currents at the output node to get, 
gm1vin + gds1vout + gm2vout + gds2vout = 0 
Solving for the voltage gain, vout/vin, gives 
vout 
vin = 
gm1 
gds1+gds2+gm2   
gm1 
gm2 =   
K'NW1L2 
K'PL1W2 
 
1/2 
The small-signal output resistance can also be found from the above by letting vin = 0 to 
get, 
Rout = 
1 
gds1+gds2+gm2  
1 
gm2 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-10 
Frequency Response of the Active Load Inverter 
Incorporation of the parasitic 
capacitors into the small-signal 
model: 
If we assume the input voltage has a 
small source resistance, then we can 
write the following: 
sCM(Vout-Vin) + gmVin 
+ GoutVout + sCoutVout = 0 
Cgs2 
Cgd1 
Cgs1 
Vin 
 Vout(Gout + sCM + sCout) = - (gm – sCM)Vin 
Vout 
Vin = 
-(gm–sCM) 
Gout+sCM+sCout = -gmRout 

 
 
VDD 
Cbd2 
Cbd1 
M2 
M1 
1- 
sCM 
gm 
Vout 
CL 
+ 
Vin gmVin 
- 
1+sRout(CM+Cout) = 
CM 
gmRout
Rout Cout 

 
1- 
s 
z1 
1- 
s 
p1 
where gm = gm1, p1 = 
1 
Rout(Cout+CM) , and z1 = 
gm1 
CM 
and Rout = [gds1+gds2+gm2]-1  
+ 
Vout 
- 
Fig. 320-04 
1 
gm2 , CM = Cgd1 , and Cout = Cbd1+Cbd2+Cgs2+CL 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-11 
Complex Frequency (s) Analysis of Circuits – (Optional) 
The frequency response of linear circuits can be analyzed using the complex frequency 
variable s which avoids having to solve the circuit in the time domain and then transform 
into the frequency domain. 
Passive components in the s domain are: 
ZR(s) = R ZL(s) = sL and ZC(s) = 
1 
sC 
s-domain analysis uses the complex impedance of elements as if they were “resistors”. 
Example: 
+ 
− 
V1 
+ 
− 
C1 
gmV1 R2 C2 
V2 
s-domain A 
conversion 
Sum currents flowing away from node A to get, 
sC1(V2 – V1) + gmV1 + G2V2 + sC2V2 = 0 
Solving for the voltage gain transfer function gives, 
T(s) = 
V2(s) 
V1(s) = 
-sC1+gm 
s(C1+C2)+G2 = -gmR2  
 
+ 
− 
V1(s) 
1/sC1 
gmV1(s) 
sC1/gm-1 
s(C1+C2)R2+1 
+ 
− 
V2(s) 
R 1 2 
sC2 
060204-06 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-12 
Complex Frequency Plane – (Optional) 
The complex frequency variable, s, is really a complex number and can be expressed as 
s =  + j where  = Re[s] and  = Im[s]. 
Complex frequency plane: 
It is useful to plot the roots 
of the transfer function on 
the complex frequency plane. 
For the previous T(s), the roots are: 
The numerator root (zero) is s = z1 = +(gm/C1) 
The denominator root (pole) is s = p1= -[1/R2(C1+ C2)] 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-13 
What is the Frequency Response of an Amplifier? – (Optional) 
Frequency response results when we replace the complex frequency variable s with j in 
the transfer function of an amplifier. (This amounts to evaluating T(s) on the imaginary 
axis of the complex frequency plane.) 
The frequency response is characterized by the magnitude and phase of T(j). 
Example: 
Assume T(s) = 
a0+a1s 
b0+b1s 
s=j 
 T(j) = 
a0+a1j 
b0+b1j = 
a0+ja1 
b0+jb1 
Since T(j) is a complex number, we can express the magnitude and phase as, 
|T(j)| = 
a0 
2+(a1)2 
b0 
2+(b1)2 Arg[T(j)] = +tan-1 
a1 
a0 
 
 
- tan-1 
b1 
b0 
 
 
For the previous example, the magnitude and phase would be, 
|T(j)| = gmR2 
1+(C1/gm)2 
1+[R2(C1+C2)]2 
Arg[T(j)] = -tan-1(C1/gm) - tan-1[ R2(C1+C2)] 
Note: Because the zero is on 
the positive real axis, the 
phase due to the zero is 
-tan-1( ) rather than +tan-1( ). 
More about that later. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-14 
Linear Graphical Illustration of Magnitude and Phase – (Optional) 
The important concepts of frequency response are communicated through the graphical 
portrayal of the magnitude and phase. 
Consider our example, 
T(s) = 
V2(s) 
V1(s) = -gmR2  
s(C1+C2)R2+1 = -T(0) 
 
sC1/gm-1 
 
s/z1-1 
s/p1-1 
where T(0) = gmR2, z1 = +(gm/C1) and p1= -[1/R2(C1+ C2)]. 
Replacing s with j gives [remember tan-1(-x) = - tan-1(x)], 
|T(j)| = T(0) 
1+(/z1)2 
1+(/p1)2 and Arg[T(j)] = ±180°-tan-1(/z1) - tan-1[/p1] 
Graphically, we get the following if we assume |p1| = 0.1|z1|, 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-15 
Logarithmic Graphical Illustration of Frequency Response – (Optional) 
If the frequency range is large, it is more useful to use a logarithmic scale for the 
frequency. In addition, if one expresses the magnitude as 20 log10(|T(j)|, the plots can 
be closely approximated with straight lines which enables quick analysis by hand. Such 
plots are called Bode plots. 
To construct a Bode asymptotic magnitude plot for a low pass transfer function in the 
form of products of roots: 
1.) Start at a low frequency and plot 20 log10(|T(0)| until you reach the smallest root. 
2.) At the frequency equal to magnitude of the smallest root, change to a line with a slope 
of +20dB/decade if the root is a zero or -20dB/decade if the root is a pole. 
3.) Continue increasing in frequency until you have plotted the influence of all roots. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-16 
The Influence of the Complex Frequency Plane on Frequency Response – (Optional) 
The root locations in the complex frequency plane have a direct influence on the 
frequency response as illustrated below. Consider the transfer function: 
T(s) = -T(0) 
s/z1-1 
s/p1-1 = - 
 
