SlideShare a Scribd company logo
1 of 16
Download to read offline
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-1 
LECTURE 250 – SIMULATION AND MEASUREMENT OF OP 
AMPS 
LECTURE ORGANIZATION 
Outline 
• Introduction 
• Open Loop Gain 
• CMRR and PSRR 
• A general method of measuring Avd, CMRR, and PSRR 
• Other op amp measurements 
• Simulation of a Two-Stage Op Amp 
• Op amp macromodels 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
Pages 310-341 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-2 
INTRODUCTION 
Simulation and Measurement Considerations 
Objectives: 
• The objective of simulation is to verify and optimize the design. 
• The objective of measurement is to experimentally confirm the specifications. 
Similarity between Simulation and Measurement: 
• Same goals 
• Same approach or technique 
Differences between Simulation and Measurement: 
• Simulation can idealize a circuit 
- All transistor electrical parameters are ideally matched 
- Ideal stimuli 
• Measurement must consider all nonidealities 
- Physical and electrical parameter mismatches 
- Nonideal stimuli 
- Parasistics 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-3 
OPEN LOOP GAIN 
Simulating or Measuring the Open-Loop Transfer Function of the Op Amp 
Circuit (Darkened op amp identifies the op amp under test): 
Simulation: 
This circuit will give the voltage transfer 
function curve. This curve should identify: 
1.) The linear range of operation 
2.) The gain in the linear range 
3.) The output limits 
4.) The systematic input offset voltage 
5.) DC operating conditions, power dissipation 
6.) When biased in the linear range, the small-signal frequency response can be 
obtained 
v VOS IN + - 
vOUT 
Fig. 240-01 
VDD 
CL RL VSS 
7.) From the open-loop frequency response, the phase margin can be obtained (F = 1) 
Measurement: 
This circuit probably will not work unless the op amp gain is very low. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-4 
A More Robust Method of Measuring the Open-Loop Frequency Response 
Circuit: 
vIN vOUT 
VDD 
CL RL VSS 
C R 
Fig. 240-02 
Resulting Closed-Loop Frequency Response: 
dB 
log10(w) 
Av(0) 
Av(0) 
1 
RC RC 
Op Amp 
Open Loop 
Frequency 
Response 
Fig. 240-03 
0dB 
Make the RC product as large as possible. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-5 
CMRR AND PSRR 
Simulation of the Common-Mode Voltage Gain 
VOS 
vout 
VDD 
VSS 
CL RL 
+ - 
vcm 
+ 
- 
Fig. 6.6-5 
Make sure that the output voltage of the op amp is in the linear region. 
Divide (subtract dB) the result into the open-loop gain to get CMRR. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-6 
Simulation of CMRR of an Op Amp 
None of the above methods are really suitable for simulation of CMRR. 
Consider the following: 
VDD 
VSS 
Vcm 
Vout 
V2 
V1 
V2 
V1 
Vcm 
Av(V1-V2) 
Vout 
Vcm 
- 
+ 
Vcm ±AcVcm 
Fig. 6.6-7 
Vout = Av(V1-V2) ±Acm 
V1+V2 
2 = -AvVout ± AcmVcm 
 
Vout = 
±Acm 
1+Av 
Vcm  
±Acm 
Av 
Vcm 
Av 
Acm 
 |CMRR|= 
Vcm 
Vout 
= 
 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-7 
Direct Simulation of PSRR 
Circuit: 
VDD 
VSS 
Vdd 
Vout 
V2 
V1 
V2 
V1 
Av(V1-V2) 
±AddVdd 
Vss 
Vss = 0 
Fig. 6.6-9 
- 
+ 
Vout = Av(V1-V2) ±AddVdd = -AvVout ± AddVdd 
Vout = 
±Add 
1+Av 
Vdd  
±Add 
Av 
Vdd 
Av 
Add 
 PSRR+= 
Vdd 
Vout 
= 
Av 
Ass 
 and PSRR-= 
Vss 
Vout 
= 
 
Works well as long as CMRR is much greater than 1. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-8 
A GENERAL METHOD OF MEASURING AVD, CMRR, AND PSRR 
General Principle of the Measurement 
Circuit: 
vOS 
100kΩ 
100kΩ 
vOUT 
vSET 
VDD 
V R SS CL L 
+ 
vI 
- 
10kΩ 
10Ω 
vOUT = 
-vSET 
070429-01 
Op Amp 
100kΩ 100kΩ 
- 
+ 
vSET 
Op Amp 
The amplifier under test is shown as the darkened op amp. 
Principle: 
Apply the stimulus to the output of the op amp under test and see how the input 
responds. Note that: 
vOUT = - vSET and vI  
vOS 
1000 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-9 
Measurement of Open-Loop Gain 
Measurement configuration: 
Avd = 
Vout 
Vid = 
Vout 
Vi 
Vos  1000Vi 
Therefore, Avd = 
Vos 
10kΩ 
10Ω 
1000Vout 
Vos 
Vout 
VDD 
100kΩ 
100kΩ 
Vout 
CL RL VSS 
060701-01 
+ 
Vi 
- 
+ 
- 
Sweep Vout as a function of frequency, invert the result and multiply by 1000 to get 
Avd(j). 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-10 
Measurement of CMRR 
Measurement Configuration: 
Note that the whole amplifier is stimulated by 
Vicm while the input responds to this change. 
The definition of the common-mode rejection 
ratio is 
CMRR =  
 
Avd 
Acm 
= 
(vout/vid) 
(vout/vicm) 
However, in the above circuit the value of vout 
is the same so that we get 
CMRR = 
vicm 
vid 
vos 
10kΩ 
But vid = vi and vos  1000vi = 1000vid  vid = 
10Ω 
vos 
1000 
+ 
vi 
- 
Substituting in the previous expression gives, CMRR = 
+ 
- 
vicm 
vos 
1000 
100kΩ 
100kΩ 
vicm 
vicm 
CL RL VSS 
= 
vOUT 
1000vicm 
vos 
VDD 
Fig. 240-08 
Make a frequency sweep of Vicm, invert the result and multiply by 1000 to get CMRR. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-11 
Measurement of PSRR 
Measurement Configuration: 
The definition of the positive power supply rejection 
ratio is 
PSRR+ =  
 
