SlideShare a Scribd company logo
1 of 27
1
EE462L, Fall 2011
DC−DC Buck/Boost Converter
2
Boost converter
+
Vout
–
Iout
C
Vin
iin
L1
+ v L1 –
Buck/Boost converter
+
v L2
–
C1
+ v C1 –
L2
Vin
iin
L1
+ v L1 –
+
v L2
–
C1
+ v C1 –
L2
+
Vout
–
Iout
C
3
Buck/Boost converter
This circuit is more unforgiving than the boost converter, because the
MOSFET and diode voltages and currents are higher
• Before applying power, make sure that your D is at
the minimum, and that a load is solidly connected
• Limit your output voltage to 90V
Vin
iin
L1
+ v L1 –
+
v L2
–
C1
+ v C1 –
L2
+
Vout
–
Iout
C
4
+
Vout
–
Iout
C
Vin
Iin
L1
+ 0 –
+
0
–
KVL and KCL in the average sense
0
0
Iout
Iin
C1
L2
Iout
+ Vin –
KVL shows that VC1 = Vin
Interestingly, no average current passes from the source side, through
C1, to the load side, and yet this is a “DC - DC” converter
5
Switch closed
Vin
iin
L1
+ Vin –
+
v L2
–
C1
+ Vin –
L2
+
Vout
–
Iout
C
assume constant
+ v D –
KVL shows that vD = −(Vin + Vout),
so the diode is open
Thus, C is providing the load power when the switch is closed
Vin
iin
L1 –
Vin
+
C1
+ Vin –
L2
+
Vout
–
Iout
C
– (Vin + Vout) +
Iout
iL1 and iL2 are ramping up (charging). C1 is charging L2.
C is discharging.
+ Vin –
6
Switch open (assume the diode is conducting because,
otherwise, the circuit cannot work)
Vin
iin
L1
– Vout +
C1
+ Vin –
L2
+
Vout
–
Iout
C
C1 and C are charging. L1 and L2 are discharging.
+
Vout
–
KVL shows that VL1 = −Vout
    0
1
1 





 out
in
avg
L V
D
V
D
V
in
out V
D
D
V 


 )
1
(
D
DV
V in
out


1
The input/output equation comes from recognizing that the average
voltage across L1 is zero
assume constant
7
Inductor L1 current rating
in
rms
L I
I
3
2
1 
Use max
During the “on” state, L1 operates under the same conditions
as the boost converter L, so the results are the same
8
Inductor L2 current rating
  2
2
2
2
2
3
4
2
12
1
out
out
out
rms
L I
I
I
I 



out
rms
L I
I
3
2
2 
2Iout
0
Iavg = Iout
ΔI
iL2
Use max
+
Vout
–
Iout
C
Vin
Iin
L1
+ 0 –
+
0
–
0
0
Iout
Iin
C1
L2
Iout
+ Vin –
Average values
9
MOSFET and diode currents and current ratings
0
2(Iin + Iout)
0
Take worst case D for each
Vin
iin
L1
+ v L1 –
+
v L2
–
C1
+ v C1 –
L2
+
Vout
–
Iout
C
MOSFET Diode iL1 + iL2
 
out
in
rms I
I
I 

3
2
Use max
switch
closed
switch
open
2(Iin + Iout)
iL1 + iL2
10
Output capacitor C current and current rating
in
Crms I
I
3
2
 out
Crms I
I 
2Iin + Iout
−Iout
0
As D → 1, Iin >> Iout , so
iC = (iD – Iout)
As D → 0, Iin << Iout , so
 
D
I
D
I
D
DI
I in
out
out
in




1
,
1






 out
in
Crms I
I
I ,
3
2
max
switch
closed
switch
open
11
Series capacitor C1 current and current rating
Switch closed, IC1 = −IL2
Vin
iin
L1 –
Vin
+
C1
+ Vin –
L2
+
Vout
–
Iout
C
– (Vin + Vout) +
Iout
+ Vin –
Vin
iin
L1
– Vout +
C1
+ Vin –
L2
+
Vout
–
Iout
C
+
Vout
–
Switch open, IC1 = IL1
12
Series capacitor C1 current and current rating
in
rms
C I
I
3
2
1 
2Iin
−2Iout
0
As D → 1, Iin >> Iout , so
iC1
As D → 0, Iin << Iout , so






 out
in
rms
C I
I
I
3
2
,
3
2
max
1
switch
closed
switch
open
out
rms
C I
I
3
2
1 
Switch closed, IC1 = −IL2
Switch open, IC1 = IL1
13
Worst-case load ripple voltage
Cf
I
C
T
I
C
Q
V out
out 





