SlideShare a Scribd company logo
1 of 48
www.fairchildsemi.com
Designing AC-DC Power Supplies for
High Efficiency
www.fairchildsemi.com2
300W High Efficiency AC-DC Converter
340W Interleaved BCM PFC
300W AHB DC-DC with Current Doubler Rectifier
www.fairchildsemi.com3
Total Measured AC-DC System Efficiency
100%=300W
 >90% for POUT > 38% (114W)
 91% Peak for 120VAC, 92% Peak for 230VAC
70%
75%
80%
85%
90%
95%
100%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Efficiency(%)
Output Power (%)
Total Measured AC-DC System Efficiency
120 Vac
230 Vac
www.fairchildsemi.com4
300W AC-DC Board Dimensions
Power Density Calculation
231 mm
158 mm
18 mm
Board Profile:
18 mm
(0.7 in)
Board Area:
36,498 mm2
(56.55 in2)
Volume:
657 cm3
(39.6 in3)
Power Density:
0.456 W/cm3
(7.5 W/in3)
www.fairchildsemi.com5
300W AC-DC Power Partitioning
EMI Filter and Bridge Rectifier 340W Interleaved BCM PFC
(FAN9612+SupreMOS™ FCP22N60N)
300W AHB DC-DC with Current Doubler Rectifier
(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
www.fairchildsemi.com6
Interleaved PFC Section
340W Interleaved BCM PFC
(FAN9612+SupreMOS™ FCP22N60N)
EMI Filter and Bridge Rectifier
www.fairchildsemi.com7
Interleaved BCM/CRM PFC
 No reverse recovery
 Less expensive diode can be used
 Less switching loss, Less EMI
 Smaller inductor than single CCM PFC (Overall
inductor size is reduced)
 Phase management can improve light-load
efficiency
 Reduced ripple current in the output capacitor
IL1
IL2
IL1 + IL2
iL
(1-D)TsDTs
Ts
IL
ID
Isw
iL
DTs
Ts
ID
Isw
BCM
CCM
IL1
IL2
IL1 + IL2
www.fairchildsemi.com8
FAN9611/12
Interleaved Dual BCM PFC Controller
 Efficiency
 Interleaved  Lower Turn-off Losses
 Phase Management
 Valley Switching  Minimize COSS losses
 Strong gate drive  reduce switching losses
 Adjust Bulk Output Voltage at Light Load
 Boost-follower (“tracking boost”) Possible
 Protection
 Closed-loop soft-start w/ Prog. Ramp Time
 Power and Current Limit per Channel
 Input Voltage Feed-forward
 Secondary Latched OVP
 Input Brown-out Protection
 Internal maximum fSW clamp limit
 Ease of Design & Solution Size
 Easy Valley Detection Implementation
 Easy Loop Compensation (constant BW and
PWM Gain)
 Integrated +2.0A/-1.0A Gate Drivers
 Works with DC, 50Hz to 400Hz AC Inputs
VOUT
385 VDC
D2
D1
FAN9612
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
CS2
CS1
VDD
DRV1
DRV2
PGND
VIN
OVPFB
COMP
SS
AGND
MOT
5VB
ZCD2
ZCD1
L2
AC IN
85-265 VAC
L1
M2
R1 R2
CBULK
M1
BIAS
Bold = Key Advantages
FAN9611: UVLO (10.0 V / 7.5 V)
FAN9612: UVLO (12.5 V / 7.5 V)
www.fairchildsemi.com9
Asymmetrical Half-Bridge (AHB) Section
300W AHB DC-DC with Current Doubler Rectifier
(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
www.fairchildsemi.com10
Asymmetrical Half-Bridge Converter
 Advantages
 Fixed frequency ZVS
 Constant power transfer (D and 1-D) reduces output ripple
 Power stage can be controlled using any active clamp PWM controller
 Easy implementation of self-driven synchronous rectification
 Disadvantages
 High voltage stress on secondary rectifier
 Loss of ZVS at some min load current – extending ZVS range is difficult
 Poor transient response due to DC blocking capacitors
 Increased magnetizing current at DMIN can push transformer toward saturation -
Transformer design is critical
www.fairchildsemi.com11
FSFA2100
Features
 Internal 600V SuperFETTM
MOSFETs with fast recovery body
diodes (tRR=120ns) to
improve reliability and efficiency
when operating out of ZVS mode
 Protection functions: Over
Voltage Protection (OVP), Over
Load Protection (OLP),
Abnormal Over Current Protection
(AOCP), Internal Thermal
Shutdown (TSD)
 Up to 300kHz operating frequency
with fixed dead time (200ns)
 Applicable to AHB and active
clamp flybacks etc.
Rsense
Control
ICCDL
Vcc VDLLVcc
RT
VFB
CS
SG PG
VCTR
HVcc
Cr
Llk
Lm
Ns
Vo
D1
D2
RFCF
Np Ns
KA431
Vin
Rsense
Control
ICCDL
Vcc VDLLVcc
RT
VFB
CS
SG PG
VCTR
HVcc
Cr
Llk
Lm Vo
D1
RFCF
Np
Ns
KA431
Vin
www.fairchildsemi.com12
 Dual channel Low side gate drivers
are good solution for self driven SR
 Gate drive signal is easily obtained
from the transformer voltage
 Enable pin can be used to disable
SR until the output is built up during
startup
Self driven SR using Low side drivers
DTS (1-D)TS
Dloss1TS
VGS S1 S2 S1
ipri
vT2
iLo1
iLo2
iSR2iSR1
t0 t1 t2 t3 t4
(Vin-VCb)/Lm -VCb/Lm
(Vin-VCb)/n
-VCb/n
-VO/LO1
-VO/LO2
(VCb/n-VO)/LO2
((Vin-VCb)/n-VO)/
LO1
diLo1+diLo2 diLo1+diLo2
im
t
t
t
t
t
Dloss2TS
Vo
Ns
L201
L202
Low side drivers
Qdr1
Qdr2
N3
N4
FAN3224
INA
INB OUTA
OUTB
ENA
ENB
www.fairchildsemi.com13
FAN3223/4/5 Dual 4A Drivers
 20V Abs Max (18V Max
Operation)
 3x3mm MLP-8 and SOIC-8
 Dual 5A-peak sink & source
(4.3A sink/2.8A src. at Vdd/2)
 CMOS or TTL input thresholds
 10ns fall time with 2.2nF load
 Prop delays < 20ns
 Under-Voltage Lockout
 Industry standard pin-outs
 Dual Inverting & dual Non-
Inverting with dual Enable
 Dual-Input version
 Enable defaults to “ON”
 Fail-Safe Inputs: Output held
low if no input signal
6 VDD
7 OUTA
VDD_OK
5 OUTB
Inverting
(FAN3223)
INA 2
100k
ENA 1
GND 3
VDD
Smart
Start-up
100k
8
VDD
ENB
Inverting
(FAN3223)
INB 4
100k
100k
100k
100k
100k
100k
Non-Inverting
(FAN3224)
Non-Inverting
(FAN3224)
UVLO
Part of the family of
High-Performance
Low-side Gate
Drivers from
Fairchild
www.fairchildsemi.com14
Design Methodology
AC-DC 300W POWER SUPPLY DESIGN SPECIFICATIONS
Interleaved BCM PFC Section
MIN TYP MAX
VIN_AC 90V 120V 265V
FVIN_AC 50Hz 60Hz 65Hz
VOUT_PFC 389.5V 390V 391.25V
VOUT_PFC_RIPPLE 10V 11V
POUT_PFC 340W 350W
FSW_PFC 18kHz 300kHz
tHOLD_UP 20ms
tSOFT_START 250ms 300ms
tON_OVERSHOOT 10V
η_PFC_120V 97% 97.5%
η_PFC_230V 98% 98.6%
PF_120V 0.990
PF_230V 0.983