|p1| 
z1 T(0)  
s-z1 
s-p1 = - 0.1T(0)  
s-z1 
s-p1 where z1 = 10|p1| 
 
|T(jω)|/T(0) 
Region of 
maximum 
influence 
by p1 
1.0 
0.8 
0.6 
0.4 
0.2 
0.00 1 3 5 7 9 
Region of 
maximum 
influence 
by z1 
2 4 6 8 10 
070413-03 
jω 
σ 
j10 
j8 
j6 
j4 
j2 
j0 
j10-z1 
j8-z1 
j6-z1 
j4-z1 
j2-z1 
j0-z1 
j10-p1 
j8-p1 
j6-p1 
j4-p1 
j2-p1 
j0-p1 
p1=-1 z1=10 
ω 
Note: The roots maximally influence the magnitude when  is such that the angle 
between the vector and the horizontal axis is 45°. This occurs at j1 for p1 and j10 for z1. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-17 
Bandwidth of a Low-Pass Amplifier – (Optional) 
One of the most important aspects of frequency analysis is to find the frequency at which 
the amplitude decreases by -3dB or 1/ 2. This can easily be found from the magnitude 
the frequency response. 
ω 
060205-03 
+ 
V1(jω) 
− 
+ 
V2(jω) 
− 
Α 
|A(jω)| 
A(0) 
0.707A(0) 
0 
0 
ωA=0.707 
Bandwidth 
Amplifier with a Dominant Root: 
Since the amplifier is low-pass, the poles will be smaller in magnitude than the zeros. 
If one of the poles is approximately 4-5 times smaller than the next smallest pole, the 
bandwidth of the amplifier is given as 
Bandwidth  |Smallest pole| 
Amplifier with no Dominant Root: 
If there are several poles with roughly the same magnitude, then one should use the 
graphical method above to find the bandwidth. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-18 
Example of Finding the Bandwidth of an Amplifier– (Optional) 
Suppose an amplifier has a pole at -10 rads/sec and another at -20 rads/sec. and a zero at 
+50 radians/sec. Find the bandwidth of this amplifier if the low frequency gain is 100. 
Solution 
Since the poles are close together, construct a Bode plot and graphically find the 
bandwidth. 
From the graph, we see that the -3dB bandwidth is close to 11-12 Mrad/sec or 1.75- 
1.91MHz. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-19 
Frequency Response of the Active Inverter - Continued 
So, back to the frequency response of the active load inverter, we find that if |p1|  z1, 
then the -3dB frequency is approximately equal to the magnitude of the pole which is 
[Rout(Cout+CM)]-1. 
log10 z1 ω 
0512-06-02.EPS 
dB 
20log10(gmRout) 
0dB |p1| ≈ ω-3dB 
Observation: 
In general, the poles in a MOSFET circuit can be found by summing the capacitance 
connected to a node and multiplying this capacitance times the equivalent resistance from 
this node to ground and inverting the product. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-20 
Example 180 -1 - Performance of an Active Resistor-Load Inverter 
Calculate the output-voltage swing limits for VDD = 5 volts, the small-signal gain, the 
output resistance, and the -3 dB frequency of active load inverter if (W1/L1) is 2 μm/1 μm 
and W2/L2 = 1 μm/1 μm, Cgd1 = 100fF, Cbd1 = 200fF, Cbd2 = 100fF, Cgs2 = 200fF, CL = 1 
pF, and ID1 = ID2 = 100μA, using the parameters in Table 3.1-2. 
Solution 
From the above results we find that: 
vOUT(max) = 4.3 volts 
vOUT(min) = 0.418 volts 
Small-signal voltage gain = -1.92V/V 
Rout = 9.17 k including gds1 and gds2 and 10 k ignoring gds1 and gds2 
z1 = 2.10x109 rads/sec 
p1 = -64.1x106 rads/sec. 
Thus, the -3 dB frequency is 10.2 MHz. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-21 
CURRENT SOURCE INVERTER 
Voltage Transfer Characteristic of the Current Source Inverter 
C 
M2 
vIN=5.0V 
vIN=4.5V 
vIN=4.0V 
vIN=3.5V 
vIN=3.0V 
KJIH F 
E 
G 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
D 
A,B 
0 1 2 3 4 5 
ID (mA) 
vOUT 
5V 
M2 
M1 
+ 
vIN 
W2 
L2 
ID 
=2μm 
1μm 
+ 
vOUT 
- 
W1 
L1 
- 
= 2μm 
1μm 
2.5V 
vIN=2.5V 
vIN=2.0V 
vIN=1.5V 
vIN=1.0V 
A B C 
D 
M2 active 
M2 saturated 
E 
M1 saturated 
M1 active 
G H I K 
F 
J 
5 
4 
3 
2 
1 
0 
0 1 2 3 4 5 
vOUT 
vIN 
Fig. 5.1-5 
Regions of operation for the transistors: 
M1: vDS1  vGS1 -VTn  vOUT  vIN - 0.7V 
M2: vSD2  vSG2 - |VTp|  VDD-vOUT VDD -VGG2 - |VTp|  vOUT  3.2V 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-22 
Large-Signal Voltage Swing Limits of the Current Source Load Inverter 
Maximum output voltage, vOUT(max): 
vOUT(max)VDD 
Minimum output voltage, vOUT(min): 
Assume that M1 is nonsaturated. The minimum output voltage is, 
vOUT(min) = vOUT(min)=(VDD-VT1)
2  
 