Avd 
Acm 
= 
(Vout/Vid) 
(Vout/Vdd) 
However, in the above circuit the value of Vout is the 
same so that we get 
PSRR+ = 
Vdd 
Vid 
10kΩ 
But Vid = Vi and Vos  1000Vi = 1000Vid  Vid = 
Vos 
1000 
Substituting in the previous expression gives, PSRR+ = 
Vos 
+ 
10Ω 
070429-02 
Vdd 
Vos 
1000 
Vi 
- 
= 
100kΩ 
100kΩ 
Vdd 
V R SS CL L 
1000Vdd 
Vos 
Vout 
Vss 
Make a frequency sweep of Vdd, invert the result and multiply by 1000 to get PSRR+. 
(Same procedure holds for PSRR-.) 
VDD 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-12 
OTHER OP AMP MEASUREMENTS 
Simulation or Measurement of ICMR 
vIN 
vOUT 
VDD 
VSS 
IDD 
CL RL 
+ 
- 
vIN 
Also, monitor 
IDD or ISS. 
Fig.240-11 
vOUT 
1 
ICMR 
1 
ISS 
Initial jump in sweep is due to the turn-on of M5. 
Should also plot the current in the input stage (or the power supply current). 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-13 
Measurement or Simulation of Slew Rate and Settling Time 
vin 
Peak Overshoot 
Volts 
vin 
IDD Settling Error 
vout 
VDD 
VSS 
CL RL 
+ 
- 
Tolerance 
1 
+SR 
1 
-SR 
Settling Time 
Feedthrough 
vout 
t 
Fig. 240-14 
If the slew rate influences the small signal response, then make the input step size small 
enough to avoid slew rate (i.e. less than 0.5V for MOS). 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-14 
Phase Margin and Peak Overshoot Relationship 
It can be shown (Appendix C of the text) that: 
Phase Margin (Degrees) = 57.2958cos-1[ 44+1 - 22] 
Overshoot (%) 
= 100 exp 
 