The worst case is where D → 1, where output capacitor C
provides Iout for most of the period. Then,
−Iout
0
iC = (iD – Iout)
14
Worst case ripple voltage on series
capacitor C1
2Iin
−2Iout
0
iC1
f
C
I
V out



1
switch
closed
switch
open
 
1
1
1
1 C
T
D
I
C
DT
I
C
Q
V in
out 







Then, considering the worst case (i.e., D = 1)
15
Voltage ratings
MOSFET and diode see (Vin + Vout)
• Diode and MOSFET, use 2(Vin + Vout)
• Capacitor C1, use 1.5Vin
• Capacitor C, use 1.5Vout
Vin
L1 C1
+ Vin –
L2
+
Vout
–
C
– (Vin + Vout) +
Vin
L1
– Vout +
C1
+ Vin –
L2
+
Vout
–
C
16
Continuous current in L1
sec
/
1
A
L
Vout

   
f
L
D
V
T
D
L
D
DV
T
D
L
V
I
boundary
in
boundary
in
boundary
out
in
1
1
1
1
1
1
2 







f
I
D
V
L
in
in
boundary
2
1 
2Iin
0
Iavg = Iin
iL
(1 − D)T
f
I
V
L
in
in
2
1 guarantees continuous conduction
Then, considering the worst case (i.e., D → 1),
use max
use min
17
Continuous current in L2
sec
/
2
A
L
Vout

f
L
D
V
T
D
L
V
I
boundary
out
boundary
out
out
2
)
1
(
)
1
(
2
2





2Iout
0
Iavg = Iout
iL
(1 − D)T
f
I
D
V
L
out
out
boundary
2
)
1
(
2


f
I
V
L
out
out
2
2  guarantees continuous conduction
Then, considering the worst case (i.e., D → 0),
use max
use min
18
Impedance matching
out
out
load
I
V
R 
equiv
R
 
 
load
out
out
out
out
in
in
equiv R
D
D
I
V
D
D
D
DI
D
V
D
I
V
R
2
2
1
1
1
1





 







 





DC−DC Boost
Converter
+
Vin
−
+
−
Iin
+
Vin
−
Iin
Equivalent from
source perspective
Source D
DV
V in
out


1
 
D
D
I
I in
out


1
19
Impedance matching
 
 
load
out
out
out
out
in
in
equiv R
D
D
I
V
D
D
D
DI
D
V
D
I
V
R
2
2
1
1
1
1





 







 





For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit)
For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit)
Thus, the buck/boost converter can sweep the entire I-V
curve of a solar panel
20
Example - connect a 100Ω load resistor
PV Station 13, Bright Sun, Dec. 6, 2002
0
1
2
3
4
5
6
0 5 10 15 20 25 30 35 40 45
V(panel) - volts
I
-
amps
D = 0.80
D = 0.50
D = 0.88
With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar
panel load from the open circuit condition to the short circuit condition
21
Example - connect a 5Ω load resistor
PV Station 13, Bright Sun, Dec. 6, 2002
0
1
2
3
4
5
6
0 5 10 15 20 25 30 35 40 45
V(panel) - volts
I
-
amps
D = 0.47
D = 0.18
D = 0.61
22
Worst-Case Component Ratings Comparisons
for DC-DC Converters
Converter
Type
Input Inductor
Current
(Arms)
Output
Capacitor
Voltage
Output Capacitor
Current (Arms)
Diode and
MOSFET
Voltage
Diode and
MOSFET
Current
(Arms)
Buck/Boost
in
I
3
2 1.5 out
V






out
in I
I ,
3
2
max
)
(
2 out
in V
V 
 
out
in I
I 
3
2
5.66A p-p 200V, 250V 16A, 20A
Our components
9A 250V
10A, 5A
10A 90V 40V, 90V
Likely worst-case buck/boost situation
10A, 5A
MOSFET M. 250V, 20A
L1. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
Diode D. 200V, 16A
L2. 100µH, 9A
C1. 33µF, 50V, 14A p-p
BUCK/BOOST DESIGN
23
Comparisons of Output Capacitor Ripple Voltage
Converter Type Volts (peak-to-peak)
Buck/Boost
Cf
Iout 5A
1500µF 50kHz
0.067V
MOSFET M. 250V, 20A
L1. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
Diode D. 200V, 16A
L2. 100µH, 9A
C1. 33µF, 50V, 14A p-p
BUCK/BOOST DESIGN
24
Minimum Inductance Values Needed to
Guarantee Continuous Current
Converter Type For Continuous
Current in the Input
Inductor
For Continuous
Current in L2
Buck/Boost
f
I
V
L
in
in
2
1 
f
I
V
L
out
out
2
2 
40V
2A 50kHz
200µH
90V
2A 50kHz
450µH
MOSFET M. 250V, 20A
L1. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
Diode D. 200V, 16A
L2. 100µH, 9A
C1. 33µF, 50V, 14A p-p
BUCK/BOOST DESIGN
25
Additional Components for Buck/Boost Converter
Series Capacitor
Voltage
Series Capacitor (C1)
Current (Arms)
Series
Capacitor (C1)
Ripple Voltage
(peak-to-peak)
Second
Inductor (L2)
Current (Arms)
1.5 in
V








