SlideShare a Scribd company logo
Low Voltage Dropout Regulator
Goal:
Design a voltage regulator to
provide an output voltage of 3.3V
For the calculations we assume the
following constants:
- Pass transistor current = 1ma
- Vout = 3.3V
- Dropout voltage =
- VDD=5V
-
Calculations:
- Calculation of a range of Vbias1
1. To find Ibias1:
From the desired a photodiode range, the minimum
value of Ibias1:
VGS3
=Vphmin
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (0.8V – 0.617)2
= 4.186µA =4µA
The maximum value of Ibias1:
Ibias1 = ½ K1(W/L)3
(VGS3
-VTHN
)2
= ½ * 50 * 10-6 A/V2
*
3µm/0.6µm * (3.0V – 0.617)2
= 0.7mA
Calculations:
- Calculation of a range of Vbias1
2. To find Vbias1:
Next we find the value of Vbias1 given by
Vbias1
= VDD
– VGS0
= VDD
- √[(2Ibias1)/(K2
(W/L)0
] –
VTHp
Vbias1
= VDD
– VGS0
= VDD
- √[
(2Ibias1)/(K2
(W/L)0
] – VTHp
p
The maximum value of Vbias1:
Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2*
20µm/0.6µm)] – 0.915V =1.026 = 4V
The minimum value of Vbias1:
Vbias1(min) = VDD
– VGS0
= 5V- √[(2*0.7*10-3
)/25*
10-6
/V2 * 20µm/0.6µm) – 0.915V = 2.8V
Calculations:
- Calculation of sizes of the transistors M5, M4
1. To determine W5
From requirement to keep M5 in saturation
region:
VTH
≤VGS5
= Vbias1(min) + VTHp
– Vph
(max) =
2.8V +0.9V – 3.0V = 0.7V
W5 = (2InL5
)/(K1
(VGS5
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.7V – 0.617V)2
) = 4µm
Calculations:
- Calculation of sizes of the transistors M5, M4
2. To determine W4
VDS4
≥VGS4
– VTHN
VDS4
= Vph
(min) = 0.8V
Assumed VGS4
= 0.75V
W4 = (2InL4
)/(K1
(VGS4
-VTHN
)2
) = (2 * 1.2µA *
0.6µm)/(50µA/V2
* (0.75V – 0.617V)2
) = 1.60µm
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
1. To find VGS
for M1, M2, M7
VGS1
= VDS1
= VGS2
= VGS1
= √[(2Iout)/(K2
(W/L)2,7
] + VTHp
= √(2 *
1.2µA)/(25µA/V2
* (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
2. To find VDS
for current mirror:
Next we find VDS2
and VDS7
(which are the same in value)
VDS2,7
= VDD
– VDS6
= VDD
- √[(2Iout)/(K1
(W/L)6
] - VTHN
=
5V - √(2 * 1.2µA)/(50µA/V2
* (1.5/8.55)) - 0.617V = 3.85V
Calculations:
- Calculation of the gain for the current mirror transistors
M1, M2, M7
3. To determine W1:
Finally, we calculate the size of transistor M1. It's required that Iin =
Iout. Consequently, the current conveyor ought to have I1 = I2,7.
Assuming L1= L2,7:
W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7)
W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1)
W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
Summary of Transistor Sizes:
- Summary of calculated transistor sizes vs the
transistor simulation sizes
TransistTor Calculated Size Actual Size Used
Width(µm) Length(µm) Width(µm) Length(µm)
M1 100 0.6 19.55 0.6
M2 100 0.6 21.3 2.4
M3 20 0.6 19.55 0.6
M4 20 0.6 3 0.6
M5 300 0.6 3 1.5
Final Schematic
- Test Schematic
- Test Schematic
Test Schematic
- Pre-Layout Simulation
- Pre-Layout Simulation
PRE-LAYOUT DC INPUT TEST
- Pre-Layout Simulation- Pre-Layout Simulation
PRE-LAYOUT PHASE AND GAIN
LDO LAYOUT
- Post-Layout Simulation
POST LAYOUT DC FIXED INPUT
- Post-Layout Simulation
POST LAYOUT GAIN AND PHASE

More Related Content

What's hot

Chapter 6
Chapter 6Chapter 6
Chapter 6
binodsahu8
 
Measurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMeasurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter method
Mohammed Waris Senan
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
Nourhan Selem Salm
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentation
Umang Gupta
 