2 
1  
1- 1- 



	 
VDD-VGG-|VT2| 



	 
VDD-VT1 
This result assumes that vIN is taken to VDD. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-23 
Small-Signal Midband Performance of the Current Source Load Inverter 
Small-Signal Model: 
VDD 
M2 
vOUT ID 
M1 
vIN 
S2=B2 
G1 D1=D2 
gm1vgs1 
rds2 
rds1 
+ 
vin 
- 
S1=B1=G2 
+ 
+ 
vout gm1vin rds1 
- 
vin 
- 
Rout 
+ 
vout 
- 
rds2 
Fig. 5.1-5B 
VGG2 
Midband Performance: 
vout 
vin = 
gm1 
gds1+gds2 = 

 
2K'NW1 
L1ID 
	 
1 
1+2 
1/2 

 
	 
 
1 
D 
!!! and Rout = 
1 
gds1+gds2  
1 
ID(1+2) 
log(IBias) 
060614-01 
vout 
vin 
Strong Inversion 
Weak 
Invers-ion 
≈ 1μA 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-24 
Frequency Response of the Current Source Load Inverter 
Incorporation of the parasitic 
capacitors into the small-signal 
model (x is connected to VGG2): 
If we assume the input voltage 
has a small source resistance, 
then we can write the following: 
Vout(s) 
Vin(s) = 
 
gmRout 
s 
z1 
		1- 
1- 
s 
p1 
where gm = gm1, p1 = 
Cgs2 
x 
Cgd2 
Cgd1 
1 
VDD 
Cbd2 
Cbd1 
Vin 
Vout 
CL 
M2 
M1 
Rout(Cout+CM) , and z1 = 
+ 
Vin gmVin 
gm 
CM 
and Rout = 
1 
gds1+gds2 
CM 
Rout Cout 
- 
and Cout = Cgd2 + Cbd1 + Cbd2 + CL CM = Cgd1 
Therefore, if |p1||z1|, then the 3 dB frequency response can be expressed as 
-3dB  1 = 
gds1+gds2 
Cgd1+Cgd2+Cbd1+Cbd2+CL 
+ 
Vout 
- 
Fig. 5.1-4 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-25 
Example 180-2 - Performance of a Current-Sink Inverter 
A current-sink inverter is shown. Assume that W1 = 2 μm, L1 = 1 
μm, W2 = 1 μm, L2 = 1μm, VDD = 5 volts, VNB1 = 3 volts, and the 
parameters of Table 3.1-2 describe M1 and M2. Use the capacitor 
values of Example 180-1 (Cgd1 = Cgd2). Calculate the output-swing 
limits and the small-signal performance. 
Solution 
VDD 
M1 
vOUT 
VSG1 
− 
vIN 
VNB1 
M2 
+ 
ID 
070413-04 
To attain the output signal-swing limitations, we treat current sink inverter as a 
current source CMOS inverter with PMOS parameters for the NMOS and NMOS 
parameters for the PMOS and use NMOS equations. Using a prime notation to designate 
the results of the current source CMOS inverter that exchanges the PMOS and NMOS 
model parameters, 
vOUT(max)’ = 5V and vOUT(min)’ = (5-0.7)

More Related Content

What's hot

IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
Tsuyoshi Horigome
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)aicdesign
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
khemraj298
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
khemraj298
 
Emfbook
EmfbookEmfbook
Gate ee 2011 with solutions
Gate ee 2011 with solutionsGate ee 2011 with solutions
Gate ee 2011 with solutions
khemraj298
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
khemraj298
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperVasista Vinuthan
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
khemraj298
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
khemraj298
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Simen Li
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
khemraj298
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
Simen Li
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 
Ee ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-finalEe ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-final
Venugopala Rao P
 
Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2
anwar jubba
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
khemraj298
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
Simen Li
 

What's hot (20)

IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
Lect2 up230 (100327)
Lect2 up230 (100327)Lect2 up230 (100327)
Lect2 up230 (100327)
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
 
Emfbook
EmfbookEmfbook
Emfbook
 
Gate ee 2011 with solutions
Gate ee 2011 with solutionsGate ee 2011 with solutions
Gate ee 2011 with solutions
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Ee ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-finalEe ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-final
 
ECNG 3013 E
ECNG 3013 EECNG 3013 E
ECNG 3013 E
 
Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2Chp1 Transmission line theory with examples-part2
Chp1 Transmission line theory with examples-part2
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 

Viewers also liked

Diplomado En Innovacion Educativa Con Tic
Diplomado En Innovacion Educativa Con TicDiplomado En Innovacion Educativa Con Tic
Diplomado En Innovacion Educativa Con Tic
Ramiro Aduviri Velasco
 
Kelompok 3 lkmm kader bangsa
Kelompok 3 lkmm kader bangsaKelompok 3 lkmm kader bangsa
Kelompok 3 lkmm kader bangsaKhilmatushofa Ok
 