out
in I
I
3
2
,
3
2
max
f
C
Iout
1
out
I
3
2
MOSFET M. 250V, 20A
L1. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
Diode D. 200V, 16A
L2. 100µH, 9A
C1. 33µF, 50V, 14A p-p
10A 5A
40V
Likely worst-case buck/boost situation
5A
5A
33µF 50kHz
3.0V
BUCK/BOOST DESIGN
Our components 9A
14A p-p
50V
Conclusion - 50kHz may be too low
for buck/boost converter
26
Worst-Case Component Ratings Comparisons for DC-DC Converters
Converter
Type
Input Inductor
Current (Arms)
Output
Capacitor
Voltage
Output Capacitor
Current (Arms)
Diode and
MOSFET Voltage
Diode and
MOSFET
Current (Arms)
Buck
out
I
3
2 1.5 out
V
out
I
3
1 2 in
V
out
I
3
2
Boost
in
I
3
2 1.5 out
V out
I 2 out
V
in
I
3
2
Buck/Boost
in
I
3
2 1.5 out
V








out
in I
I ,
3
2
max
 
out
in V
V 
2
 
out
in I
I 
3
2
Additional Components for Buck/Boost Converter
Series Capacitor
Voltage
Series Capacitor (C1)
Current (Arms)
Series Capacitor
(C1) Ripple
Voltage (peak-to-
peak)
Second Inductor
(L2) Current
(Arms)
1.5 in
V








out
in I
I
3
2
,
3
2
max
f
C
Iout
1
out
I
3
2
27
Comparisons of Output Capacitor Ripple Voltage
Converter Type Volts (peak-to-peak)
Buck
Cf
Iout
4
Boost
Cf
Iout
Buck/Boost
Cf
Iout
Minimum Inductance Values Needed to Guarantee Continuous Current
Converter Type For Continuous Current
in the Input Inductor
For Continuous
Current in L2
Buck
f
I
V
L
out
out
2
 –
Boost
f
I
V
L
in
in
2
 –
Buck/Boost
f
I
V
L
in
in
2
1 
f
I
V
L
out
out
2
2 

More Related Content

Similar to _8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt

Similar to _8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt (20)

Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
ADC - Dual Slope Integrator
ADC - Dual Slope IntegratorADC - Dual Slope Integrator
ADC - Dual Slope Integrator
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdf
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
 
Ota
OtaOta
Ota
 
Lect2 up160 (100325)
Lect2 up160 (100325)Lect2 up160 (100325)
Lect2 up160 (100325)
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
Sig con
Sig conSig con
Sig con
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
CC1.ppt
CC1.pptCC1.ppt
CC1.ppt
 
abc.ppt
abc.pptabc.ppt
abc.ppt
 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptx
 
Power
PowerPower
Power
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Uc2907 dw
Uc2907 dwUc2907 dw
Uc2907 dw
 

Recently uploaded

CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 

Recently uploaded (20)

CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 

_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt

  • 1. 1 EE462L, Fall 2011 DC−DC Buck/Boost Converter
  • 2. 2 Boost converter + Vout – Iout C Vin iin L1 + v L1 – Buck/Boost converter + v L2 – C1 + v C1 – L2 Vin iin L1 + v L1 – + v L2 – C1 + v C1 – L2 + Vout – Iout C
  • 3. 3 Buck/Boost converter This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higher • Before applying power, make sure that your D is at the minimum, and that a load is solidly connected • Limit your output voltage to 90V Vin iin L1 + v L1 – + v L2 – C1 + v C1 – L2 + Vout – Iout C
  • 4. 4 + Vout – Iout C Vin Iin L1 + 0 – + 0 – KVL and KCL in the average sense 0 0 Iout Iin C1 L2 Iout + Vin – KVL shows that VC1 = Vin Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter
  • 5. 5 Switch closed Vin iin L1 + Vin – + v L2 – C1 + Vin – L2 + Vout – Iout C assume constant + v D – KVL shows that vD = −(Vin + Vout), so the diode is open Thus, C is providing the load power when the switch is closed Vin iin L1 – Vin + C1 + Vin – L2 + Vout – Iout C – (Vin + Vout) + Iout iL1 and iL2 are ramping up (charging). C1 is charging L2. C is discharging. + Vin –
  • 6. 6 Switch open (assume the diode is conducting because, otherwise, the circuit cannot work) Vin iin L1 – Vout + C1 + Vin – L2 + Vout – Iout C C1 and C are charging. L1 and L2 are discharging. + Vout – KVL shows that VL1 = −Vout     0 1 1        out in avg L V D V D V in out V D D V     ) 1 ( D DV V in out   1 The input/output equation comes from recognizing that the average voltage across L1 is zero assume constant
  • 7. 7 Inductor L1 current rating in rms L I I 3 2 1  Use max During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same
  • 8. 8 Inductor L2 current rating   2 2 2 2 2 3 4 2 12 1 out out out rms L I I I I     out rms L I I 3 2 2  2Iout 0 Iavg = Iout ΔI iL2 Use max + Vout – Iout C Vin Iin L1 + 0 – + 0 – 0 0 Iout Iin C1 L2 Iout + Vin – Average values
  • 9. 9 MOSFET and diode currents and current ratings 0 2(Iin + Iout) 0 Take worst case D for each Vin iin L1 + v L1 – + v L2 – C1 + v C1 – L2 + Vout – Iout C MOSFET Diode iL1 + iL2   out in rms I I I   3 2 Use max switch closed switch open 2(Iin + Iout) iL1 + iL2
  • 10. 10 Output capacitor C current and current rating in Crms I I 3 2  out Crms I I  2Iin + Iout −Iout 0 As D → 1, Iin >> Iout , so iC = (iD – Iout) As D → 0, Iin << Iout , so   D I D I D DI I in out out in     1 , 1        out in Crms I I I , 3 2 max switch closed switch open
  • 11. 11 Series capacitor C1 current and current rating Switch closed, IC1 = −IL2 Vin iin L1 – Vin + C1 + Vin – L2 + Vout – Iout C – (Vin + Vout) + Iout + Vin – Vin iin L1 – Vout + C1 + Vin – L2 + Vout – Iout C + Vout – Switch open, IC1 = IL1
  • 12. 12 Series capacitor C1 current and current rating in rms C I I 3 2 1  2Iin −2Iout 0 As D → 1, Iin >> Iout , so iC1 As D → 0, Iin << Iout , so        out in rms C I I I 3 2 , 3 2 max 1 switch closed switch open out rms C I I 3 2 1  Switch closed, IC1 = −IL2 Switch open, IC1 = IL1
  • 13. 13 Worst-case load ripple voltage Cf I C T I C Q V out out       The worst case is where D → 1, where output capacitor C provides Iout for most of the period. Then, −Iout 0 iC = (iD – Iout)
  • 14. 14 Worst case ripple voltage on series capacitor C1 2Iin −2Iout 0 iC1 f C I V out    1 switch closed switch open   1 1 1 1 C T D I C DT I C Q V in out         Then, considering the worst case (i.e., D = 1)
  • 15. 15 Voltage ratings MOSFET and diode see (Vin + Vout) • Diode and MOSFET, use 2(Vin + Vout) • Capacitor C1, use 1.5Vin • Capacitor C, use 1.5Vout Vin L1 C1 + Vin – L2 + Vout – C – (Vin + Vout) + Vin L1 – Vout + C1 + Vin – L2 + Vout – C
  • 16. 16 Continuous current in L1 sec / 1 A L Vout      f L D V T D L D DV T D L V I boundary in boundary in boundary out in 1 1 1 1 1 1 2         f I D V L in in boundary 2 1  2Iin 0 Iavg = Iin iL (1 − D)T f I V L in in 2 1 guarantees continuous conduction Then, considering the worst case (i.e., D → 1), use max use min