Wattmeter
WattmeterWattmeter
Wattmeter
Nilraj Vasandia
 
EEP303 Cycle ii exp-1
EEP303 Cycle ii exp-1EEP303 Cycle ii exp-1
EEP303 Cycle ii exp-1
Umang Gupta
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
binodsahu8
 
L10 dc circuits
L10   dc circuitsL10   dc circuits
L10 dc circuits
Satyakam
 
EEP301: Process control trainer
EEP301: Process control trainerEEP301: Process control trainer
EEP301: Process control trainer
Umang Gupta
 
CVT design
CVT designCVT design
CVT design
binodsahu8
 
Inductor design
Inductor designInductor design
Inductor design
binodsahu8
 
EEP303: Exp4
EEP303: Exp4EEP303: Exp4
EEP303: Exp4
Umang Gupta
 
Network Solving
Network SolvingNetwork Solving
Network Solving
guest049562
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
Karthik Rathinavel
 
EEP303: Exp5
EEP303: Exp5EEP303: Exp5
EEP303: Exp5
Umang Gupta
 
3 phase power
3 phase power3 phase power
3 phase power
Saiyam Agrawal
 
Semiconductor Thermal Management
Semiconductor Thermal ManagementSemiconductor Thermal Management
Semiconductor Thermal Management
Nicholas Montes
 
Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)
guest049562
 
Project 2 Cascode
Project 2 CascodeProject 2 Cascode
Project 2 Cascode
Steven Hackbarth
 

What's hot (19)

Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Measurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMeasurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter method
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentation
 
Wattmeter
WattmeterWattmeter
Wattmeter
 
EEP303 Cycle ii exp-1
EEP303 Cycle ii exp-1EEP303 Cycle ii exp-1
EEP303 Cycle ii exp-1
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
L10 dc circuits
L10   dc circuitsL10   dc circuits
L10 dc circuits
 
EEP301: Process control trainer
EEP301: Process control trainerEEP301: Process control trainer
EEP301: Process control trainer
 
CVT design
CVT designCVT design
CVT design
 
Inductor design
Inductor designInductor design
Inductor design
 
EEP303: Exp4
EEP303: Exp4EEP303: Exp4
EEP303: Exp4
 
Network Solving
Network SolvingNetwork Solving
Network Solving
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
EEP303: Exp5
EEP303: Exp5EEP303: Exp5
EEP303: Exp5
 
3 phase power
3 phase power3 phase power
3 phase power
 
Semiconductor Thermal Management
Semiconductor Thermal ManagementSemiconductor Thermal Management
Semiconductor Thermal Management
 
Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)
 
Project 2 Cascode
Project 2 CascodeProject 2 Cascode
Project 2 Cascode
 

Viewers also liked

Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
altaf423
 
Msa august2010
Msa august2010Msa august2010
Msa august2010
Brian Ryckman
 
Input output
Input outputInput output
Input output
abdulmalek
 
Effective communication
Effective communicationEffective communication
Effective communication
kousic
 
Indian conquistadors
Indian conquistadorsIndian conquistadors
Indian conquistadors
008360974
 
Tarjei krogh showreel 2010 the dark side
Tarjei krogh showreel 2010 the dark sideTarjei krogh showreel 2010 the dark side
Tarjei krogh showreel 2010 the dark sideKroghTarjei
 
The jesuit relations
The jesuit relationsThe jesuit relations
The jesuit relations
008360974
 
Mktg. zcharina
Mktg. zcharinaMktg. zcharina
Mktg. zcharina
Zcharina Santos
 
Blast Mitigation
Blast MitigationBlast Mitigation
Blast Mitigation
Tammy Browne
 
Effective communication
Effective communicationEffective communication
Effective communication
kousic
 
Financial aspects of a franchise
Financial aspects of a franchiseFinancial aspects of a franchise
Financial aspects of a franchise
Zcharina Santos
 
Pro/ E Training Noida
Pro/ E Training Noida Pro/ E Training Noida
Pro/ E Training Noida
IMD CAD CENTER
 
Advanced Fabric Technologies
Advanced Fabric TechnologiesAdvanced Fabric Technologies
Advanced Fabric Technologies
Tammy Browne
 
Beatniks
BeatniksBeatniks
Beatniks
008360974
 
LDO project
LDO projectLDO project
LDO project
altaf423
 
Design of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulatorDesign of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulator
I3E Technologies
 