 
- 
1-2 
For example, a 5% overshoot 
corresponds to a phase margin of 
approximately 64°. 
80 70 
Degrees) 
60 
50 
(Margin 40 
Phase 30 
20 
10 
0 
100 
20 
10 
Overshoot (%) 
5 
1.0 
Phase Margin Overshoot 
0 0.2 0.4 0.6 0.8 1 
0.1 
ζ= 1 
2Q 
070429-03 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-15 
SIMULATION OF A TWO-STAGE CMOS OP AMP 
Example 250-1 Simulation of a Two-Stage CMOS Op Amp 
An op amp designed using the procedure described in Lecture 230 is to be simulated 
by SPICE. The device parameters to be used are those of Tables 3.1-2 and 3.2-1 of the 
textbook CMOS Analog Circuit Design. 
- 
15μm 
1μm 
vin 
+ 
VDD = 2.5V 
M3 M4 
15μm 
1μm 
M1 M2 
3μm 
1μm 
M5 
M6 
95μA 
M7 
vout 
3μm 
1μm 
30μA 
4.5μm 
1μm 
VSS = -2.5V 
Cc = 3pF 
CL = 
10pF 
M8 
30μA 
4.5μm 
1μm 
94μm 
1μm 
14μm 
1μm 
Fig. 240-16 
The specifications of this op amp are as follows where the channel length is to be 1μm 
and the load capacitor is CL = 10pF: 
Av  3000V/V VDD = 2.5V VSS = -2.5V 
GB = 5MHz SR  10V/μs 60° phase margin 
Vout range = ±2V ICMR = -1 to 2V Pdiss  2mW 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-16 
Example 250-1 – Continued 
Bulk Capacitance Calculation: 
If the values of the area and perimeter of the drain and source of each transistor are 
known, then the simulator will calculate the values of CBD and CBs. Since there is no 
layout yet, we estimate the values of the area and perimeter of the drain and source of 
each transistor as: 
AS = AD  W[L1 + L2 + L3] 
PS = PD  2W + 2[L1 + L2 + L3] 
where L1 is the minimum allowable distance between the polysilicon and a contact in the 
moat (2μm), L2 is the length of a minimum-size square contact to moat (2μm), and L3 is 
the minimum allowable distance between a contact to moat and the edge of the moat 
(2μm). (These values will be found from the physical design rules for the technology). 
For example consider M1: 
AS = AD = (3μm)x(2μm+2μm+2μm) = 18μm2 
PS = PD = 2x3μm + 2x6μm = 19μm 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-17 
Example 250-1 - Continued 
Op Amp Subcircuit: 
- 
VDD 
- 
2 
1 
8 
vin vout 
+ 
VSS 
+ 
6 
9 Fig. 240-17 
.SUBCKT OPAMP 1 2 6 8 9 
M1 4 2 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18U 
M2 5 1 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18U 
M3 4 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42U 
M4 5 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42U 
M5 3 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21U 
M6 6 5 8 8 PMOS1 W=94U L=1U AD=564P AS=564P PD=200U PS=200U 
M7 6 7 9 9 NMOS1 W=14U L=1U AD=84P AS=84P PD=40U PS=40U 
M8 7 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21U 
CC 5 6 3.0P 
.MODEL NMOS1 NMOS VTO=0.70 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7 
+MJ=0.5 MJSW=0.38 CGBO=700P CGSO=220P CGDO=220P CJ=770U CJSW=380P 
+LD=0.016U TOX=14N 
.MODEL PMOS1 PMOS VTO=-0.7 KP=50U GAMMA=0..57 LAMBDA=0.05 PHI=0.8 
+MJ=0.5 MJSW=.35 CGBO=700P CGSO=220P CGDO=220P CJ=560U CJSW=350P +LD=0.014U TOX=14N 
IBIAS 8 7 30U 
.ENDS 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-18 
Example 250-1 - Continued 
PSPICE Input File for the Open-Loop Configuration: 
EXAMPLE 250-1 OPEN LOOP CONFIGURATION 
.OPTION LIMPTS=1000 
VIN+ 1 0 DC 0 AC 1.0 
VDD 4 0 DC 2.5 
VSS 0 5 DC 2.5 
VIN - 2 0 DC 0 
CL 3 0 10P 
X1 1 2 3 4 5 OPAMP 
... 
(Subcircuit of previous slide) 
... 
.OP 
.TF V(3) VIN+ 
.DC VIN+ -0.005 0.005 100U 
.PRINT DC V(3) 
.AC DEC 10 1 10MEG 
.PRINT AC VDB(3) VP(3) 
.PROBE (This entry is unique to PSPICE) 
.END 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-19 
Example 250-1 - Continued 
Open-loop transfer characteristic: 
2.5 
2 
1 
0 
-1 
-2 
VOS 
-2 -1.5 -1.0 -0.5 0 0.5 1 1.5 2 
vOUT(V) 
vIN(mV) 
-2.5 
Fig. 240-18 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-20 
Example 250-1 - Continued 
Open-loop transfer frequency response: 
80 
60 
40 
20 
0 
Magnitude (dB) 
-20 
-40 
GB 
10 100 1000 104 105 106 107 108 
Frequency (Hz) 
200 
150 
100 
50 
0 
-50 
Phase Shift (Degrees) 
-100 
-150 
-200 
Phase Margin GB 
10 100 1000 104 105 106 107 108 
Frequency (Hz) 
Fig. 6.6-16 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-21 
Example 250-1 - Continued 
Input common mode range: 
EXAMPLE 250-1 UNITY GAIN CONFIGURATION. 
.OPTION LIMPTS=501 
VIN+ 1 0 PWL(0 -2 10N -2 20N 2 2U 2 2.01U -2 4U -2 4.01U 
+ -.1 6U -.1 6.0 1U .1 8U .1 8.01U -.1 10U -.1) 
VDD 4 0 DC 2.5 AC 1.0 
VSS 0 5 DC 2.5 
CL 3 0 20P 
X1 1 3 3 4 5 OPAMP 
... 
(Subcircuit of Table 6.6-1) 
... 
.DC VIN+ -2.5 2.5 0.1 
.PRINT DC V(3) 
.TRAN 0.05U 10U 0 10N 
.PRINT TRAN V(3) V(1) 
.AC DEC 10 1 10MEG 
.PRINT AC VDB(3) VP(3) 
.PROBE (This entry is unique to PSPICE) 
.END 
Note the usefulness of monitoring the 
current in the input stage to determine 
the lower limit of the ICMR. 
vin 
vout 
VDD 
Subckt. 
VSS 
- 
+ 
3 
3 
1 
4 
5 
Fig. 6.6-16A 
4 
3 
2 
1 
0 
-1 
-2 
-3 
ID(M5) 
Input CMR 
-3 -2 -1 0 1 2 3 
vOUT (V) 
vIN(V) 
40 
30 
20 
10 
0 
ID(M5) μA 
Fig. 240-21 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-22 
Example 250-1 - Continued 
Positive PSRR: 
100 
80 
60 
40 
20 
0 
-20 
10 100 1000 104 105 106 107 108 
|PSRR+(jω)| dB 
Frequency (Hz) 
100 
50 
0 
-50 
-100 
10 100 1000 104 105 106 107 10 
Arg[PSRR+(jω)] (Degrees) 
Frequency (Hz) 
Fig. 240-22 
This PSRR+ is poor because of the Miller capacitor. The degree of PSRR+ deterioration 
will be better shown when compared with the PSRR-. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-23 
Example 250-1 - Continued 
Negative PSRR: 
120 
100 
80 
60 
40 
20 
PSRR+ 
10 100 1000 104 105 106 107 108 
|PSRR-(jω)| dB 
Frequency (Hz) 
200 
150 
100 
50 
0 
-50 
-100 
-150 
-200 
10 100 1000 104 105 106 107 108 
Arg[PSRR-(jω)] (Degrees) 
Frequency (Hz) 
Fig. 240-23 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-24 