DC-DC Converter Section
VOUT_AHB 12.22 12.2V 12.25
VOUT_AHB_RIPPLE 0.12VPP 0.13VPP
VOUT_AHB_REGULATION 0.12% 0.16%
POUT_AHB 310W
IOUT_AHB 0A 25A
FSW_AHB 120kHz
η_AHB 92% 93.3%
η_TOTAL 90% 92%
Mechanical and Thermal
Height 18mm
θJC 60⁰C
 Primary Design Goals:
1. Maximize Wide Range Efficiency
2. Lowest Possible Design Profile
3. Minimize Heat Sinks
4. Conventional Design Methods
www.fairchildsemi.com15
Interleaved PFC Section
340W Interleaved BCM PFC
(FAN9612+SupreMOS™ FCP22N60N)
EMI Filter and Bridge Rectifier
www.fairchildsemi.com16
FAN9612 Interleaved BCM PFC Schematic
www.fairchildsemi.com17
FAN9612 PFC Steady State VGS and VDS
 120VAC Input, IOUT=12.5ADC
 Always ZVS
 No Coss turn-on loss
 230VAC Input, IOUT=12.5ADC
 ZVS when VIN < ½ VOUT
 No Coss turn-on loss
 Valley Switching for VIN > ½ VOUT
 Minimizes Coss turn-on loss
VGS1
VGS2
VDS1
VDS1
Valley SwitchingZVS
www.fairchildsemi.com18
FAN9612 230VAC Switching, VGS and VDS
 230VAC Input, IOUT=25ADC
 VIN > ½ VOUT
 Valley Switching Shown
 Minimizes Coss turn-on loss
VGS1
VDS1
IL1
 230VAC Input, IOUT=25ADC
 VIN < ½ VOUT
 ZVS Shown
 Eliminates Coss turn-on loss
www.fairchildsemi.com19
FAN9612 PFC Current Waveforms
 230VAC Input, IOUT=25ADC
IIN
 120VAC Input, IOUT=25ADC
IL1
IL2
IL1+IL2
www.fairchildsemi.com20
FAN9612 Interleaved PFC Current Waveforms
 230VAC Input, IOUT=25ADC 120VAC Input, IOUT=25ADC
IL1
IL2
IL1+IL2
www.fairchildsemi.com21
FAN9612 Interleaved Current Waveforms
 230VAC Input, IOUT=25ADC
 3Ap Inductor Ripple Current
 1.4App Cancellation Current
 53% Ripple Current Reduction
 120VAC Input, IOUT=25ADC
 5Ap Inductor Ripple Current
 1.6App Cancellation Current
 68% Ripple Current Reduction
IL1
IL2
IL1+IL2
IL1
IL2
IL1+IL2
www.fairchildsemi.com22
FAN9612 Phase Management Waveforms
 120VAC, 390VDC, IOUT_PFC=0.107ADC
 POUT_MAX=340W
 2 Phase to 1 Phase at 41.75W
 12% (default) Phase Threshold
 120VAC, 390VDC, IOUT_PFC=0.166ADC
 POUT_MAX=340W
 1 Phase to 2 Phase at 64.75W
 19% (default) Phase Threshold
VGS1
VGS2
IL1
IL2
www.fairchildsemi.com23
FAN9612 Phase Management Waveforms
1 Phase to 2 Phase
 120VAC, 390VDC, IOUT_PFC=0.166ADC
 POUT_MAX=340W
 1 Phase to 2 Phase at 64.75W
 19% (default) Phase Threshold
 120VAC, 390VDC, IOUT_PFC=0.166ADC
 POUT_MAX=340W
 1 Phase to 2 Phase at 64.75W
 19% (default) Phase Threshold
VGS1
VGS2
IL1
IL2
www.fairchildsemi.com24
FAN9612 PFC VOUT Start-Up Waveforms
 120VAC Input, IOUT=25ADC
 Closed Loop Soft-Start
 0V Overshoot
 120VAC Input, IOUT=0ADC
 Closed Loop Soft-Start
 <10V Overshoot
 <2.5% for 390V Output
VGS1
VOUT
IL1
IIN
www.fairchildsemi.com25
FAN9612 PFC VOUT Start-Up Waveforms
 230VAC Input, IOUT=25ADC
 Closed Loop Soft-Start
 0V Overshoot
 230VAC Input, IOUT=0ADC
 Closed Loop Soft-Start
 <10V Overshoot
 <2.5% for 390V Output
VGS1
VOUT
IL1
IIN
www.fairchildsemi.com26
FAN9612 120VAC Input Current and FFT
 120VAC, VOUT=12VDC, IOUT=25ADC
 100% Load
 PF=0.991
 FSW_AHB=120kHz
 35kHz<FSW_PFC<300kHz
 120VAC, VOUT=12VDC, IOUT=5ADC
 20% Load
 PF=0.952
 FSW_AHB=120kHz
 35kHz<FSW_PFC<300kHz
VIN
IIN
IIN_FFT
www.fairchildsemi.com27
FAN9612 230VAC Input Current FFT
 230VAC, VOUT=12VDC, IOUT=25ADC
 100% Load
 PF=0.983
 FSW_AHB=120kHz
 35kHz<FSW_PFC<300kHz
 230VAC, VOUT=12VDC, IOUT=5ADC
 20% Load
 PF=0.879
 FSW_AHB=120kHz
 35kHz<FSW_PFC<300kHz
VIN
IIN
IIN_FFT
www.fairchildsemi.com28
FAN9612 Interleaved BCM PFC Efficiency
100%=340W
70%
75%
80%
85%
90%
95%
100%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Efficiency(%)
Output Power (%)
FAN9612 Interleaved BCM PFC Measured Efficiency
120 Vac 230 Vac
 >97% for 20%<POUT<100%, 120VAC Input, 97.5% peak
 >98% for POUT>40%, 230Vac Input, 98.6% peak
www.fairchildsemi.com29
Total Measured AC-DC System Efficiency
100%=300W
 >90% for POUT > 38% (114W)
 91% Peak for 120VAC, 92% Peak for 230VAC
70%
75%
80%
85%
90%
95%
100%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Efficiency(%)
Output Power (%)
Total Measured AC-DC System Efficiency
120 Vac
230 Vac
www.fairchildsemi.com30
FAN9612 Interleaved BCM PFC
AC-DC System Power Factor
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
PowerFactor
Output Power (%)
FAN9612 AC-DC Measured Power Factor
120 Vac 230 Vac
 PF>0.9 for 20%<POUT<100%, 120VAC<VIN<230VAC
www.fairchildsemi.com31
Asymmetrical Half-Bridge (AHB) Section
300W AHB DC-DC with Current Doubler Rectifier
(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
www.fairchildsemi.com32
FSFA2100 AHB DC-DC Schematic
www.fairchildsemi.com33
FSFA2100 AHB Primary ZVS Waveforms
No Load
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 ZVS Turn-On down to 0% Load
 Soft Commutation of Current
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 AHB Limits VDS to VIN
 ZVS Turn-On down to 0 Load
VDS(High)
(200X Probe)
ID
ZVS
390V
www.fairchildsemi.com34
FSFA2100 AHB Primary ZVS Waveforms
Full Load
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 ZVS Turn-On at 100% Load
 Soft Commutation of Current
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 AHB Limits VDS to VIN
 ZVS Turn-On at 100% Load
VDS(High)
(200X Probe)
ID
ZVS
390V
www.fairchildsemi.com35
FSFA2100 AHB Current Doubler Rectifier
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 ZVS Turn-On at 100% Load
 Soft Commutation of Current
 Asymmetrical Voltage Stress
 VDS_SR1 = 60V spike
 VDS_SR2 = 40V spike
 D = 38%
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 Self Driven SR (FAN3224T)
 ZVS Turn-On at 100% Load
 Asymmetrical Voltage Stress
 VDS_SR1 = 78V spike
 VDS_SR2 = 36V spike
 D = 33%
VDS_SR1
VGS_SR1
VDS_SR2
VGS_SR2
20V
43V
www.fairchildsemi.com36
FSFA2100 AHB Current Doubler Rectifier
No Load SR Dead Time
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 Falling Edge SR Dead Time