  • 17. 17 Continuous current in L2 sec / 2 A L Vout  f L D V T D L V I boundary out boundary out out 2 ) 1 ( ) 1 ( 2 2      2Iout 0 Iavg = Iout iL (1 − D)T f I D V L out out boundary 2 ) 1 ( 2   f I V L out out 2 2  guarantees continuous conduction Then, considering the worst case (i.e., D → 0), use max use min
  • 18. 18 Impedance matching out out load I V R  equiv R     load out out out out in in equiv R D D I V D D D DI D V D I V R 2 2 1 1 1 1                      DC−DC Boost Converter + Vin − + − Iin + Vin − Iin Equivalent from source perspective Source D DV V in out   1   D D I I in out   1
  • 19. 19 Impedance matching     load out out out out in in equiv R D D I V D D D DI D V D I V R 2 2 1 1 1 1                      For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit) For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit) Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel
  • 20. 20 Example - connect a 100Ω load resistor PV Station 13, Bright Sun, Dec. 6, 2002 0 1 2 3 4 5 6 0 5 10 15 20 25 30 35 40 45 V(panel) - volts I - amps D = 0.80 D = 0.50 D = 0.88 With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition
  • 21. 21 Example - connect a 5Ω load resistor PV Station 13, Bright Sun, Dec. 6, 2002 0 1 2 3 4 5 6 0 5 10 15 20 25 30 35 40 45 V(panel) - volts I - amps D = 0.47 D = 0.18 D = 0.61
  • 22. 22 Worst-Case Component Ratings Comparisons for DC-DC Converters Converter Type Input Inductor Current (Arms) Output Capacitor Voltage Output Capacitor Current (Arms) Diode and MOSFET Voltage Diode and MOSFET Current (Arms) Buck/Boost in I 3 2 1.5 out V       out in I I , 3 2 max ) ( 2 out in V V    out in I I  3 2 5.66A p-p 200V, 250V 16A, 20A Our components 9A 250V 10A, 5A 10A 90V 40V, 90V Likely worst-case buck/boost situation 10A, 5A MOSFET M. 250V, 20A L1. 100µH, 9A C. 1500µF, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100µH, 9A C1. 33µF, 50V, 14A p-p BUCK/BOOST DESIGN
  • 23. 23 Comparisons of Output Capacitor Ripple Voltage Converter Type Volts (peak-to-peak) Buck/Boost Cf Iout 5A 1500µF 50kHz 0.067V MOSFET M. 250V, 20A L1. 100µH, 9A C. 1500µF, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100µH, 9A C1. 33µF, 50V, 14A p-p BUCK/BOOST DESIGN
  • 24. 24 Minimum Inductance Values Needed to Guarantee Continuous Current Converter Type For Continuous Current in the Input Inductor For Continuous Current in L2 Buck/Boost f I V L in in 2 1  f I V L out out 2 2  40V 2A 50kHz 200µH 90V 2A 50kHz 450µH MOSFET M. 250V, 20A L1. 100µH, 9A C. 1500µF, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100µH, 9A C1. 33µF, 50V, 14A p-p BUCK/BOOST DESIGN
  • 25. 25 Additional Components for Buck/Boost Converter Series Capacitor Voltage Series Capacitor (C1) Current (Arms) Series Capacitor (C1) Ripple Voltage (peak-to-peak) Second Inductor (L2) Current (Arms) 1.5 in V         out in I I 3 2 , 3 2 max f C Iout 1 out I 3 2 MOSFET M. 250V, 20A L1. 100µH, 9A C. 1500µF, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100µH, 9A C1. 33µF, 50V, 14A p-p 10A 5A 40V Likely worst-case buck/boost situation 5A 5A 33µF 50kHz 3.0V BUCK/BOOST DESIGN Our components 9A 14A p-p 50V Conclusion - 50kHz may be too low for buck/boost converter
  • 26. 26 Worst-Case Component Ratings Comparisons for DC-DC Converters Converter Type Input Inductor Current (Arms) Output Capacitor Voltage Output Capacitor Current (Arms) Diode and MOSFET Voltage Diode and MOSFET Current (Arms) Buck out I 3 2 1.5 out V out I 3 1 2 in V out I 3 2 Boost in I 3 2 1.5 out V out I 2 out V in I 3 2 Buck/Boost in I 3 2 1.5 out V         out in I I , 3 2 max   out in V V  2   out in I I  3 2 Additional Components for Buck/Boost Converter Series Capacitor Voltage Series Capacitor (C1) Current (Arms) Series Capacitor (C1) Ripple Voltage (peak-to- peak) Second Inductor (L2) Current (Arms) 1.5 in V         out in I I 3 2 , 3 2 max f C Iout 1 out I 3 2
  • 27. 27 Comparisons of Output Capacitor Ripple Voltage Converter Type Volts (peak-to-peak) Buck Cf Iout 4 Boost Cf Iout Buck/Boost Cf Iout Minimum Inductance Values Needed to Guarantee Continuous Current Converter Type For Continuous Current in the Input Inductor For Continuous Current in L2 Buck f I V L out out 2  – Boost f I V L in in 2  – Buck/Boost f I V L in in 2 1  f I V L out out 2 2 