Example 250-1 - Continued 
Large-signal and small-signal transient response: 
1.5 
1 
0.5 
0 
Volts 
-0.5 
-1 
-1.5 
vin(t) 
vout(t) 
0 1 2 3 4 5 
Time (Microseconds) 
0.15 
0.1 
0.05 
0 
Volts 
-0.05 
-0.1 
-0.15 
vin(t) 
vout(t) 
2.5 3.0 3.5 4.0 4.5 
Time (Microseconds) 
Fig. 240-24 
M6 
iCc iCL dvout 
M7 
vout 
VDD 
Cc 
95μA 
VSS 
+ 
VBias 
- 
CL 
dt 
Fig. 240-25 
Why the negative overshoot on the slew rate? 
If M7 cannot sink sufficient current then the output stage 
slews and only responds to changes at the output via the 
feedback path which involves a delay. 
Note that -dvout/dt  -2V/0.3μs = -6.67V/μs. For a 
10pF capacitor this requires 66.7μA and only 95μA-66.7μA 
= 28μA is available for Cc. For the positive slew rate, M6 
can provide whatever current is required by the capacitors 
and can immediately respond to changes at the output. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-25 
Example 250-1 - Continued 
Comparison of the Simulation Results with the Specifications of Example 250-1: 
Specification 
(Power supply = ±2.5V) 
Design Simulation 
Open Loop Gain 5000 10,000 
GB (MHz) 5 MHz 5 MHz 
Input CMR (Volts) -1V to 2V -1.2 V to 2.4 V, 
Slew Rate (V/μsec) 10 (V/μsec) +10, -7(V/μsec) 
Pdiss (mW)  2mW 0.625mW 
Vout range (V) ±2V +2.3V, -2.2V 
PSRR+ (0) (dB) - 87 
PSRR- (0) (dB) - 106 
Phase margin (degrees) 60° 65° 
Output Resistance (k) - 122.5k 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-26 
Relative Overshoots of Ex. 250-1 
VDD = 2.5V 
Why is the negative-going overshoot 
94/1 
0.1V 
larger than the positive-going overshoot 
M6 
i6 
on the small-signal transient response of 
iCc 
iCL 
the last slide? 
vout 
t 
Cc 
Consider the following circuit and 
95μA 
CL 
waveform: 
-0.1V 
VBias 
M7 
0.1μs 0.1μs 
During the rise time, 
VSS = -2.5V 
Fig. 240-26 
iCL = CL(dvout/dt )= 10pF(0.2V/0.1μs) = 20μA and iCc = 3pf(2V/μs) = 6μA 
 i6 = 95μA + 20μA + 6μA = 121μA  gm6 = 1066μS (nominal was 942.5μS) 
During the fall time, iCL = CL(-dvout/dt) = 10pF(-0.2V/0.1μs) = -20μA 
and iCc = -3pf(2V/μs) = -6μA 
 i6 = 95μA - 20μA - 6μA = 69μA  gm6 = 805μS 
The dominant pole is p1  (RIgm6RIICc)-1 but the GB is gmI/Cc = 94.25μS/3pF = 
31.42x106 rads/sec and stays constant. Thus we must look elsewhere for the reason. 
Recall that p2  gm6/CL which explains the difference. 
 p2(95μA) = 94.25x106 rads/sec, p2(121μA) = 106.6 x106 rads/sec, and p2(69μA) = 
80.05 x106 rads/sec. Thus, the phase margin is less during the fall time than the rise time. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-27 
OP AMP MACROMODELS 
What is a Macromodel? 
A macromodel uses resistors, capacitors, inductors, controlled sources, and some active 
devices (mostly diodes) to capture the essence of the performance of a complex circuit 
like an op amp without modeling every internal component of the op amp. 
Small Signal, Frequency Independent Op Amp Macromodel 
vo 
v1 
v2 
v1 
3 
o 
v1 
Ro 
1 
1 
4 
v 
A Rid 
2 
v2 
Ro 
3 
vo 
Avd 
Ro 
(v1-v2) 
Rid 
2 
v2 
Avd (v1-v2) 
(a.) (b.) (c.) Fig. 010-01 
Figure 1 - (a.) Op amp symbol. (b.) Thevenin form. (c.) Norton form. 
Rid 
1 
2 
Ric1 
Ric2 
+ 
vo 
- 
3 
Ro 
Avcv1 
2Ro 
Avcv2 
A 2Ro vd(v1-v2) 
Ro 
Linear Op Amp Macromodel 
Fig. 010-03 
Figure 2 - Simple op amp model including differential and common mode behavior. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-28 
Small Signal, Frequency Dependent Op Amp Macromodel 
Avd(s) = 
Avd(0) 
(s/1)+1 where 1= 
1 
R1C1 
(dominant pole) 
Model Using Passive Components: 
Rid 
v1 
v2 
vo 
1 
2 
R1 C1 
Avd(0) 
R1 
(v1-v2) 
3 
Fig. 010-04 
Figure 3 - Macromodel for the op amp including the frequency response of Avd. 
Model Using Passive Components with Constant Output Resistance: 
1 3 
Rid 
v1 
v2 
vo 
2 
v3 
Ro 
4 
R1 C1 Ro 
Avd(0) 
R1 
(v1-v2) 
Fig. 010-05 
Figure 4 - Frequency dependent model with constant output resistance. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-29 
Large Signal, Frequency Independent Op Amp Macromodel 
Nonlinear Op 
Amp Macromodel 
3 
+ 
D5 
VOH VOL 
Avcv4 
D6 
2Ro 11 
10 vo 
- 
Ro 
+ 
- 
+ 
- 
Avcv5 
2Ro 
RLIM 4 
Rid 
1 
Ric1 
7 
D1 D2 
+ 
- 
+ 
- 
6 
VIH1 
RLIM 
VIL1 
2 5 
Ric2 
D3 D4 
+ 
- 
+ 8 
9 
- 
VIH2 VIL2 
Avd 
Ro 
(v4-v5) 
Fig. 010-10 
Figure 5 - Op amp macromodel that limits the input and output voltages. 
D1 
D3 
5 
1 3 
Rid 
v1 
2 
v2 
4 
Ro 
vo 
Avd 
Ro 
(v1-v2) 
D5 D6 
+ 7 
- 
+ 8 
- 
D2 
D4 
ILimit 6 
VOH VOL 
Fig. 010-13 
Io 
2 
Io 
2 
Io D1 
Io 
D2 
D3 
ILimit 
D4 
ILimit 
2 
Io 
2 
Io 
2 
ILimit 
2 
Fig. 010-12 
Figure 6 – Technique for current limiting and a macromodel for output voltage and 
current limiting. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-30 
Large Signal, Frequency Dependent Op Amp Macromodel 
Slew Rate: 
dvo 
dt = 
±ISR 
C1 
= Slew Rate 
Rid 
v1 
v2 
vo 
3 
1 
4 
A C1 vd(0) 
R1 
2 R1 
(v1-v2) 
D1 
D2 
D3 
5 
D4 
6 
7 
Ro 
v4-v5 
Ro 
ISR 
Fig. 010-15 
Figure 7 – Slew rate macromodel for an op amp. 
Results for a unity gain op amp in slew: 
10V 
5V 
0V 
-5V 
-10V 
Input 
Voltage 
Output 
Voltage 
0μs 2μs 4μs 6μs 8μs 10μs 
Time Fig. 010-16 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-31 
SUMMARY 
• Simulation and measurement of op amps has both similarities and differences 
• Measurement of open loop gain is very challenging – the key is to keep the quiescent 
point output of the op amp well defined 
• The method of stimulating the output of the op amp or power supplies and letting the 
input respond results in a robust method of measuring open loop gain, CMRR, and PSRR 
• Carefully investigate any deviations or aberrations from expected behavior in the 
simulation and experimental results 
• Macromodels are useful for modeling the op amp without including every individual 
transistor 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