 VGS_SR1_R to VGS_SR2_F = 30ns
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 Rising Edge SR Dead Time
 VGS_SR1_F to VGS_SR2_R = 27ns
VDS_SR1
VGS_SR1
VDS_SR2
VGS_SR2
VDS_SR1
VGS_SR1
VDS_SR2
VGS_SR2
www.fairchildsemi.com37
FSFA2100 AHB Current Doubler Rectifier
Full Load SR Dead Time
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 Falling Edge SR Dead Time
 VGS_SR1_R to VGS_SR2_F = 380ns
 12:1 Variation verses Load
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 Rising Edge SR Dead Time
 VGS_SR1_F to VGS_SR2_R = 260ns
 10:1 Variation verses Load
 Total SR Body-Diode Conduction Loss
 PBDC_SR1=1.54W, PBDC_SR2=0.86W
 0.8% Total Overall Efficiency Penalty
VDS_SR1
VGS_SR1
VDS_SR2
VGS_SR2
VDS_SR1
VGS_SR1
VDS_SR2
VGS_SR2
www.fairchildsemi.com38
FSFA2100 AHB Current Doubler Rectifier
Output Ripple Current Cancellation
 VIN=390VDC, VOUT=12VDC, IOUT=25ADC
 Asymmetrical Current Distribution
 IL_SR1 = 6.4APP, 11.10ARMS
 IL_SR2 = 8.6APP, 14.07ARMS
 Ripple Current Cancellation
 IL_SUM = 5.4APP, 25ARMS
 37% reduction eases filter cap
 VIN=390VDC, VOUT=12VDC, IOUT=0ADC
 Asymmetrical Current Distribution
 IL_SR1 = 4APP, 0.89ARMS
 IL_SR2 = 8.2APP, 2.13ARMS
 Ripple Current Cancellation
 IL_SUM = 5.8APP, 1.28ARMS
 29% Reduction
IL_SR1
VGS_SR1
VGS_SR2
IL_SR2
IL_TOTAL(MATH FUNCTION)
NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement
IL_SUM(MATH FUNCTION)
IL_SUM(MATH FUNCTION)
www.fairchildsemi.com39
FSFA2100 AHB Output Ripple Voltage
 VIN=390VDC, VOUT=12.2VDC, IOUT=25ADC
 VOUT Capacitor Ripple Voltage
 VOUT_AC = 120mVPP
 0.98% of 12.2V
 VIN=390VDC, VOUT=12.2VDC, IOUT=0ADC
 VOUT Capacitor Ripple Voltage
 VOUT_AC = 130mVPP
 1.06% of 12.2V
VGS_SR1
VGS_SR2
VOUT_AC
NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement
www.fairchildsemi.com40
FSFA2100 AHB DC-DC Efficiency
100%=300W
 93% at Full Load (12V, 25A)
 93.3% Peak at 50% Load
70%
75%
80%
85%
90%
95%
100%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Efficiency(%)
Output Power (%)
FSFA2100 AHB DC-DC Efficiency
www.fairchildsemi.com41
Output Voltage Regulation
12.10
12.12
12.14
12.16
12.18
12.20
12.22
12.24
12.26
12.28
12.30
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
VOUT(VDC)
Output Power (%)
Output Voltage Regulation for AC-DC System
120 Vac
230 Vac
 0.16% for Full Load Range at 120VAC
 0.11% for Full Load Range at 230VAC
www.fairchildsemi.com
RELATED MATERIALS
Appendix
42
www.fairchildsemi.com43
Single Phase CCM PFC
IL (1-D)TsDTs
Ts
IL
IDIsw
(Not to scale)
 Benefits
 Peak to RMS ratio lower
 Lower I2R losses
 Lower ripple current
 Lower core loss
 Lower EMI
 Smaller input filter
 Can be used at any power level
 Easily interleaved for power levels to many
KW’s.
 Challenges
 Requires very fast boost diode with low
IRR
 Silicon carbide diodes are often used
 Large inductor
 MOSFET switching loss (hard switching)
www.fairchildsemi.com44
Single Phase BCM PFC
(Not to scale)
IL
DTs
Ts
IDIsw
 Benefits
 Simple to design, well understood control
technique
 Lower I2R losses
 MOSFET turns on at zero current and
minimum voltage
 Lower core loss
 No reverse recovery in boost diode
 Low cost fast recovery diode can be used
 Lower current sensing loss compared to CCM
 Challenges
 Higher MOSFET conduction losses
 Variable frequency
 High peak current limits practical use to 300W
 Impact on EMI filter size
www.fairchildsemi.com4545
Asymmetrical Half-Bridge (AHB) Converter
Square wave generator
 produces a square wave voltage (Vd) by driving switches Q1 and Q2 complementarily
Energy transfer network
 removes DC offset of the square wave voltage (Vd) using DC blocking capacitor (CB)
 transfers a pure AC square wave voltage to the secondary through the transformer
 Causes Ip to lag Vpr to provide ZVS condition for Q1 and Q2
Rectifier network
 produces a DC voltage by rectifying the AC voltage with rectifier diodes and a low-pass
LC filter
+
VO
-
Ro
Q1
Q2
n:1
Ip
Llkp
LmCB
Ids2
Im
ILO
Vin
Io
+
Vd
-
Square wave generator
Energy transfer network Rectifier network
VCB
+
Vpr
-
+
Vrec
-
Ids1
C2
C1
1-D
D
www.fairchildsemi.com46
Asymmetrical Half-Bridge Converter
D1
D2
L
CO
NP
NS
Q1
NS
Q2
CIN
C1
C2
VP
VP
IP
Q2 (D)
Q1 (D)
VIN/2
-VIN/2
D=0.46 D=0.23
VIN/2
-VIN/2
VP
IP
Q2 (D)
Q1 (1-D)
VC1
VC2
VC1
VC2
D=0.46 D=0.23
Equal
Area
(a) Symmetrical HB waveforms
(b) Asymmetrical HB waveforms
 Asymmetrical Gate Drive
 Q2 modulated by D
 Q1 driven by 1-D
 Fixed dead time between Q1 and Q2
 Dead time optimized for ZVS and anti cross
conduction
 Fixed frequency ZVS PWM operation
 Near D=0.5, operation is same as symmetrical HB
INC VDV 1
  INC VDV  12
 DD
N
N
V
V
P
S
IN
O
 12
www.fairchildsemi.com47
Current Doubler Rectifier
D1
D2
L
CO
NP
NS
NS
VO
D1
D2
L CO
NP
NS
NS
VO
D1
D2
CO
VO
V
I
V
What is it? - A full wave alternative rectification technique compatible
with all double ended converter topologies
D1
D2
CO
VO
V
I
I
D1
D2
CO
VO
L2
L1
NP
NS
NP
NS
D1
D2
L1
CO
L2
VO
NP
Q1
L1
CO
NS
L2
Q2
VO
OR
Current Doubler
Derivation of Current Doubler
(a) (b) (c) (d)
(e)
(f) (g)
www.fairchildsemi.com48
Synchronous Rectification (SR)
D1
D2
L
CO
NP NS
CIN
Q1
Reset
Circuit
Efficiency vs Output Voltage
Vf=0.4V, Vf=1V
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.5 1.7 2.8 4.0 5.1 6.3 7.4 8.6 9.7 10.9 12.0
Output Voltage (V)
Efficiency
Vf=0.4V Vf=1V
Q2
Q3
L
CO
NP NS
CIN
Q1
Reset
Circuit
 What is Synchronous Rectification?
 Replacing secondary side discrete
rectifiers (D1, D2) with MOSFETs (Q2, Q3)
 Benefits of SR
 Parallel MOSFETs
 Increase efficiency
 Lower output voltage and higher
current applications benefit most
 How do we drive them?
OUT
FOUTFOUTOUT
OUTOUT
IN
OUT
V
VIVIV
IV
P
P