Devyani 1st Ext. Presentation
Devyani 1st Ext. PresentationDevyani 1st Ext. Presentation
Devyani 1st Ext. Presentation
Devyani Balyan
 
chapter 1 linear dc power supply
chapter 1 linear dc power supplychapter 1 linear dc power supply
chapter 1 linear dc power supply
Aida Mustapha
 
Voltage Regulation
Voltage RegulationVoltage Regulation
Voltage Regulation
Ernst Lourens de Villiers
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
NIT MEGHALAYA
 

Viewers also liked (20)

Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
Msa august2010
Msa august2010Msa august2010
Msa august2010
 
Input output
Input outputInput output
Input output
 
Effective communication
Effective communicationEffective communication
Effective communication
 
Indian conquistadors
Indian conquistadorsIndian conquistadors
Indian conquistadors
 
Tarjei krogh showreel 2010 the dark side
Tarjei krogh showreel 2010 the dark sideTarjei krogh showreel 2010 the dark side
Tarjei krogh showreel 2010 the dark side
 
The jesuit relations
The jesuit relationsThe jesuit relations
The jesuit relations
 
Mktg. zcharina
Mktg. zcharinaMktg. zcharina
Mktg. zcharina
 
Blast Mitigation
Blast MitigationBlast Mitigation
Blast Mitigation
 
Effective communication
Effective communicationEffective communication
Effective communication
 
Financial aspects of a franchise
Financial aspects of a franchiseFinancial aspects of a franchise
Financial aspects of a franchise
 
Pro/ E Training Noida
Pro/ E Training Noida Pro/ E Training Noida
Pro/ E Training Noida
 
Advanced Fabric Technologies
Advanced Fabric TechnologiesAdvanced Fabric Technologies
Advanced Fabric Technologies
 
Beatniks
BeatniksBeatniks
Beatniks
 
LDO project
LDO projectLDO project
LDO project
 
Design of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulatorDesign of a low voltage low-dropout regulator
Design of a low voltage low-dropout regulator
 
Devyani 1st Ext. Presentation
Devyani 1st Ext. PresentationDevyani 1st Ext. Presentation
Devyani 1st Ext. Presentation
 
chapter 1 linear dc power supply
chapter 1 linear dc power supplychapter 1 linear dc power supply
chapter 1 linear dc power supply
 
Voltage Regulation
Voltage RegulationVoltage Regulation
Voltage Regulation
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 

Similar to Ldo project

DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
Praveen Kumar
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
Rai Saheb Bhanwar Singh College Nasrullaganj
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
Vishal Pathak
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
Tsuyoshi Horigome
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
girishgandhi4
 
07
0707
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
LuisAngelLugoCuevas
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
aicdesign
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
Ilango Jeyasubramanian
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
GLACE VARGHESE T
 
EEL782_Project
EEL782_ProjectEEL782_Project
EEL782_Project
Vikas Aggarwal
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics
Nitish Kumar
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
GabrielRodriguez171709
 
project.pptx
project.pptxproject.pptx
project.pptx
anaveenkumar4
 
Igbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converterIgbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converter
Kunwar Aditya
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
Souvik Das
 
Pe lab converted
Pe lab convertedPe lab converted
Pe lab converted
Gopal Krishna Murthy C R
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
aicdesign
 
Max 232
Max 232Max 232
Max 232
Samarth
 

Similar to Ldo project (20)

DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
multistage amplifier Rajendra keer
 multistage amplifier Rajendra keer multistage amplifier Rajendra keer
multistage amplifier Rajendra keer
 
multistage amplifier Abhishek meena
 multistage amplifier Abhishek meena multistage amplifier Abhishek meena
multistage amplifier Abhishek meena
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
multistage amplifiers analysis and design
multistage amplifiers analysis and designmultistage amplifiers analysis and design
multistage amplifiers analysis and design
 
07
0707
07
 
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
 
Lect2 up290 (100328)
Lect2 up290 (100328)Lect2 up290 (100328)
Lect2 up290 (100328)
 
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIERDESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
DESIGNED A 350NM TWO STAGE OPERATIONAL AMPLIFIER
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
 
EEL782_Project
EEL782_ProjectEEL782_Project
EEL782_Project
 
3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics3 phase diode rectifiers/power electronics
3 phase diode rectifiers/power electronics
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
 
project.pptx
project.pptxproject.pptx
project.pptx
 
Igbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converterIgbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converter
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
 
Pe lab converted
Pe lab convertedPe lab converted
Pe lab converted
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 
Max 232
Max 232Max 232
Max 232
 