福建移动网上商城策划方案
福建移动网上商城策划方案福建移动网上商城策划方案
福建移动网上商城策划方案yanjt
 
Ute problemas frecuentes del desarrollo apego y ansiedad
Ute problemas frecuentes del desarrollo apego y ansiedadUte problemas frecuentes del desarrollo apego y ansiedad
Ute problemas frecuentes del desarrollo apego y ansiedadmonicapaspuel
 
Asma
Asma Asma
Asma
jossy_mc
 

Viewers also liked (7)

Diplomado En Innovacion Educativa Con Tic
Diplomado En Innovacion Educativa Con TicDiplomado En Innovacion Educativa Con Tic
Diplomado En Innovacion Educativa Con Tic
 
Kelompok 3 lkmm kader bangsa
Kelompok 3 lkmm kader bangsaKelompok 3 lkmm kader bangsa
Kelompok 3 lkmm kader bangsa
 
福建移动网上商城策划方案
福建移动网上商城策划方案福建移动网上商城策划方案
福建移动网上商城策划方案
 
Ute problemas frecuentes del desarrollo apego y ansiedad
Ute problemas frecuentes del desarrollo apego y ansiedadUte problemas frecuentes del desarrollo apego y ansiedad
Ute problemas frecuentes del desarrollo apego y ansiedad
 
Veebruari maksulaekumised 2010
Veebruari maksulaekumised 2010Veebruari maksulaekumised 2010
Veebruari maksulaekumised 2010
 
Alexandria
AlexandriaAlexandria
Alexandria
 
Asma
Asma Asma
Asma
 

Similar to Lect2 up180 (100327)

Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)aicdesign
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)aicdesign
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
girishgandhi4
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
ShivamChaturvedi67
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
Rai Saheb Bhanwar Singh College Nasrullaganj
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
LiewChiaPing
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Tha Mike
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
ShivamChaturvedi67
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
MdSazibMollik
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
EngrMaheshMaheshwari1
 

Similar to Lect2 up180 (100327) (20)

Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)aicdesign
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (19)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)
 
Lect2 up250 (100328)
Lect2 up250 (100328)Lect2 up250 (100328)
Lect2 up250 (100328)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Lect2 up180 (100327)