1
1


More Related Content

What's hot

Sample calculation-for-differential-relays
Sample calculation-for-differential-relaysSample calculation-for-differential-relays
Sample calculation-for-differential-relaysRoberto Costa
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relaydavid roy
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiAUTHELECTRONIC
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Designimranbashir
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETCSadanand Patil
 
Power transformer losses
Power transformer lossesPower transformer losses
Power transformer lossesLeonardo ENERGY
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current ProtectionSARAVANAN A
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料Tsuyoshi Horigome
 
04 ret670 test report
04 ret670 test report04 ret670 test report
04 ret670 test reportniranjan131
 
Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentalsmichaeljmack
 
Oscillography analysis
Oscillography analysisOscillography analysis
Oscillography analysismichaeljmack
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settingsH. Kheir
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012alexzio
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Ahmed zahran power electronics projects portfolio
Ahmed zahran power electronics projects portfolioAhmed zahran power electronics projects portfolio
Ahmed zahran power electronics projects portfolioahmed_zahran
 
Vf controlo of 3 phase induction motor using space vector modulation
Vf controlo of 3   phase induction motor using space vector modulationVf controlo of 3   phase induction motor using space vector modulation
Vf controlo of 3 phase induction motor using space vector modulationchino_749
 

What's hot (20)

Sample calculation-for-differential-relays
Sample calculation-for-differential-relaysSample calculation-for-differential-relays
Sample calculation-for-differential-relays
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Design
 
RF Lab Summary
RF Lab SummaryRF Lab Summary
RF Lab Summary
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETC
 
As15 f
As15 fAs15 f
As15 f
 
Power transformer losses
Power transformer lossesPower transformer losses
Power transformer losses
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current Protection
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
04 ret670 test report
04 ret670 test report04 ret670 test report
04 ret670 test report
 
Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentals
 
Oscillography analysis
Oscillography analysisOscillography analysis
Oscillography analysis
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settings
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Pullbox sizing
Pullbox sizingPullbox sizing
Pullbox sizing
 
Ahmed zahran power electronics projects portfolio
Ahmed zahran power electronics projects portfolioAhmed zahran power electronics projects portfolio
Ahmed zahran power electronics projects portfolio
 
Vf controlo of 3 phase induction motor using space vector modulation
Vf controlo of 3   phase induction motor using space vector modulationVf controlo of 3   phase induction motor using space vector modulation
Vf controlo of 3 phase induction motor using space vector modulation
 

Viewers also liked

A high performance single-phase bridgeless interleaved pfc converter for plug...
A high performance single-phase bridgeless interleaved pfc converter for plug...A high performance single-phase bridgeless interleaved pfc converter for plug...
A high performance single-phase bridgeless interleaved pfc converter for plug...Murray Edington
 
LED General Illumination Solutions Power Supply Control
LED General Illumination Solutions Power Supply ControlLED General Illumination Solutions Power Supply Control
LED General Illumination Solutions Power Supply ControlPremier Farnell
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013Steve Mappus
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012Steve Mappus
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsSteve Mappus
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250ASteve Mappus
 
19 11-2012 iuv magazine november december 2012 delta-q article
19 11-2012 iuv magazine november december 2012 delta-q article19 11-2012 iuv magazine november december 2012 delta-q article
19 11-2012 iuv magazine november december 2012 delta-q articleMurray Edington
 
An automotive onboard 3.3kw battery charger for PHEV applications
An automotive onboard 3.3kw battery charger for PHEV applicationsAn automotive onboard 3.3kw battery charger for PHEV applications
An automotive onboard 3.3kw battery charger for PHEV applicationsMurray Edington
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEV
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVA phase shifted semi-bridgeless boost power factor corrected converter for PHEV
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVMurray Edington
 
Comparative performances analysis of different rotor types for pmsg used in w...
Comparative performances analysis of different rotor types for pmsg used in w...Comparative performances analysis of different rotor types for pmsg used in w...
Comparative performances analysis of different rotor types for pmsg used in w...Mellah Hacene
 
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...Review of Integrated Power Factor Correction (PFC) Boost converter topologies...
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...IJARBEST JOURNAL
 
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...I3E Technologies
 
Resumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpResumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpAurelien Hamadou
 
SiCSBDのスパイスモデルとPFCシミュレーション
SiCSBDのスパイスモデルとPFCシミュレーションSiCSBDのスパイスモデルとPFCシミュレーション
SiCSBDのスパイスモデルとPFCシミュレーションTsuyoshi Horigome
 
Bridge-less River 1
Bridge-less River 1Bridge-less River 1
Bridge-less River 1Jenny Weight
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsA phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsMurray Edington
 
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...Murray Edington
 
Digital Power Factor Correction - Handling the corner cases
Digital Power Factor Correction - Handling the corner casesDigital Power Factor Correction - Handling the corner cases
Digital Power Factor Correction - Handling the corner casesanusheel nahar
 

Viewers also liked (20)

A high performance single-phase bridgeless interleaved pfc converter for plug...
A high performance single-phase bridgeless interleaved pfc converter for plug...A high performance single-phase bridgeless interleaved pfc converter for plug...
A high performance single-phase bridgeless interleaved pfc converter for plug...
 