What's hot

Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroyReece Hancock
 
Magnetism Calculations
Magnetism CalculationsMagnetism Calculations
Magnetism CalculationsReece Hancock
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOPei-Che Chang
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By LipunNanigopal Jena
 
Differntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampDifferntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampKarthik Rathinavel
 
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelEce593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelKarthik Rathinavel
 
Two stage op amp design on cadence
Two stage op amp design on cadenceTwo stage op amp design on cadence
Two stage op amp design on cadenceHaowei Jiang
 
Design and Implementation of Two Stage Operational Amplifier
Design and Implementation of Two Stage Operational AmplifierDesign and Implementation of Two Stage Operational Amplifier
Design and Implementation of Two Stage Operational AmplifierIRJET Journal
 
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital ConverterDesign of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital ConverterKarthik Rathinavel
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 

What's hot (20)

Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroy
 
Magnetism Calculations
Magnetism CalculationsMagnetism Calculations
Magnetism Calculations
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWO
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By Lipun
 
Lecture 18
Lecture 18Lecture 18
Lecture 18
 
Differntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-ampDifferntial Input to Single Ended Output, Two stage Op-amp
Differntial Input to Single Ended Output, Two stage Op-amp
 
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelEce593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
 
Two stage op amp design on cadence
Two stage op amp design on cadenceTwo stage op amp design on cadence
Two stage op amp design on cadence
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Automatic Generation Control-3
Automatic Generation Control-3Automatic Generation Control-3
Automatic Generation Control-3
 
Design and Implementation of Two Stage Operational Amplifier
Design and Implementation of Two Stage Operational AmplifierDesign and Implementation of Two Stage Operational Amplifier
Design and Implementation of Two Stage Operational Amplifier
 
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital ConverterDesign of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
Design of 17-Bit Audio Band Delta-Sigma Analog to Digital Converter
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 

Similar to Lect2 up250 (100328)

Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)aicdesign
 
DESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdfDESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdftempor3
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)aicdesign
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaIISRT
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaRamesh Patriotic
 
Iisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIISRTJournals
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料Tsuyoshi Horigome
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)aicdesign
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxdebishakespeare
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015マルツエレック株式会社 marutsuelec
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)aicdesign
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverterZunAib Ali
 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1 EvonCanales257
 

Similar to Lect2 up250 (100328) (20)

Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Lect2 up240 (100328)
Lect2 up240 (100328)Lect2 up240 (100328)
Lect2 up240 (100328)
 
DESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdfDESIGN OF TWO-STAGE OP AMPS.pdf
DESIGN OF TWO-STAGE OP AMPS.pdf
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
Iisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos ota
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1
 

More from aicdesign

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)aicdesign
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)aicdesign
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)aicdesign
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)aicdesign
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)aicdesign
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)aicdesign
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)aicdesign
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)aicdesign
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)aicdesign
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)aicdesign
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)aicdesign
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)aicdesign
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)aicdesign
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)aicdesign
 

More from aicdesign (20)

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lect2 up320 (100328)
Lect2 up320 (100328)Lect2 up320 (100328)
Lect2 up320 (100328)
 
Lect2 up280 (100328)
Lect2 up280 (100328)Lect2 up280 (100328)
Lect2 up280 (100328)
 
Lect2 up270 (100328)
Lect2 up270 (100328)Lect2 up270 (100328)
Lect2 up270 (100328)
 
Lect2 up260 (100328)
Lect2 up260 (100328)Lect2 up260 (100328)
Lect2 up260 (100328)
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Lect2 up200 (100327)
Lect2 up200 (100327)Lect2 up200 (100327)
Lect2 up200 (100327)
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 
Lect2 up180 (100327)
Lect2 up180 (100327)Lect2 up180 (100327)
Lect2 up180 (100327)
 
Lect2 up170 (100420)
Lect2 up170 (100420)Lect2 up170 (100420)
Lect2 up170 (100420)
 
Lect2 up130 (100325)
Lect2 up130 (100325)Lect2 up130 (100325)
Lect2 up130 (100325)
 
Lect2 up120 (100325)
Lect2 up120 (100325)Lect2 up120 (100325)
Lect2 up120 (100325)
 
Lect2 up110 (100324)
Lect2 up110 (100324)Lect2 up110 (100324)
Lect2 up110 (100324)
 
Lect2 up100 (100324)
Lect2 up100 (100324)Lect2 up100 (100324)
Lect2 up100 (100324)
 

Lect2 up250 (100328)