  • 1. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-1 LECTURE 180 – INVERTING AMPLIFIERS LECTURE ORGANIZATION Outline • Introduction • Active Load Inverting Amplifier • Current Source Load Inverting Amplifier • Push-Pull Inverting Amplifier • Noise Analysis of Inverting Amplifiers • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 168-180 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-2 INTRODUCTION Types of Amplifiers Type of Amplifier Gain = Output Input Ideal Input Resistance Ideal Output Resistance Voltage Av = OutputVoltage InputVoltage Infinite Zero Current Ai = OutputCurrent InputCurrent Zero Infinite Transconductance Gm = OutputCurrent InputVoltage Infinite Infinite Transresistance Rm = OutputVoltage InputCurrent Zero Zero Most CMOS amplifiers fit naturally into the transconductance amplifier category as they have large input resistance and fairly large output resistance. If the load resistance is high, the CMOS transconductance amplifier is essentially a voltage amplifier. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-3 Amplifier Notation Voltage Amplifier Input Voltage 060607-02 Output Voltage VDD VSS Split Power Supplies Voltage Amplifier Input Voltage Output Voltage VDD Single Power Supply Simpler notation: VDD Voltage Amplifier Input Voltage 060607-03 Output Voltage VSS Split Power Supplies VDD Voltage Amplifier Input Voltage Output Voltage Single Power Supply CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-4 Characterization of an Amplifier 1.) Large signal static characterization: • Plot of output versus input (transfer curve) • Large signal gain • Output and input swing limits 2.) Small signal static characterization: • AC gain • AC input resistance • AC output resistance 3.) Small signal dynamic characterization: • Bandwidth • Noise • Power supply rejection 4.) Large signal dynamic characterization: • Slew rate • Nonlinearity CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-5 Components of a CMOS Voltage/Transconductance Amplifier 1.) A transconductance stage that converts the input voltage to current. 2.) A transresistance stage (load) that converts the current from the transconductance stage back to voltage. Output Voltage Transresistance 060607-01 Voltage Amplifier Input Voltage Transconductance Stage Stage Input Voltage Current-to Output Voltage Voltage-to Current Conversion Voltage Conversion Current Voltage Amplifier CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-6 Inverting and Noninverting Amplifiers The types of amplifiers are based on the various configurations of the actual transistors. If we assume that one terminal of the transistor is grounded, then three possibilities result: vin + 060608-01 VDD Load vout − Common Source VDD vin vout + Load + Common Gate VDD vin + vout Load + Common Drain Note that there are two categories of amplifiers: 1.) Noninverting - Those whose input and output are in phase (common gate and common drain) 2.) Inverting - Those whose input and output are out of phase (common source) CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-7 ACTIVE LOAD INVERTING AMPLIFIER Voltage Transfer Characteristic of the Active Load Inverter vIN=5.0V vIN=4.5V vIN=4.0V C A,B vIN=3.5V vIN=3.0V M2 D E F K J I H G 0 1 2 3 4 5 ID (mA) vIN=2.5V vIN=2.0V vIN=1.5V vIN=1.0V 5 4 3 2 1 0 A B C + M2 cutoff M2 saturated D 5V M2 M1 vIN E W2 L2 ID =1μm 1μm + vOUT =2μm 1μm M1 saturated M1 active H I K F - W1 L1 - J G 0 1 2 3 4 5 vOUT vIN Fig. 320-02 0.5 0.4 0.3 0.2 0.1 0.0 vOUT The boundary between active and saturation operation for M1 is vDS1 vGS1 - VTN vOUT vIN - 0.7V CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-8 Large-Signal Voltage Swing Limits of the Active Load Inverter Maximum output voltage, vOUT(max): vOUT(max)VDD-|VTP| (ignores subthreshold current influence on the MOSFET) Minimum output voltage, vOUT(min): Assume that M1 is nonsaturated and that VT1 = |VT2| = VT. vDS1 vGS1 - VTN vOUT vIN - 0.7V The current through M1 is iD = 1 2 DS1 2 = 1 v (vGS1VT)vDS1 (vOUT)2 (VDDVT)(vOUT) 2 and the current through M2 is iD = 2 2 (vSG2 VT)2 = 2 2 (VDD vOUT VT)2 = 2 2 (vOUT + VT VDD)2 Equating these currents gives the minimum vOUT as, vOUT(min)=VDDVT VDDVT 1+(2/1) CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-9 Small-Signal Midband Performance of the Active Load Inverter The development of the small-signal model for the active load inverter is shown below: VDD M2 vOUT ID M1 vIN gm2vgs2 D1=D2=G2 gm1vgs1 S2=B2 rds2 rds1 G1 + vin - S1=B1 + + vout gm1vin rds1 - vin - Rout + vout - gm2vout rds2 Fig. 320-03 Sum the currents at the output node to get, gm1vin + gds1vout + gm2vout + gds2vout = 0 Solving for the voltage gain, vout/vin, gives vout vin = gm1 gds1+gds2+gm2 gm1 gm2 = K'NW1L2 K'PL1W2 1/2 The small-signal output resistance can also be found from the above by letting vin = 0 to get, Rout = 1 gds1+gds2+gm2 1 gm2 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-10 Frequency Response of the Active Load Inverter Incorporation of the parasitic capacitors into the small-signal model: If we assume the input voltage has a small source resistance, then we can write the following: sCM(Vout-Vin) + gmVin + GoutVout + sCoutVout = 0 Cgs2 Cgd1 Cgs1 Vin Vout(Gout + sCM + sCout) = - (gm – sCM)Vin Vout Vin = -(gm–sCM) Gout+sCM+sCout = -gmRout VDD Cbd2 Cbd1 M2 M1 1- sCM gm Vout CL + Vin gmVin - 1+sRout(CM+Cout) = CM gmRout
  • 6.