LED General Illumination Solutions Power Supply Control
LED General Illumination Solutions Power Supply ControlLED General Illumination Solutions Power Supply Control
LED General Illumination Solutions Power Supply Control
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
 
AN-9754
AN-9754AN-9754
AN-9754
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration Instructions
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250A
 
19 11-2012 iuv magazine november december 2012 delta-q article
19 11-2012 iuv magazine november december 2012 delta-q article19 11-2012 iuv magazine november december 2012 delta-q article
19 11-2012 iuv magazine november december 2012 delta-q article
 
An automotive onboard 3.3kw battery charger for PHEV applications
An automotive onboard 3.3kw battery charger for PHEV applicationsAn automotive onboard 3.3kw battery charger for PHEV applications
An automotive onboard 3.3kw battery charger for PHEV applications
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEV
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVA phase shifted semi-bridgeless boost power factor corrected converter for PHEV
A phase shifted semi-bridgeless boost power factor corrected converter for PHEV
 
Comparative performances analysis of different rotor types for pmsg used in w...
Comparative performances analysis of different rotor types for pmsg used in w...Comparative performances analysis of different rotor types for pmsg used in w...
Comparative performances analysis of different rotor types for pmsg used in w...
 
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...Review of Integrated Power Factor Correction (PFC) Boost converter topologies...
Review of Integrated Power Factor Correction (PFC) Boost converter topologies...
 
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
 
Resumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpResumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdp
 
SiCSBDのスパイスモデルとPFCシミュレーション
SiCSBDのスパイスモデルとPFCシミュレーションSiCSBDのスパイスモデルとPFCシミュレーション
SiCSBDのスパイスモデルとPFCシミュレーション
 
Bridge-less River 1
Bridge-less River 1Bridge-less River 1
Bridge-less River 1
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsA phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
 
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...
Energy efficiency in plug in hybrid electric vehicle chargers - evaluation an...
 
High voltage module
High voltage moduleHigh voltage module
High voltage module
 
Digital Power Factor Correction - Handling the corner cases
Digital Power Factor Correction - Handling the corner casesDigital Power Factor Correction - Handling the corner cases
Digital Power Factor Correction - Handling the corner cases
 

Similar to APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vn
Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vnLs catalog thiet bi tu dong i c5_e_1105_dienhathe.vn
Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vnDien Ha The
 
Ls catalog thiet bi tu dong i c5_e_1105
Ls catalog thiet bi tu dong i c5_e_1105Ls catalog thiet bi tu dong i c5_e_1105
Ls catalog thiet bi tu dong i c5_e_1105Dien Ha The
 
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...DJALMAMOREIRA5
 
Advanced motion controls az20a20ddc
Advanced motion controls az20a20ddcAdvanced motion controls az20a20ddc
Advanced motion controls az20a20ddcElectromate
 
Advanced motion controls azbdc60a8
Advanced motion controls azbdc60a8Advanced motion controls azbdc60a8
Advanced motion controls azbdc60a8Electromate
 
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC ConverterXLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converterdegarden
 
Advanced motion controls azbdc25a20
Advanced motion controls azbdc25a20Advanced motion controls azbdc25a20
Advanced motion controls azbdc25a20Electromate
 
Advanced motion controls az10a20ddc
Advanced motion controls az10a20ddcAdvanced motion controls az10a20ddc
Advanced motion controls az10a20ddcElectromate
 
Advanced motion controls az20a20
Advanced motion controls az20a20Advanced motion controls az20a20
Advanced motion controls az20a20Electromate
 
Advanced motion controls azbdc20a8
Advanced motion controls azbdc20a8Advanced motion controls azbdc20a8
Advanced motion controls azbdc20a8Electromate
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...AUTHELECTRONIC
 
Advanced motion controls az60a8ddc
Advanced motion controls az60a8ddcAdvanced motion controls az60a8ddc
Advanced motion controls az60a8ddcElectromate
 
Advanced motion controls az25a20ddc
Advanced motion controls az25a20ddcAdvanced motion controls az25a20ddc
Advanced motion controls az25a20ddcElectromate
 
Advanced motion controls azxbe6c20
Advanced motion controls azxbe6c20Advanced motion controls azxbe6c20
Advanced motion controls azxbe6c20Electromate
 
Advanced motion controls b060a400ac
Advanced motion controls b060a400acAdvanced motion controls b060a400ac
Advanced motion controls b060a400acElectromate
 

Similar to APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010 (20)

Pvi 5000 6000-tl-en_0
Pvi 5000 6000-tl-en_0Pvi 5000 6000-tl-en_0
Pvi 5000 6000-tl-en_0
 
Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vn
Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vnLs catalog thiet bi tu dong i c5_e_1105_dienhathe.vn
Ls catalog thiet bi tu dong i c5_e_1105_dienhathe.vn
 
Ls catalog thiet bi tu dong i c5_e_1105
Ls catalog thiet bi tu dong i c5_e_1105Ls catalog thiet bi tu dong i c5_e_1105
Ls catalog thiet bi tu dong i c5_e_1105
 
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...
FA1A50N FA1A60N FA1A61N FA1A21N FA6B20N FA6B21N FA6A10N FA6A11N FA6A30N FA6A3...
 
ABB PVI
ABB PVIABB PVI
ABB PVI
 
Trio 20.0-27
Trio 20.0-27Trio 20.0-27
Trio 20.0-27
 
Trio 20.0-tl-outd-400
Trio 20.0-tl-outd-400Trio 20.0-tl-outd-400
Trio 20.0-tl-outd-400
 
Advanced motion controls az20a20ddc
Advanced motion controls az20a20ddcAdvanced motion controls az20a20ddc
Advanced motion controls az20a20ddc
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
Advanced motion controls azbdc60a8
Advanced motion controls azbdc60a8Advanced motion controls azbdc60a8
Advanced motion controls azbdc60a8
 
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC ConverterXLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
 
Advanced motion controls azbdc25a20
Advanced motion controls azbdc25a20Advanced motion controls azbdc25a20
Advanced motion controls azbdc25a20
 
Advanced motion controls az10a20ddc
Advanced motion controls az10a20ddcAdvanced motion controls az10a20ddc
Advanced motion controls az10a20ddc
 
Advanced motion controls az20a20
Advanced motion controls az20a20Advanced motion controls az20a20
Advanced motion controls az20a20
 
Advanced motion controls azbdc20a8
Advanced motion controls azbdc20a8Advanced motion controls azbdc20a8
Advanced motion controls azbdc20a8
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
 
Advanced motion controls az60a8ddc
Advanced motion controls az60a8ddcAdvanced motion controls az60a8ddc
Advanced motion controls az60a8ddc
 
Advanced motion controls az25a20ddc
Advanced motion controls az25a20ddcAdvanced motion controls az25a20ddc
Advanced motion controls az25a20ddc
 
Advanced motion controls azxbe6c20
Advanced motion controls azxbe6c20Advanced motion controls azxbe6c20
Advanced motion controls azxbe6c20
 
Advanced motion controls b060a400ac
Advanced motion controls b060a400acAdvanced motion controls b060a400ac
Advanced motion controls b060a400ac
 

APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

  • 1. www.fairchildsemi.com Designing AC-DC Power Supplies for High Efficiency
  • 2. www.fairchildsemi.com2 300W High Efficiency AC-DC Converter 340W Interleaved BCM PFC 300W AHB DC-DC with Current Doubler Rectifier
  • 3. www.fairchildsemi.com3 Total Measured AC-DC System Efficiency 100%=300W  >90% for POUT > 38% (114W)  91% Peak for 120VAC, 92% Peak for 230VAC 70% 75% 80% 85% 90% 95% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Efficiency(%) Output Power (%) Total Measured AC-DC System Efficiency 120 Vac 230 Vac
  • 4. www.fairchildsemi.com4 300W AC-DC Board Dimensions Power Density Calculation 231 mm 158 mm 18 mm Board Profile: 18 mm (0.7 in) Board Area: 36,498 mm2 (56.55 in2) Volume: 657 cm3 (39.6 in3) Power Density: 0.456 W/cm3 (7.5 W/in3)
  • 5. www.fairchildsemi.com5 300W AC-DC Power Partitioning EMI Filter and Bridge Rectifier 340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N) 300W AHB DC-DC with Current Doubler Rectifier (FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
  • 6. www.fairchildsemi.com6 Interleaved PFC Section 340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N) EMI Filter and Bridge Rectifier
  • 7. www.fairchildsemi.com7 Interleaved BCM/CRM PFC  No reverse recovery  Less expensive diode can be used  Less switching loss, Less EMI  Smaller inductor than single CCM PFC (Overall inductor size is reduced)  Phase management can improve light-load efficiency  Reduced ripple current in the output capacitor IL1 IL2 IL1 + IL2 iL (1-D)TsDTs Ts IL ID Isw iL DTs Ts ID Isw BCM CCM IL1 IL2 IL1 + IL2
  • 8. www.fairchildsemi.com8 FAN9611/12 Interleaved Dual BCM PFC Controller  Efficiency  Interleaved  Lower Turn-off Losses  Phase Management  Valley Switching  Minimize COSS losses  Strong gate drive  reduce switching losses  Adjust Bulk Output Voltage at Light Load  Boost-follower (“tracking boost”) Possible  Protection  Closed-loop soft-start w/ Prog. Ramp Time  Power and Current Limit per Channel  Input Voltage Feed-forward  Secondary Latched OVP  Input Brown-out Protection  Internal maximum fSW clamp limit  Ease of Design & Solution Size  Easy Valley Detection Implementation  Easy Loop Compensation (constant BW and PWM Gain)  Integrated +2.0A/-1.0A Gate Drivers  Works with DC, 50Hz to 400Hz AC Inputs VOUT 385 VDC D2 D1 FAN9612 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CS2 CS1 VDD DRV1 DRV2 PGND VIN OVPFB COMP SS AGND MOT 5VB ZCD2 ZCD1 L2 AC IN 85-265 VAC L1 M2 R1 R2 CBULK M1 BIAS Bold = Key Advantages FAN9611: UVLO (10.0 V / 7.5 V) FAN9612: UVLO (12.5 V / 7.5 V)
  • 9. www.fairchildsemi.com9 Asymmetrical Half-Bridge (AHB) Section 300W AHB DC-DC with Current Doubler Rectifier (FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
  • 10. www.fairchildsemi.com10 Asymmetrical Half-Bridge Converter  Advantages  Fixed frequency ZVS  Constant power transfer (D and 1-D) reduces output ripple  Power stage can be controlled using any active clamp PWM controller  Easy implementation of self-driven synchronous rectification  Disadvantages  High voltage stress on secondary rectifier  Loss of ZVS at some min load current – extending ZVS range is difficult  Poor transient response due to DC blocking capacitors  Increased magnetizing current at DMIN can push transformer toward saturation - Transformer design is critical
  • 11. www.fairchildsemi.com11 FSFA2100 Features  Internal 600V SuperFETTM MOSFETs with fast recovery body diodes (tRR=120ns) to improve reliability and efficiency when operating out of ZVS mode  Protection functions: Over Voltage Protection (OVP), Over Load Protection (OLP), Abnormal Over Current Protection (AOCP), Internal Thermal Shutdown (TSD)  Up to 300kHz operating frequency with fixed dead time (200ns)  Applicable to AHB and active clamp flybacks etc. Rsense Control ICCDL Vcc VDLLVcc RT VFB CS SG PG VCTR HVcc Cr Llk Lm Ns Vo D1 D2 RFCF Np Ns KA431 Vin Rsense Control ICCDL Vcc VDLLVcc RT VFB CS SG PG VCTR HVcc Cr Llk Lm Vo D1 RFCF Np Ns KA431 Vin
  • 12. www.fairchildsemi.com12  Dual channel Low side gate drivers are good solution for self driven SR  Gate drive signal is easily obtained from the transformer voltage  Enable pin can be used to disable SR until the output is built up during startup Self driven SR using Low side drivers DTS (1-D)TS Dloss1TS VGS S1 S2 S1 ipri vT2 iLo1 iLo2 iSR2iSR1 t0 t1 t2 t3 t4 (Vin-VCb)/Lm -VCb/Lm (Vin-VCb)/n -VCb/n -VO/LO1 -VO/LO2 (VCb/n-VO)/LO2 ((Vin-VCb)/n-VO)/ LO1 diLo1+diLo2 diLo1+diLo2 im t t t t t Dloss2TS Vo Ns L201 L202 Low side drivers Qdr1 Qdr2 N3 N4 FAN3224 INA INB OUTA OUTB ENA ENB
  • 13. www.fairchildsemi.com13 FAN3223/4/5 Dual 4A Drivers  20V Abs Max (18V Max Operation)  3x3mm MLP-8 and SOIC-8  Dual 5A-peak sink & source (4.3A sink/2.8A src. at Vdd/2)  CMOS or TTL input thresholds  10ns fall time with 2.2nF load  Prop delays < 20ns  Under-Voltage Lockout  Industry standard pin-outs  Dual Inverting & dual Non- Inverting with dual Enable  Dual-Input version  Enable defaults to “ON”  Fail-Safe Inputs: Output held low if no input signal 6 VDD 7 OUTA VDD_OK 5 OUTB Inverting (FAN3223) INA 2 100k ENA 1 GND 3 VDD Smart Start-up 100k 8 VDD ENB Inverting (FAN3223) INB 4 100k 100k 100k 100k 100k 100k Non-Inverting (FAN3224) Non-Inverting (FAN3224) UVLO Part of the family of High-Performance Low-side Gate Drivers from Fairchild