  • 1. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-1 LECTURE 250 – SIMULATION AND MEASUREMENT OF OP AMPS LECTURE ORGANIZATION Outline • Introduction • Open Loop Gain • CMRR and PSRR • A general method of measuring Avd, CMRR, and PSRR • Other op amp measurements • Simulation of a Two-Stage Op Amp • Op amp macromodels • Summary CMOS Analog Circuit Design, 2nd Edition Reference Pages 310-341 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-2 INTRODUCTION Simulation and Measurement Considerations Objectives: • The objective of simulation is to verify and optimize the design. • The objective of measurement is to experimentally confirm the specifications. Similarity between Simulation and Measurement: • Same goals • Same approach or technique Differences between Simulation and Measurement: • Simulation can idealize a circuit - All transistor electrical parameters are ideally matched - Ideal stimuli • Measurement must consider all nonidealities - Physical and electrical parameter mismatches - Nonideal stimuli - Parasistics CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-3 OPEN LOOP GAIN Simulating or Measuring the Open-Loop Transfer Function of the Op Amp Circuit (Darkened op amp identifies the op amp under test): Simulation: This circuit will give the voltage transfer function curve. This curve should identify: 1.) The linear range of operation 2.) The gain in the linear range 3.) The output limits 4.) The systematic input offset voltage 5.) DC operating conditions, power dissipation 6.) When biased in the linear range, the small-signal frequency response can be obtained v VOS IN + - vOUT Fig. 240-01 VDD CL RL VSS 7.) From the open-loop frequency response, the phase margin can be obtained (F = 1) Measurement: This circuit probably will not work unless the op amp gain is very low. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-4 A More Robust Method of Measuring the Open-Loop Frequency Response Circuit: vIN vOUT VDD CL RL VSS C R Fig. 240-02 Resulting Closed-Loop Frequency Response: dB log10(w) Av(0) Av(0) 1 RC RC Op Amp Open Loop Frequency Response Fig. 240-03 0dB Make the RC product as large as possible. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-5 CMRR AND PSRR Simulation of the Common-Mode Voltage Gain VOS vout VDD VSS CL RL + - vcm + - Fig. 6.6-5 Make sure that the output voltage of the op amp is in the linear region. Divide (subtract dB) the result into the open-loop gain to get CMRR. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-6 Simulation of CMRR of an Op Amp None of the above methods are really suitable for simulation of CMRR. Consider the following: VDD VSS Vcm Vout V2 V1 V2 V1 Vcm Av(V1-V2) Vout Vcm - + Vcm ±AcVcm Fig. 6.6-7 Vout = Av(V1-V2) ±Acm V1+V2 2 = -AvVout ± AcmVcm Vout = ±Acm 1+Av Vcm ±Acm Av Vcm Av Acm |CMRR|= Vcm Vout = CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-7 Direct Simulation of PSRR Circuit: VDD VSS Vdd Vout V2 V1 V2 V1 Av(V1-V2) ±AddVdd Vss Vss = 0 Fig. 6.6-9 - + Vout = Av(V1-V2) ±AddVdd = -AvVout ± AddVdd Vout = ±Add 1+Av Vdd ±Add Av Vdd Av Add PSRR+= Vdd Vout = Av Ass and PSRR-= Vss Vout = Works well as long as CMRR is much greater than 1. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-8 A GENERAL METHOD OF MEASURING AVD, CMRR, AND PSRR General Principle of the Measurement Circuit: vOS 100kΩ 100kΩ vOUT vSET VDD V R SS CL L + vI - 10kΩ 10Ω vOUT = -vSET 070429-01 Op Amp 100kΩ 100kΩ - + vSET Op Amp The amplifier under test is shown as the darkened op amp. Principle: Apply the stimulus to the output of the op amp under test and see how the input responds. Note that: vOUT = - vSET and vI vOS 1000 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-9 Measurement of Open-Loop Gain Measurement configuration: Avd = Vout Vid = Vout Vi Vos 1000Vi Therefore, Avd = Vos 10kΩ 10Ω 1000Vout Vos Vout VDD 100kΩ 100kΩ Vout CL RL VSS 060701-01 + Vi - + - Sweep Vout as a function of frequency, invert the result and multiply by 1000 to get Avd(j). CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-10 Measurement of CMRR Measurement Configuration: Note that the whole amplifier is stimulated by Vicm while the input responds to this change. The definition of the common-mode rejection ratio is CMRR = Avd Acm = (vout/vid) (vout/vicm) However, in the above circuit the value of vout is the same so that we get CMRR = vicm vid vos 10kΩ But vid = vi and vos 1000vi = 1000vid vid = 10Ω vos 1000 + vi - Substituting in the previous expression gives, CMRR = + - vicm vos 1000 100kΩ 100kΩ vicm vicm CL RL VSS = vOUT 1000vicm vos VDD Fig. 240-08 Make a frequency sweep of Vicm, invert the result and multiply by 1000 to get CMRR. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-11 Measurement of PSRR Measurement Configuration: The definition of the positive power supply rejection ratio is PSRR+ = Avd Acm = (Vout/Vid) (Vout/Vdd) However, in the above circuit the value of Vout is the same so that we get PSRR+ = Vdd Vid 10kΩ But Vid = Vi and Vos 1000Vi = 1000Vid Vid = Vos 1000 Substituting in the previous expression gives, PSRR+ = Vos + 10Ω 070429-02 Vdd Vos 1000 Vi - = 100kΩ 100kΩ Vdd V R SS CL L 1000Vdd Vos Vout Vss Make a frequency sweep of Vdd, invert the result and multiply by 1000 to get PSRR+. (Same procedure holds for PSRR-.) VDD CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-12 OTHER OP AMP MEASUREMENTS Simulation or Measurement of ICMR vIN vOUT VDD VSS IDD CL RL + - vIN Also, monitor IDD or ISS. Fig.240-11 vOUT 1 ICMR 1 ISS Initial jump in sweep is due to the turn-on of M5. Should also plot the current in the input stage (or the power supply current). CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-13 Measurement or Simulation of Slew Rate and Settling Time vin Peak Overshoot Volts vin IDD Settling Error vout VDD VSS CL RL + - Tolerance 1 +SR 1 -SR Settling Time Feedthrough vout t Fig. 240-14 If the slew rate influences the small signal response, then make the input step size small enough to avoid slew rate (i.e. less than 0.5V for MOS). CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-14 Phase Margin and Peak Overshoot Relationship It can be shown (Appendix C of the text) that: Phase Margin (Degrees) = 57.2958cos-1[ 44+1 - 22] Overshoot (%) = 100 exp - 1-2 For example, a 5% overshoot corresponds to a phase margin of approximately 64°. 