  • 7. Rout Cout 1- s z1 1- s p1 where gm = gm1, p1 = 1 Rout(Cout+CM) , and z1 = gm1 CM and Rout = [gds1+gds2+gm2]-1 + Vout - Fig. 320-04 1 gm2 , CM = Cgd1 , and Cout = Cbd1+Cbd2+Cgs2+CL CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-11 Complex Frequency (s) Analysis of Circuits – (Optional) The frequency response of linear circuits can be analyzed using the complex frequency variable s which avoids having to solve the circuit in the time domain and then transform into the frequency domain. Passive components in the s domain are: ZR(s) = R ZL(s) = sL and ZC(s) = 1 sC s-domain analysis uses the complex impedance of elements as if they were “resistors”. Example: + − V1 + − C1 gmV1 R2 C2 V2 s-domain A conversion Sum currents flowing away from node A to get, sC1(V2 – V1) + gmV1 + G2V2 + sC2V2 = 0 Solving for the voltage gain transfer function gives, T(s) = V2(s) V1(s) = -sC1+gm s(C1+C2)+G2 = -gmR2 + − V1(s) 1/sC1 gmV1(s) sC1/gm-1 s(C1+C2)R2+1 + − V2(s) R 1 2 sC2 060204-06 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-12 Complex Frequency Plane – (Optional) The complex frequency variable, s, is really a complex number and can be expressed as s = + j where = Re[s] and = Im[s]. Complex frequency plane: It is useful to plot the roots of the transfer function on the complex frequency plane. For the previous T(s), the roots are: The numerator root (zero) is s = z1 = +(gm/C1) The denominator root (pole) is s = p1= -[1/R2(C1+ C2)] CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-13 What is the Frequency Response of an Amplifier? – (Optional) Frequency response results when we replace the complex frequency variable s with j in the transfer function of an amplifier. (This amounts to evaluating T(s) on the imaginary axis of the complex frequency plane.) The frequency response is characterized by the magnitude and phase of T(j). Example: Assume T(s) = a0+a1s b0+b1s s=j T(j) = a0+a1j b0+b1j = a0+ja1 b0+jb1 Since T(j) is a complex number, we can express the magnitude and phase as, |T(j)| = a0 2+(a1)2 b0 2+(b1)2 Arg[T(j)] = +tan-1 a1 a0 - tan-1 b1 b0 For the previous example, the magnitude and phase would be, |T(j)| = gmR2 1+(C1/gm)2 1+[R2(C1+C2)]2 Arg[T(j)] = -tan-1(C1/gm) - tan-1[ R2(C1+C2)] Note: Because the zero is on the positive real axis, the phase due to the zero is -tan-1( ) rather than +tan-1( ). More about that later. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-14 Linear Graphical Illustration of Magnitude and Phase – (Optional) The important concepts of frequency response are communicated through the graphical portrayal of the magnitude and phase. Consider our example, T(s) = V2(s) V1(s) = -gmR2 s(C1+C2)R2+1 = -T(0) sC1/gm-1 s/z1-1 s/p1-1 where T(0) = gmR2, z1 = +(gm/C1) and p1= -[1/R2(C1+ C2)]. Replacing s with j gives [remember tan-1(-x) = - tan-1(x)], |T(j)| = T(0) 1+(/z1)2 1+(/p1)2 and Arg[T(j)] = ±180°-tan-1(/z1) - tan-1[/p1] Graphically, we get the following if we assume |p1| = 0.1|z1|, CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-15 Logarithmic Graphical Illustration of Frequency Response – (Optional) If the frequency range is large, it is more useful to use a logarithmic scale for the frequency. In addition, if one expresses the magnitude as 20 log10(|T(j)|, the plots can be closely approximated with straight lines which enables quick analysis by hand. Such plots are called Bode plots. To construct a Bode asymptotic magnitude plot for a low pass transfer function in the form of products of roots: 1.) Start at a low frequency and plot 20 log10(|T(0)| until you reach the smallest root. 2.) At the frequency equal to magnitude of the smallest root, change to a line with a slope of +20dB/decade if the root is a zero or -20dB/decade if the root is a pole. 3.) Continue increasing in frequency until you have plotted the influence of all roots. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-16 The Influence of the Complex Frequency Plane on Frequency Response – (Optional) The root locations in the complex frequency plane have a direct influence on the frequency response as illustrated below. Consider the transfer function: T(s) = -T(0) s/z1-1 s/p1-1 = - |p1| z1 T(0) s-z1 s-p1 = - 0.1T(0) s-z1 s-p1 where z1 = 10|p1| |T(jω)|/T(0) Region of maximum influence by p1 1.0 0.8 0.6 0.4 0.2 0.00 1 3 5 7 9 Region of maximum influence by z1 2 4 6 8 10 070413-03 jω σ j10 j8 j6 j4 j2 j0 j10-z1 j8-z1 j6-z1 j4-z1 j2-z1 j0-z1 j10-p1 j8-p1 j6-p1 j4-p1 j2-p1 j0-p1 p1=-1 z1=10 ω Note: The roots maximally influence the magnitude when is such that the angle between the vector and the horizontal axis is 45°. This occurs at j1 for p1 and j10 for z1. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-17 Bandwidth of a Low-Pass Amplifier – (Optional) One of the most important aspects of frequency analysis is to find the frequency at which the amplitude decreases by -3dB or 1/ 2. This can easily be found from the magnitude the frequency response. ω 060205-03 + V1(jω) − + V2(jω) − Α |A(jω)| A(0) 0.707A(0) 0 0 ωA=0.707 Bandwidth Amplifier with a Dominant Root: Since the amplifier is low-pass, the poles will be smaller in magnitude than the zeros. If one of the poles is approximately 4-5 times smaller than the next smallest pole, the bandwidth of the amplifier is given as Bandwidth |Smallest pole| Amplifier with no Dominant Root: If there are several poles with roughly the same magnitude, then one should use the graphical method above to find the bandwidth. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-18 Example of Finding the Bandwidth of an Amplifier– (Optional) Suppose an amplifier has a pole at -10 rads/sec and another at -20 rads/sec. and a zero at +50 radians/sec. Find the bandwidth of this amplifier if the low frequency gain is 100. Solution Since the poles are close together, construct a Bode plot and graphically find the bandwidth. From the graph, we see that the -3dB bandwidth is close to 11-12 Mrad/sec or 1.75- 1.91MHz. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-19 Frequency Response of the Active Inverter - Continued So, back to the frequency response of the active load inverter, we find that if |p1| z1, then the -3dB frequency is approximately equal to the magnitude of the pole which is [Rout(Cout+CM)]-1. log10 z1 ω 0512-06-02.EPS dB 20log10(gmRout) 0dB |p1| ≈ ω-3dB Observation: In general, the poles in a MOSFET circuit can be found by summing the capacitance connected to a node and multiplying this capacitance times the equivalent resistance from this node to ground and inverting the product. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-20 Example 180 -1 - Performance of an Active Resistor-Load Inverter Calculate the output-voltage swing limits for VDD = 5 volts, the small-signal gain, the output resistance, and the -3 dB frequency of active load inverter if (W1/L1) is 2 μm/1 μm and W2/L2 = 1 μm/1 μm, Cgd1 = 100fF, Cbd1 = 200fF, Cbd2 = 100fF, Cgs2 = 200fF, CL = 1 pF, and ID1 = ID2 = 100μA, using the parameters in Table 3.1-2. Solution From the above results we find that: vOUT(max) = 4.3 volts vOUT(min) = 0.418 volts Small-signal voltage gain = -1.92V/V Rout = 9.17 k including gds1 and gds2 and 10 k ignoring gds1 and gds2 z1 = 2.10x109 rads/sec p1 = -64.1x106 rads/sec. Thus, the -3 dB frequency is 10.2 MHz. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-21 CURRENT SOURCE INVERTER Voltage Transfer Characteristic of the Current Source Inverter C M2 vIN=5.0V vIN=4.5V vIN=4.0V vIN=3.5V vIN=3.0V KJIH F E G 0.5 0.4 0.3 0.2 0.1 0.0 D A,B 0 1 2 3 4 5 ID (mA) vOUT 5V M2 M1 + vIN W2 L2 ID =2μm 1μm + vOUT - W1 L1 - = 2μm 1μm 2.5V vIN=2.5V vIN=2.0V vIN=1.5V vIN=1.0V A B C D M2 active M2 saturated E M1 saturated M1 active G H I K F J 5 4 3 2 1 0 0 1 2 3 4 5 vOUT vIN Fig. 5.1-5 Regions of operation for the transistors: M1: vDS1 vGS1 -VTn vOUT vIN - 0.7V M2: vSD2 vSG2 - |VTp| VDD-vOUT VDD -VGG2 - |VTp| vOUT 3.2V CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-22 Large-Signal Voltage Swing Limits of the Current Source Load Inverter Maximum output voltage, vOUT(max): vOUT(max)VDD Minimum output voltage, vOUT(min): Assume that M1 is nonsaturated. The minimum output voltage is, vOUT(min) = vOUT(min)=(VDD-VT1)
  • 14. 2 2 1 1- 1- VDD-VGG-|VT2| VDD-VT1 This result assumes that vIN is taken to VDD. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-23 Small-Signal Midband Performance of the Current Source Load Inverter Small-Signal Model: VDD M2 vOUT ID M1 vIN S2=B2 G1 D1=D2 gm1vgs1 rds2 rds1 + vin - S1=B1=G2 + + vout gm1vin rds1 - vin - Rout + vout - rds2 Fig. 5.1-5B VGG2 Midband Performance: vout vin = gm1 gds1+gds2 = 2K'NW1 L1ID 1 1+2 1/2 1 D !!! and Rout = 1 gds1+gds2 1 ID(1+2) log(IBias) 060614-01 vout vin Strong Inversion Weak Invers-ion ≈ 1μA CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-24 Frequency Response of the Current Source Load Inverter Incorporation of the parasitic capacitors into the small-signal model (x is connected to VGG2): If we assume the input voltage has a small source resistance, then we can write the following: Vout(s) Vin(s) = gmRout s z1 1- 1- s p1 where gm = gm1, p1 = Cgs2 x Cgd2 Cgd1 1 VDD Cbd2 Cbd1 Vin Vout CL M2 M1 Rout(Cout+CM) , and z1 = + Vin gmVin gm CM and Rout = 1 gds1+gds2 CM Rout Cout - and Cout = Cgd2 + Cbd1 + Cbd2 + CL CM = Cgd1 Therefore, if |p1||z1|, then the 3 dB frequency response can be expressed as -3dB 1 = gds1+gds2 Cgd1+Cgd2+Cbd1+Cbd2+CL + Vout - Fig. 5.1-4 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 16. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-25 Example 180-2 - Performance of a Current-Sink Inverter A current-sink inverter is shown. Assume that W1 = 2 μm, L1 = 1 μm, W2 = 1 μm, L2 = 1μm, VDD = 5 volts, VNB1 = 3 volts, and the parameters of Table 3.1-2 describe M1 and M2. Use the capacitor values of Example 180-1 (Cgd1 = Cgd2). Calculate the output-swing limits and the small-signal performance. Solution VDD M1 vOUT VSG1 − vIN VNB1 M2 + ID 070413-04 To attain the output signal-swing limitations, we treat current sink inverter as a current source CMOS inverter with PMOS parameters for the NMOS and NMOS parameters for the PMOS and use NMOS equations. Using a prime notation to designate the results of the current source CMOS inverter that exchanges the PMOS and NMOS model parameters, vOUT(max)’ = 5V and vOUT(min)’ = (5-0.7)
  • 17.
  • 18. 3-0.7 5-0-0.7 2 = 0.74V 1- 1- 110·1 50·2 In terms of the current sink CMOS inverter, these limits are subtracted from 5V to get vOUT(max) = 4.26V and v OUT (min) = 0V. To find the small signal performance, first calculate the dc current. The dc current, ID, is ID = KN’W1 2L1 (VGG1-VTN)2 = 110·1 2·1 (3-0.7)2 = 291μA vout/vin = 9.2V/V, Rout = 38.1 k, and f-3dB = 2.78 MHz. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-26 PUSH-PULL INVERTING AMPLIFIER Voltage Transfer Characteristic of the Push-Pull Inverting Amplifier 1.0 0.8 0.6 0.4 0.2 HI 0.0 vIN=4.5V vIN=3.5V vIN=5.0V vIN=4.0V F G vIN=2.0V vIN=2.5V vIN=3.0V vIN=3.5VvIN=4.5V vIN=0.5V vIN=1.0V vIN=1.5V 0 1 2 3 4 ID (mA) vOUT 5V M2 M1 + vIN W2 L2 ID =2μm 1μm + vOUT - W1 L1 - = 1μm 1μm vIN=3.0V vIN=2.5V vIN=2.0V vIN=1.5V vIN=1.0V A B C D E M1 saturated G M1 active H I K F J C A,B 5 4 3 2 1 0 M2 active M2 saturated 0 1 2 3 4 5 D vOUT vIN Note the rail-to- rail output voltage swing Fig. 5.1-8 E J,K Regions of operation for M1 and M2: M1: vDS1 vGS1 - VT1 vOUT vIN - 0.7V M2: vSD2 vSG2-|VT2| VDD -vOUT VDD -vIN-|VT2| vOUT vIN + 0.7V CMOS Analog Circuit Design © P.E. Allen - 2010