  • 14. www.fairchildsemi.com14 Design Methodology AC-DC 300W POWER SUPPLY DESIGN SPECIFICATIONS Interleaved BCM PFC Section MIN TYP MAX VIN_AC 90V 120V 265V FVIN_AC 50Hz 60Hz 65Hz VOUT_PFC 389.5V 390V 391.25V VOUT_PFC_RIPPLE 10V 11V POUT_PFC 340W 350W FSW_PFC 18kHz 300kHz tHOLD_UP 20ms tSOFT_START 250ms 300ms tON_OVERSHOOT 10V η_PFC_120V 97% 97.5% η_PFC_230V 98% 98.6% PF_120V 0.990 PF_230V 0.983 DC-DC Converter Section VOUT_AHB 12.22 12.2V 12.25 VOUT_AHB_RIPPLE 0.12VPP 0.13VPP VOUT_AHB_REGULATION 0.12% 0.16% POUT_AHB 310W IOUT_AHB 0A 25A FSW_AHB 120kHz η_AHB 92% 93.3% η_TOTAL 90% 92% Mechanical and Thermal Height 18mm θJC 60⁰C  Primary Design Goals: 1. Maximize Wide Range Efficiency 2. Lowest Possible Design Profile 3. Minimize Heat Sinks 4. Conventional Design Methods
  • 15. www.fairchildsemi.com15 Interleaved PFC Section 340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N) EMI Filter and Bridge Rectifier
  • 17. www.fairchildsemi.com17 FAN9612 PFC Steady State VGS and VDS  120VAC Input, IOUT=12.5ADC  Always ZVS  No Coss turn-on loss  230VAC Input, IOUT=12.5ADC  ZVS when VIN < ½ VOUT  No Coss turn-on loss  Valley Switching for VIN > ½ VOUT  Minimizes Coss turn-on loss VGS1 VGS2 VDS1 VDS1 Valley SwitchingZVS
  • 18. www.fairchildsemi.com18 FAN9612 230VAC Switching, VGS and VDS  230VAC Input, IOUT=25ADC  VIN > ½ VOUT  Valley Switching Shown  Minimizes Coss turn-on loss VGS1 VDS1 IL1  230VAC Input, IOUT=25ADC  VIN < ½ VOUT  ZVS Shown  Eliminates Coss turn-on loss
  • 19. www.fairchildsemi.com19 FAN9612 PFC Current Waveforms  230VAC Input, IOUT=25ADC IIN  120VAC Input, IOUT=25ADC IL1 IL2 IL1+IL2
  • 20. www.fairchildsemi.com20 FAN9612 Interleaved PFC Current Waveforms  230VAC Input, IOUT=25ADC 120VAC Input, IOUT=25ADC IL1 IL2 IL1+IL2
  • 21. www.fairchildsemi.com21 FAN9612 Interleaved Current Waveforms  230VAC Input, IOUT=25ADC  3Ap Inductor Ripple Current  1.4App Cancellation Current  53% Ripple Current Reduction  120VAC Input, IOUT=25ADC  5Ap Inductor Ripple Current  1.6App Cancellation Current  68% Ripple Current Reduction IL1 IL2 IL1+IL2 IL1 IL2 IL1+IL2
  • 22. www.fairchildsemi.com22 FAN9612 Phase Management Waveforms  120VAC, 390VDC, IOUT_PFC=0.107ADC  POUT_MAX=340W  2 Phase to 1 Phase at 41.75W  12% (default) Phase Threshold  120VAC, 390VDC, IOUT_PFC=0.166ADC  POUT_MAX=340W  1 Phase to 2 Phase at 64.75W  19% (default) Phase Threshold VGS1 VGS2 IL1 IL2
  • 23. www.fairchildsemi.com23 FAN9612 Phase Management Waveforms 1 Phase to 2 Phase  120VAC, 390VDC, IOUT_PFC=0.166ADC  POUT_MAX=340W  1 Phase to 2 Phase at 64.75W  19% (default) Phase Threshold  120VAC, 390VDC, IOUT_PFC=0.166ADC  POUT_MAX=340W  1 Phase to 2 Phase at 64.75W  19% (default) Phase Threshold VGS1 VGS2 IL1 IL2
  • 24. www.fairchildsemi.com24 FAN9612 PFC VOUT Start-Up Waveforms  120VAC Input, IOUT=25ADC  Closed Loop Soft-Start  0V Overshoot  120VAC Input, IOUT=0ADC  Closed Loop Soft-Start  <10V Overshoot  <2.5% for 390V Output VGS1 VOUT IL1 IIN
  • 25. www.fairchildsemi.com25 FAN9612 PFC VOUT Start-Up Waveforms  230VAC Input, IOUT=25ADC  Closed Loop Soft-Start  0V Overshoot  230VAC Input, IOUT=0ADC  Closed Loop Soft-Start  <10V Overshoot  <2.5% for 390V Output VGS1 VOUT IL1 IIN
  • 26. www.fairchildsemi.com26 FAN9612 120VAC Input Current and FFT  120VAC, VOUT=12VDC, IOUT=25ADC  100% Load  PF=0.991  FSW_AHB=120kHz  35kHz<FSW_PFC<300kHz  120VAC, VOUT=12VDC, IOUT=5ADC  20% Load  PF=0.952  FSW_AHB=120kHz  35kHz<FSW_PFC<300kHz VIN IIN IIN_FFT
  • 27. www.fairchildsemi.com27 FAN9612 230VAC Input Current FFT  230VAC, VOUT=12VDC, IOUT=25ADC  100% Load  PF=0.983  FSW_AHB=120kHz  35kHz<FSW_PFC<300kHz  230VAC, VOUT=12VDC, IOUT=5ADC  20% Load  PF=0.879  FSW_AHB=120kHz  35kHz<FSW_PFC<300kHz VIN IIN IIN_FFT
  • 28. www.fairchildsemi.com28 FAN9612 Interleaved BCM PFC Efficiency 100%=340W 70% 75% 80% 85% 90% 95% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Efficiency(%) Output Power (%) FAN9612 Interleaved BCM PFC Measured Efficiency 120 Vac 230 Vac  >97% for 20%<POUT<100%, 120VAC Input, 97.5% peak  >98% for POUT>40%, 230Vac Input, 98.6% peak
  • 29. www.fairchildsemi.com29 Total Measured AC-DC System Efficiency 100%=300W  >90% for POUT > 38% (114W)  91% Peak for 120VAC, 92% Peak for 230VAC 70% 75% 80% 85% 90% 95% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Efficiency(%) Output Power (%) Total Measured AC-DC System Efficiency 120 Vac 230 Vac
  • 30. www.fairchildsemi.com30 FAN9612 Interleaved BCM PFC AC-DC System Power Factor 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% PowerFactor Output Power (%) FAN9612 AC-DC Measured Power Factor 120 Vac 230 Vac  PF>0.9 for 20%<POUT<100%, 120VAC<VIN<230VAC
  • 31. www.fairchildsemi.com31 Asymmetrical Half-Bridge (AHB) Section 300W AHB DC-DC with Current Doubler Rectifier (FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)
  • 33. www.fairchildsemi.com33 FSFA2100 AHB Primary ZVS Waveforms No Load  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  ZVS Turn-On down to 0% Load  Soft Commutation of Current  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  AHB Limits VDS to VIN  ZVS Turn-On down to 0 Load VDS(High) (200X Probe) ID ZVS 390V
  • 34. www.fairchildsemi.com34 FSFA2100 AHB Primary ZVS Waveforms Full Load  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  ZVS Turn-On at 100% Load  Soft Commutation of Current  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  AHB Limits VDS to VIN  ZVS Turn-On at 100% Load VDS(High) (200X Probe) ID ZVS 390V
  • 35. www.fairchildsemi.com35 FSFA2100 AHB Current Doubler Rectifier  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  ZVS Turn-On at 100% Load  Soft Commutation of Current  Asymmetrical Voltage Stress  VDS_SR1 = 60V spike  VDS_SR2 = 40V spike  D = 38%  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  Self Driven SR (FAN3224T)  ZVS Turn-On at 100% Load  Asymmetrical Voltage Stress  VDS_SR1 = 78V spike  VDS_SR2 = 36V spike  D = 33% VDS_SR1 VGS_SR1 VDS_SR2 VGS_SR2 20V 43V