80 70 Degrees) 60 50 (Margin 40 Phase 30 20 10 0 100 20 10 Overshoot (%) 5 1.0 Phase Margin Overshoot 0 0.2 0.4 0.6 0.8 1 0.1 ζ= 1 2Q 070429-03 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-15 SIMULATION OF A TWO-STAGE CMOS OP AMP Example 250-1 Simulation of a Two-Stage CMOS Op Amp An op amp designed using the procedure described in Lecture 230 is to be simulated by SPICE. The device parameters to be used are those of Tables 3.1-2 and 3.2-1 of the textbook CMOS Analog Circuit Design. - 15μm 1μm vin + VDD = 2.5V M3 M4 15μm 1μm M1 M2 3μm 1μm M5 M6 95μA M7 vout 3μm 1μm 30μA 4.5μm 1μm VSS = -2.5V Cc = 3pF CL = 10pF M8 30μA 4.5μm 1μm 94μm 1μm 14μm 1μm Fig. 240-16 The specifications of this op amp are as follows where the channel length is to be 1μm and the load capacitor is CL = 10pF: Av 3000V/V VDD = 2.5V VSS = -2.5V GB = 5MHz SR 10V/μs 60° phase margin Vout range = ±2V ICMR = -1 to 2V Pdiss 2mW CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-16 Example 250-1 – Continued Bulk Capacitance Calculation: If the values of the area and perimeter of the drain and source of each transistor are known, then the simulator will calculate the values of CBD and CBs. Since there is no layout yet, we estimate the values of the area and perimeter of the drain and source of each transistor as: AS = AD W[L1 + L2 + L3] PS = PD 2W + 2[L1 + L2 + L3] where L1 is the minimum allowable distance between the polysilicon and a contact in the moat (2μm), L2 is the length of a minimum-size square contact to moat (2μm), and L3 is the minimum allowable distance between a contact to moat and the edge of the moat (2μm). (These values will be found from the physical design rules for the technology). For example consider M1: AS = AD = (3μm)x(2μm+2μm+2μm) = 18μm2 PS = PD = 2x3μm + 2x6μm = 19μm CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-17 Example 250-1 - Continued Op Amp Subcircuit: - VDD - 2 1 8 vin vout + VSS + 6 9 Fig. 240-17 .SUBCKT OPAMP 1 2 6 8 9 M1 4 2 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18U M2 5 1 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18U M3 4 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42U M4 5 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42U M5 3 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21U M6 6 5 8 8 PMOS1 W=94U L=1U AD=564P AS=564P PD=200U PS=200U M7 6 7 9 9 NMOS1 W=14U L=1U AD=84P AS=84P PD=40U PS=40U M8 7 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21U CC 5 6 3.0P .MODEL NMOS1 NMOS VTO=0.70 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7 +MJ=0.5 MJSW=0.38 CGBO=700P CGSO=220P CGDO=220P CJ=770U CJSW=380P +LD=0.016U TOX=14N .MODEL PMOS1 PMOS VTO=-0.7 KP=50U GAMMA=0..57 LAMBDA=0.05 PHI=0.8 +MJ=0.5 MJSW=.35 CGBO=700P CGSO=220P CGDO=220P CJ=560U CJSW=350P +LD=0.014U TOX=14N IBIAS 8 7 30U .ENDS CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-18 Example 250-1 - Continued PSPICE Input File for the Open-Loop Configuration: EXAMPLE 250-1 OPEN LOOP CONFIGURATION .OPTION LIMPTS=1000 VIN+ 1 0 DC 0 AC 1.0 VDD 4 0 DC 2.5 VSS 0 5 DC 2.5 VIN - 2 0 DC 0 CL 3 0 10P X1 1 2 3 4 5 OPAMP ... (Subcircuit of previous slide) ... .OP .TF V(3) VIN+ .DC VIN+ -0.005 0.005 100U .PRINT DC V(3) .AC DEC 10 1 10MEG .PRINT AC VDB(3) VP(3) .PROBE (This entry is unique to PSPICE) .END CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-19 Example 250-1 - Continued Open-loop transfer characteristic: 2.5 2 1 0 -1 -2 VOS -2 -1.5 -1.0 -0.5 0 0.5 1 1.5 2 vOUT(V) vIN(mV) -2.5 Fig. 240-18 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-20 Example 250-1 - Continued Open-loop transfer frequency response: 80 60 40 20 0 Magnitude (dB) -20 -40 GB 10 100 1000 104 105 106 107 108 Frequency (Hz) 200 150 100 50 0 -50 Phase Shift (Degrees) -100 -150 -200 Phase Margin GB 10 100 1000 104 105 106 107 108 Frequency (Hz) Fig. 6.6-16 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-21 Example 250-1 - Continued Input common mode range: EXAMPLE 250-1 UNITY GAIN CONFIGURATION. .OPTION LIMPTS=501 VIN+ 1 0 PWL(0 -2 10N -2 20N 2 2U 2 2.01U -2 4U -2 4.01U + -.1 6U -.1 6.0 1U .1 8U .1 8.01U -.1 10U -.1) VDD 4 0 DC 2.5 AC 1.0 VSS 0 5 DC 2.5 CL 3 0 20P X1 1 3 3 4 5 OPAMP ... (Subcircuit of Table 6.6-1) ... .DC VIN+ -2.5 2.5 0.1 .PRINT DC V(3) .TRAN 0.05U 10U 0 10N .PRINT TRAN V(3) V(1) .AC DEC 10 1 10MEG .PRINT AC VDB(3) VP(3) .PROBE (This entry is unique to PSPICE) .END Note the usefulness of monitoring the current in the input stage to determine the lower limit of the ICMR. vin vout VDD Subckt. VSS - + 3 3 1 4 5 Fig. 6.6-16A 4 3 2 1 0 -1 -2 -3 ID(M5) Input CMR -3 -2 -1 0 1 2 3 vOUT (V) vIN(V) 40 30 20 10 0 ID(M5) μA Fig. 240-21 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-22 Example 250-1 - Continued Positive PSRR: 100 80 60 40 20 0 -20 10 100 1000 104 105 106 107 108 |PSRR+(jω)| dB Frequency (Hz) 100 50 0 -50 -100 10 100 1000 104 105 106 107 10 Arg[PSRR+(jω)] (Degrees) Frequency (Hz) Fig. 240-22 This PSRR+ is poor because of the Miller capacitor. The degree of PSRR+ deterioration will be better shown when compared with the PSRR-. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-23 Example 250-1 - Continued Negative PSRR: 120 100 80 60 40 20 PSRR+ 10 100 1000 104 105 106 107 108 |PSRR-(jω)| dB Frequency (Hz) 200 150 100 50 0 -50 -100 -150 -200 10 100 1000 104 105 106 107 108 Arg[PSRR-(jω)] (Degrees) Frequency (Hz) Fig. 240-23 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-24 Example 250-1 - Continued Large-signal and small-signal transient response: 1.5 1 0.5 0 Volts -0.5 -1 -1.5 vin(t) vout(t) 0 1 2 3 4 5 Time (Microseconds) 0.15 0.1 0.05 0 Volts -0.05 -0.1 -0.15 vin(t) vout(t) 2.5 3.0 3.5 4.0 4.5 Time (Microseconds) Fig. 240-24 M6 iCc iCL dvout M7 vout VDD Cc 95μA VSS + VBias - CL dt Fig. 240-25 Why the negative overshoot on the slew rate? If M7 cannot sink sufficient current then the output stage slews and only responds to changes at the output via the feedback path which involves a delay. Note that -dvout/dt -2V/0.3μs = -6.67V/μs. For a 10pF capacitor this requires 66.7μA and only 95μA-66.7μA = 28μA is available for Cc. For the positive slew rate, M6 can provide whatever current is required by the capacitors and can immediately respond to changes at the output. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-25 Example 250-1 - Continued Comparison of the Simulation Results with the Specifications of Example 250-1: Specification (Power supply = ±2.5V) Design Simulation Open Loop Gain 5000 10,000 GB (MHz) 5 MHz 5 MHz Input CMR (Volts) -1V to 2V -1.2 V to 2.4 V, Slew Rate (V/μsec) 10 (V/μsec) +10, -7(V/μsec) Pdiss (mW) 2mW 0.625mW Vout range (V) ±2V +2.3V, -2.2V PSRR+ (0) (dB) - 87 PSRR- (0) (dB) - 106 Phase margin (degrees) 60° 65° Output Resistance (k) - 122.5k CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-26 Relative Overshoots of Ex. 250-1 VDD = 2.5V Why is the negative-going overshoot 94/1 0.1V larger than the positive-going overshoot M6 i6 on the small-signal transient response of iCc iCL the last slide? vout t Cc Consider the following circuit and 95μA CL waveform: -0.1V VBias M7 0.1μs 0.1μs During the rise time, VSS = -2.5V Fig. 240-26 iCL = CL(dvout/dt )= 10pF(0.2V/0.1μs) = 20μA and iCc = 3pf(2V/μs) = 6μA i6 = 95μA + 20μA + 6μA = 121μA gm6 = 1066μS (nominal was 942.5μS) During the fall time, iCL = CL(-dvout/dt) = 10pF(-0.2V/0.1μs) = -20μA and iCc = -3pf(2V/μs) = -6μA i6 = 95μA - 20μA - 6μA = 69μA gm6 = 805μS The dominant pole is p1 (RIgm6RIICc)-1 but the GB is gmI/Cc = 94.25μS/3pF = 31.42x106 rads/sec and stays constant. Thus we must look elsewhere for the reason. Recall that p2 gm6/CL which explains the difference. p2(95μA) = 94.25x106 rads/sec, p2(121μA) = 106.6 x106 rads/sec, and p2(69μA) = 80.05 x106 rads/sec. Thus, the phase margin is less during the fall time than the rise time. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-27 OP AMP MACROMODELS What is a Macromodel? A macromodel uses resistors, capacitors, inductors, controlled sources, and some active devices (mostly diodes) to capture the essence of the performance of a complex circuit like an op amp without modeling every internal component of the op amp. Small Signal, Frequency Independent Op Amp Macromodel vo v1 v2 v1 3 o v1 Ro 1 1 4 v A Rid 2 v2 Ro 3 vo Avd Ro (v1-v2) Rid 2 v2 Avd (v1-v2) (a.) (b.) (c.) Fig. 010-01 Figure 1 - (a.) Op amp symbol. (b.) Thevenin form. (c.) Norton form. Rid 1 2 Ric1 Ric2 + vo - 3 Ro Avcv1 2Ro Avcv2 A 2Ro vd(v1-v2) Ro Linear Op Amp Macromodel Fig. 010-03 Figure 2 - Simple op amp model including differential and common mode behavior. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-28 Small Signal, Frequency Dependent Op Amp Macromodel Avd(s) = Avd(0) (s/1)+1 where 1= 1 R1C1 (dominant pole) Model Using Passive Components: Rid v1 v2 vo 1 2 R1 C1 Avd(0) R1 (v1-v2) 3 Fig. 010-04 Figure 3 - Macromodel for the op amp including the frequency response of Avd. Model Using Passive Components with Constant Output Resistance: 1 3 Rid v1 v2 vo 2 v3 Ro 4 R1 C1 Ro Avd(0) R1 (v1-v2) Fig. 010-05 Figure 4 - Frequency dependent model with constant output resistance. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-29 Large Signal, Frequency Independent Op Amp Macromodel Nonlinear Op Amp Macromodel 3 + D5 VOH VOL Avcv4 D6 2Ro 11 10 vo - Ro + - + - Avcv5 2Ro RLIM 4 Rid 1 Ric1 7 D1 D2 + - + - 6 VIH1 RLIM VIL1 2 5 Ric2 D3 D4 + - + 8 9 - VIH2 VIL2 Avd Ro (v4-v5) Fig. 010-10 Figure 5 - Op amp macromodel that limits the input and output voltages. D1 D3 5 1 3 Rid v1 2 v2 4 Ro vo Avd Ro (v1-v2) D5 D6 + 7 - + 8 - D2 D4 ILimit 6 VOH VOL Fig. 010-13 Io 2 Io 2 Io D1 Io D2 D3 ILimit D4 ILimit 2 Io 2 Io 2 ILimit 2 Fig. 010-12 Figure 6 – Technique for current limiting and a macromodel for output voltage and current limiting. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-30 Large Signal, Frequency Dependent Op Amp Macromodel Slew Rate: dvo dt = ±ISR C1 = Slew Rate Rid v1 v2 vo 3 1 4 A C1 vd(0) R1 2 R1 (v1-v2) D1 D2 D3 5 D4 6 7 Ro v4-v5 Ro ISR Fig. 010-15 Figure 7 – Slew rate macromodel for an op amp. Results for a unity gain op amp in slew: 10V 5V 0V -5V -10V Input Voltage Output Voltage 0μs 2μs 4μs 6μs 8μs 10μs Time Fig. 010-16 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 16. Lecture 250 – Measurement and Simulation of Op amps (3/28/10) Page 250-31 SUMMARY • Simulation and measurement of op amps has both similarities and differences • Measurement of open loop gain is very challenging – the key is to keep the quiescent point output of the op amp well defined • The method of stimulating the output of the op amp or power supplies and letting the input respond results in a robust method of measuring open loop gain, CMRR, and PSRR • Carefully investigate any deviations or aberrations from expected behavior in the simulation and experimental results • Macromodels are useful for modeling the op amp without including every individual transistor CMOS Analog Circuit Design © P.E. Allen - 2010