Ldo project

  • 2. Goal: Design a voltage regulator to provide an output voltage of 3.3V
  • 3. For the calculations we assume the following constants: - Pass transistor current = 1ma - Vout = 3.3V - Dropout voltage = - VDD=5V -
  • 4. Calculations: - Calculation of a range of Vbias1 1. To find Ibias1: From the desired a photodiode range, the minimum value of Ibias1: VGS3 =Vphmin Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (0.8V – 0.617)2 = 4.186µA =4µA The maximum value of Ibias1: Ibias1 = ½ K1(W/L)3 (VGS3 -VTHN )2 = ½ * 50 * 10-6 A/V2 * 3µm/0.6µm * (3.0V – 0.617)2 = 0.7mA
  • 5. Calculations: - Calculation of a range of Vbias1 2. To find Vbias1: Next we find the value of Vbias1 given by Vbias1 = VDD – VGS0 = VDD - √[(2Ibias1)/(K2 (W/L)0 ] – VTHp Vbias1 = VDD – VGS0 = VDD - √[ (2Ibias1)/(K2 (W/L)0 ] – VTHp p The maximum value of Vbias1: Vbias1(max) = 5V - √[(2*4µA)/(19.1µA/V2* 20µm/0.6µm)] – 0.915V =1.026 = 4V The minimum value of Vbias1: Vbias1(min) = VDD – VGS0 = 5V- √[(2*0.7*10-3 )/25* 10-6 /V2 * 20µm/0.6µm) – 0.915V = 2.8V
  • 6. Calculations: - Calculation of sizes of the transistors M5, M4 1. To determine W5 From requirement to keep M5 in saturation region: VTH ≤VGS5 = Vbias1(min) + VTHp – Vph (max) = 2.8V +0.9V – 3.0V = 0.7V W5 = (2InL5 )/(K1 (VGS5 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.7V – 0.617V)2 ) = 4µm
  • 7. Calculations: - Calculation of sizes of the transistors M5, M4 2. To determine W4 VDS4 ≥VGS4 – VTHN VDS4 = Vph (min) = 0.8V Assumed VGS4 = 0.75V W4 = (2InL4 )/(K1 (VGS4 -VTHN )2 ) = (2 * 1.2µA * 0.6µm)/(50µA/V2 * (0.75V – 0.617V)2 ) = 1.60µm
  • 8. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 1. To find VGS for M1, M2, M7 VGS1 = VDS1 = VGS2 = VGS1 = √[(2Iout)/(K2 (W/L)2,7 ] + VTHp = √(2 * 1.2µA)/(25µA/V2 * (20/2.4)) + 0.915V = 0.107V + 0.915V = 1V
  • 9. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 2. To find VDS for current mirror: Next we find VDS2 and VDS7 (which are the same in value) VDS2,7 = VDD – VDS6 = VDD - √[(2Iout)/(K1 (W/L)6 ] - VTHN = 5V - √(2 * 1.2µA)/(50µA/V2 * (1.5/8.55)) - 0.617V = 3.85V
  • 10. Calculations: - Calculation of the gain for the current mirror transistors M1, M2, M7 3. To determine W1: Finally, we calculate the size of transistor M1. It's required that Iin = Iout. Consequently, the current conveyor ought to have I1 = I2,7. Assuming L1= L2,7: W1/L1* (1 + ƛpDS2,7) = W2,7/L2,7(1 + ƛpDS2,7) W1 = 2(1 + ƛpDS2,7)/(1 + ƛpDS1) W1 = (20µm*(1+0.2*3.85V)/(1+0.2*1V) = 29.5µm
  • 11. Summary of Transistor Sizes: - Summary of calculated transistor sizes vs the transistor simulation sizes TransistTor Calculated Size Actual Size Used Width(µm) Length(µm) Width(µm) Length(µm) M1 100 0.6 19.55 0.6 M2 100 0.6 21.3 2.4 M3 20 0.6 19.55 0.6 M4 20 0.6 3 0.6 M5 300 0.6 3 1.5
  • 13. - Test Schematic - Test Schematic Test Schematic
  • 14. - Pre-Layout Simulation - Pre-Layout Simulation PRE-LAYOUT DC INPUT TEST
  • 15. - Pre-Layout Simulation- Pre-Layout Simulation PRE-LAYOUT PHASE AND GAIN
  • 17. - Post-Layout Simulation POST LAYOUT DC FIXED INPUT
  • 18. - Post-Layout Simulation POST LAYOUT GAIN AND PHASE