  • 36. www.fairchildsemi.com36 FSFA2100 AHB Current Doubler Rectifier No Load SR Dead Time  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  Falling Edge SR Dead Time  VGS_SR1_R to VGS_SR2_F = 30ns  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  Rising Edge SR Dead Time  VGS_SR1_F to VGS_SR2_R = 27ns VDS_SR1 VGS_SR1 VDS_SR2 VGS_SR2 VDS_SR1 VGS_SR1 VDS_SR2 VGS_SR2
  • 37. www.fairchildsemi.com37 FSFA2100 AHB Current Doubler Rectifier Full Load SR Dead Time  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  Falling Edge SR Dead Time  VGS_SR1_R to VGS_SR2_F = 380ns  12:1 Variation verses Load  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  Rising Edge SR Dead Time  VGS_SR1_F to VGS_SR2_R = 260ns  10:1 Variation verses Load  Total SR Body-Diode Conduction Loss  PBDC_SR1=1.54W, PBDC_SR2=0.86W  0.8% Total Overall Efficiency Penalty VDS_SR1 VGS_SR1 VDS_SR2 VGS_SR2 VDS_SR1 VGS_SR1 VDS_SR2 VGS_SR2
  • 38. www.fairchildsemi.com38 FSFA2100 AHB Current Doubler Rectifier Output Ripple Current Cancellation  VIN=390VDC, VOUT=12VDC, IOUT=25ADC  Asymmetrical Current Distribution  IL_SR1 = 6.4APP, 11.10ARMS  IL_SR2 = 8.6APP, 14.07ARMS  Ripple Current Cancellation  IL_SUM = 5.4APP, 25ARMS  37% reduction eases filter cap  VIN=390VDC, VOUT=12VDC, IOUT=0ADC  Asymmetrical Current Distribution  IL_SR1 = 4APP, 0.89ARMS  IL_SR2 = 8.2APP, 2.13ARMS  Ripple Current Cancellation  IL_SUM = 5.8APP, 1.28ARMS  29% Reduction IL_SR1 VGS_SR1 VGS_SR2 IL_SR2 IL_TOTAL(MATH FUNCTION) NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement IL_SUM(MATH FUNCTION) IL_SUM(MATH FUNCTION)
  • 39. www.fairchildsemi.com39 FSFA2100 AHB Output Ripple Voltage  VIN=390VDC, VOUT=12.2VDC, IOUT=25ADC  VOUT Capacitor Ripple Voltage  VOUT_AC = 120mVPP  0.98% of 12.2V  VIN=390VDC, VOUT=12.2VDC, IOUT=0ADC  VOUT Capacitor Ripple Voltage  VOUT_AC = 130mVPP  1.06% of 12.2V VGS_SR1 VGS_SR2 VOUT_AC NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement
  • 40. www.fairchildsemi.com40 FSFA2100 AHB DC-DC Efficiency 100%=300W  93% at Full Load (12V, 25A)  93.3% Peak at 50% Load 70% 75% 80% 85% 90% 95% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Efficiency(%) Output Power (%) FSFA2100 AHB DC-DC Efficiency
  • 41. www.fairchildsemi.com41 Output Voltage Regulation 12.10 12.12 12.14 12.16 12.18 12.20 12.22 12.24 12.26 12.28 12.30 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% VOUT(VDC) Output Power (%) Output Voltage Regulation for AC-DC System 120 Vac 230 Vac  0.16% for Full Load Range at 120VAC  0.11% for Full Load Range at 230VAC
  • 43. www.fairchildsemi.com43 Single Phase CCM PFC IL (1-D)TsDTs Ts IL IDIsw (Not to scale)  Benefits  Peak to RMS ratio lower  Lower I2R losses  Lower ripple current  Lower core loss  Lower EMI  Smaller input filter  Can be used at any power level  Easily interleaved for power levels to many KW’s.  Challenges  Requires very fast boost diode with low IRR  Silicon carbide diodes are often used  Large inductor  MOSFET switching loss (hard switching)
  • 44. www.fairchildsemi.com44 Single Phase BCM PFC (Not to scale) IL DTs Ts IDIsw  Benefits  Simple to design, well understood control technique  Lower I2R losses  MOSFET turns on at zero current and minimum voltage  Lower core loss  No reverse recovery in boost diode  Low cost fast recovery diode can be used  Lower current sensing loss compared to CCM  Challenges  Higher MOSFET conduction losses  Variable frequency  High peak current limits practical use to 300W  Impact on EMI filter size
  • 45. www.fairchildsemi.com4545 Asymmetrical Half-Bridge (AHB) Converter Square wave generator  produces a square wave voltage (Vd) by driving switches Q1 and Q2 complementarily Energy transfer network  removes DC offset of the square wave voltage (Vd) using DC blocking capacitor (CB)  transfers a pure AC square wave voltage to the secondary through the transformer  Causes Ip to lag Vpr to provide ZVS condition for Q1 and Q2 Rectifier network  produces a DC voltage by rectifying the AC voltage with rectifier diodes and a low-pass LC filter + VO - Ro Q1 Q2 n:1 Ip Llkp LmCB Ids2 Im ILO Vin Io + Vd - Square wave generator Energy transfer network Rectifier network VCB + Vpr - + Vrec - Ids1 C2 C1 1-D D
  • 46. www.fairchildsemi.com46 Asymmetrical Half-Bridge Converter D1 D2 L CO NP NS Q1 NS Q2 CIN C1 C2 VP VP IP Q2 (D) Q1 (D) VIN/2 -VIN/2 D=0.46 D=0.23 VIN/2 -VIN/2 VP IP Q2 (D) Q1 (1-D) VC1 VC2 VC1 VC2 D=0.46 D=0.23 Equal Area (a) Symmetrical HB waveforms (b) Asymmetrical HB waveforms  Asymmetrical Gate Drive  Q2 modulated by D  Q1 driven by 1-D  Fixed dead time between Q1 and Q2  Dead time optimized for ZVS and anti cross conduction  Fixed frequency ZVS PWM operation  Near D=0.5, operation is same as symmetrical HB INC VDV 1   INC VDV  12  DD N N V V P S IN O  12
  • 47. www.fairchildsemi.com47 Current Doubler Rectifier D1 D2 L CO NP NS NS VO D1 D2 L CO NP NS NS VO D1 D2 CO VO V I V What is it? - A full wave alternative rectification technique compatible with all double ended converter topologies D1 D2 CO VO V I I D1 D2 CO VO L2 L1 NP NS NP NS D1 D2 L1 CO L2 VO NP Q1 L1 CO NS L2 Q2 VO OR Current Doubler Derivation of Current Doubler (a) (b) (c) (d) (e) (f) (g)
  • 48. www.fairchildsemi.com48 Synchronous Rectification (SR) D1 D2 L CO NP NS CIN Q1 Reset Circuit Efficiency vs Output Voltage Vf=0.4V, Vf=1V 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.5 1.7 2.8 4.0 5.1 6.3 7.4 8.6 9.7 10.9 12.0 Output Voltage (V) Efficiency Vf=0.4V Vf=1V Q2 Q3 L CO NP NS CIN Q1 Reset Circuit  What is Synchronous Rectification?  Replacing secondary side discrete rectifiers (D1, D2) with MOSFETs (Q2, Q3)  Benefits of SR  Parallel MOSFETs  Increase efficiency  Lower output voltage and higher current applications benefit most  How do we drive them? OUT FOUTFOUTOUT OUTOUT IN OUT V VIVIV IV P P      1 1 