  • 19. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-27 Small-Signal Performance of the Push-Pull Amplifier CM gm1vin rds1 gm2vin rds2 + vin - + vout - Fig. 5.1-9 Cout 5V M2 M1 + - + vout - vin Small-signal analysis gives the following results: vout vin = (gm1+gm2) gds1+gds2 = (2/ID) K'N(W1/L1)+ K'P(W2/L2) 1+2 Rout = 1 gds1+gds2 z = gm1+gm2 CM = gm1+gm2 Cgd1+Cgd2 and p1 = (gds1+gds2) Cgd1+Cgd2+Cbd1+Cbd2+CL If z1 |p1|, then -3dB = gds1+gds2 Cgd1+Cgd2+Cbd1+Cbd2+CL CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-28 Example 180-3 - Performance of a Push-Pull Inverter The performance of a push-pull CMOS inverter is to be examined. Assume that W1 = 1 μm, L1 = 1 μm, W2 = 2 μm, L2 = 1μm, VDD = 5 volts, and use the parameters of Table 3.1-2 to model M1 and M2. Use the capacitor values of Example 180-1 (Cgd1 = Cgd2). Calculate the output-swing limits and the small-signal performance assuming that ID1 = ID2 = 300μA. Solution The output swing is seen to be from 0V to 5V. In order to find the small signal performance, we will make the important assumption that both transistors are operating in the saturation region. Therefore: vout vin = -257μS-245μS 12μS+15μS = -18.6V/V Rout = 37 k f-3dB = 2.86 MHz and z1 = 399 MHz CMOS Analog Circuit Design © P.E. Allen - 2010
  • 20. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-29 NOISE ANALYSIS OF INVERTING AMPLIFIERS Noise Analysis of Inverting Amplifiers Noise model: en22 * en12 VDD M2 M1 Noise Free MOSFETs eout2 vin eeq2 VDD M2 M1 Noise Free MOSFETs eout2 vin Fig. 5.1-10 * * Approach: 1.) Assume a mean-square input-voltage-noise spectral density en2 in series with the gate of each MOSFET. (This step assumes that the MOSFET is the common source configuration.) 2.) Calculate the output-voltage-noise spectral density, eout2 (Assume all sources are additive). 3.) Refer the output-voltage-noise spectral density back to the input to get equivalent input noise eeq2. 4.) Substitute the type of noise source, 1/f or thermal. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-30 Noise Analysis of the Active Load Inverter 1.) See model to the right. 2.) eout 2 2 = en1 gm1 gm2 2+ en2 2 3.) eeq2 = en12 1+ gm2 gm1 2 en2 en1 2 Up to now, the type of noise is not defined. 1/f Noise KF Substituting en2= 2fCoxWLK’ = en22 * en12 VDD M2 M1 vin * B fWL , into the above gives, eeq(1/f)2 = B1 fW1L1 1+ K'2B2 K'1B1 L1 L2 2 eeq(1/f) = B1 fW1L1 Noise Free MOSFETs eout2 1/2 VDD M2 M1 2 1/2 1+ eeq2 vin * K'2B2 K'1B1 L1 L2 Noise Free MOSFET eout2 Fig. 5.1- To minimize 1/f noise, 1.) Make L2L1, 2.) increase the value of W1 and 3.) choose M1 as a PMOS. Thermal Noise Substituting en2= 8kT 3gm into the above gives,
  • 21. eeq(th) = 1/2 1/2 3[2K'1(W/L)1I1]1/2 8kT 1+ W2L1K'2 L2W1K'1 To minimize thermal noise, maximize the gain of the inverter. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 22. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-31 Noise Analysis of the Active Load Inverter - Continued When calculating the contribution of en22 to eout2, it was assumed that the gain was unity. To verify this assumption consider the following model: en22 + vgs2 gm2vgs2 rds1 - + rds2 eout2 _ Fig. 5.1-11 * We can show that, eout 2 2 = en2 gm2(rds1||rds2) 1+gm2(rds1||rds2) 2 1 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-32 Noise Analysis of the Current Source Load Inverting Amplifier Model: en22 * en12 VDD M2 * M1 * Noise Free MOSFETs eout2 VGG2 vin eeq2 VDD M2 M1 Noise Free MOSFETs eout2 vin Fig. 5.1-12. The output-voltage-noise spectral density of this inverter can be written as, 2 = (gm1rout)2en1 eout 2 + (gm2rout)2en2 2 or 2 = en1 eeq 2 + (gm2rout)2 (gm1rout)2en2 2 2 = en1
  • 23.
  • 24. 1+ gm2 gm1 2 en2 2 en1 2 This result is identical with the active load inverter. Thus the noise performance of the two circuits are equivalent although the small-signal voltage gain is significantly different. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 25. Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-33 Noise Analysis of the Push-Pull Amplifier Model: en22 Noise Free MOSFETs * vin eout2 en12 VDD M2 M1 Fig. 5.1-13. * The equivalent input-voltage-noise spectral density of the push-pull inverter can be found as eeq = gm1en1 gm1+gm2 2 + gm2en2 gm1+gm2 2 If the two transconductances are balanced (gm1 = gm2), then the noise contribution of each device is divided by two. The total noise contribution can only be reduced by reducing the noise contribution of each device. (Basically, both M1 and M2 act like the “load” transistor and “input” transistor, so there is no defined input transistor that can cause the noise of the load transistor to be insignificant.) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 180 – Inverting Amplifiers (3/27/10) Page 180-34 SUMMARY Table of Performance Inverter AC Voltage Gain AC Output Resistance Bandwidth (CGB=0) Equivalent, input-referred,mean-square noise voltage p-channel active load inverter -gm1 gm2 1 gm2 gm2 CBD1+CGS1+CGS2+CBD2 2 + en2 en1 2 gm2 gm1 2 Current source load inverter -gm1 gds1+gds2 1 gds1+gds2 gds1+gds2 CBD1+CGD1+CDG2+CBD2 2 + en2 en1 2 gm2 gm1 2 Push-Pull inverter -(gm1+gm2) gds1+gds2 1 gds1+gds2 gds1+gds2 CBD1+CGD1+CGS2+CBD2 gm1en1 gm1+gm2 2+ gm1en1 gm1+gm2 2 CMOS Analog Circuit Design © P.E. Allen - 2010