Chapter 9
Polynomials
Section 9-1
Add and Subtract Polynomials
Essential Questions

 How do you write polynomials in standard form?
 How do you add and subtract polynomials?


 Where you’ll see this:
   Part-time jobs, travel, geography, modeling
Vocabulary
1. Monomial:




2. Coefficient:
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient:
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
    combined by addition or subtraction
5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
    combined by addition or subtraction
5. Term: Each monomial within a polynomial
Vocabulary
6. Binomial:
7. Trinomial:
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial:
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
    highest to lowest degree (highest to lowest
    exponent)
9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
    highest to lowest degree (highest to lowest
    exponent)
9. Like Terms: Terms that have the same variable
    parts (variables and exponents)
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3            2
             a. 2a + 3ab − 4b


               3           2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3            2
             a. 2a + 3ab − 4b
                       a

               3           2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3                 2
             a. 2a + 3ab − 4b
                         a

               3                 2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
                       (a + b)
Example 2
              Add the polynomials.
          2                           2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)




          2              2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x


             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                       2
                  3x

             2             2    2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x

             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x −1

             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                                 2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                              2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x −1

             2              2       2               2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
             2          2       2               2
       3x − 4 xy − x + 4 y + 2xy − y
Example 2
              Add the polynomials.
          2                                    2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x)
         2                                 2
      2x − 3x + 7 − 2x − 8 + x − 7x
                       2
                  3x −12x −1

             2                 2       2               2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
             2             2       2               2
       3x − 4 xy − x + 4 y + 2xy − y
                   2                   2
                 2x − 2xy + 3y
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
             x + 3y + 8 x − 2y − 4 x − y
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
             x + 3y + 8 x − 2y − 4 x − y
                          5x
Example 4
                    Simplify.
            3   2               3   2
    a. (6 x + 3x − 11x) + (2x − 9 x − 5 x)




        2       2               2       2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2               3       2
    a. (6 x + 3x − 11x) + (2x − 9 x − 5 x)
            3       2               3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x


        2               2               2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2                3       2
    a. (6 x + 3x − 11x) + (2x − 9 x − 5 x)
            3       2                3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3    2
                    8 x − 6 x − 16 x
        2               2                2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2                    3       2
    a. (6 x + 3x − 11x) + (2x − 9 x − 5 x)
            3       2                    3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3    2
                    8 x − 6 x − 16 x
        2               2                    2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
        2               2            2               2
      x y − 2xy + 8 + 7x y − 2xy + 4
Example 4
                                Simplify.
                3       2                        3       2
    a. (6 x + 3x − 11x) + (2x − 9 x − 5 x)
            3       2                        3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3        2
                    8 x − 6 x − 16 x
        2               2                        2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
        2               2                2               2
      x y − 2xy + 8 + 7x y − 2xy + 4
                            2            2
                    8 x y − 4 xy + 12
Example 4
                    Simplify.
        2          2       2          2     2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
Example 4
                    Simplify.
        2          2         2         2       2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
        2          2     2         2       2
      x y + x − xy + y − y − xy − 4 x y
Example 4
                    Simplify.
        2          2         2               2       2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
        2          2     2               2       2
      x y + x − xy + y − y − xy − 4 x y
               2                 2   2
            −3x y + x − 2xy + y − y
Homework
Homework


               p. 378 #1-39 odd




“Deeds, not stones, are the true monuments of the
             great.” - John L. Motley

Integrated Math 2 Section 9-1

  • 1.
  • 2.
    Section 9-1 Add andSubtract Polynomials
  • 3.
    Essential Questions Howdo you write polynomials in standard form? How do you add and subtract polynomials? Where you’ll see this: Part-time jobs, travel, geography, modeling
  • 4.
    Vocabulary 1. Monomial: 2. Coefficient: 3.Constant: 4. Polynomial: 5. Term:
  • 5.
    Vocabulary 1. Monomial: Anexpression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: 3. Constant: 4. Polynomial: 5. Term:
  • 6.
    Vocabulary 1. Monomial: Anexpression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: 4. Polynomial: 5. Term:
  • 7.
    Vocabulary 1. Monomial: Anexpression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: 5. Term:
  • 8.
    Vocabulary 1. Monomial: Anexpression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: A collection of terms that are combined by addition or subtraction 5. Term:
  • 9.
    Vocabulary 1. Monomial: Anexpression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: A collection of terms that are combined by addition or subtraction 5. Term: Each monomial within a polynomial
  • 10.
    Vocabulary 6. Binomial: 7. Trinomial: 8.Standard Form: 9. Like Terms:
  • 11.
    Vocabulary 6. Binomial: Apolynomial with two terms 7. Trinomial: 8. Standard Form: 9. Like Terms:
  • 12.
    Vocabulary 6. Binomial: Apolynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: 9. Like Terms:
  • 13.
    Vocabulary 6. Binomial: Apolynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: When a polynomial is written from highest to lowest degree (highest to lowest exponent) 9. Like Terms:
  • 14.
    Vocabulary 6. Binomial: Apolynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: When a polynomial is written from highest to lowest degree (highest to lowest exponent) 9. Like Terms: Terms that have the same variable parts (variables and exponents)
  • 15.
    Example 1 Tellthe variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7
  • 16.
    Example 1 Tellthe variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b a 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7
  • 17.
    Example 1 Tellthe variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b a 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7 (a + b)
  • 18.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 19.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 20.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 21.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 22.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 23.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y ) 2 2 2 2 3x − 4 xy − x + 4 y + 2xy − y
  • 24.
    Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y ) 2 2 2 2 3x − 4 xy − x + 4 y + 2xy − y 2 2 2x − 2xy + 3y
  • 25.
    Example 3 Subtract 4x+ y from the sum of x + 3y and 8x - 2y.
  • 26.
    Example 3 Subtract 4x+ y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y )
  • 27.
    Example 3 Subtract 4x+ y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y ) x + 3y + 8 x − 2y − 4 x − y
  • 28.
    Example 3 Subtract 4x+ y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y ) x + 3y + 8 x − 2y − 4 x − y 5x
  • 29.
    Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x) + (2x − 9 x − 5 x) 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 30.
    Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x) + (2x − 9 x − 5 x) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 31.
    Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x) + (2x − 9 x − 5 x) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 32.
    Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x) + (2x − 9 x − 5 x) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4) 2 2 2 2 x y − 2xy + 8 + 7x y − 2xy + 4
  • 33.
    Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x) + (2x − 9 x − 5 x) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4) 2 2 2 2 x y − 2xy + 8 + 7x y − 2xy + 4 2 2 8 x y − 4 xy + 12
  • 34.
    Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
  • 35.
    Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y ) 2 2 2 2 2 x y + x − xy + y − y − xy − 4 x y
  • 36.
    Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y ) 2 2 2 2 2 x y + x − xy + y − y − xy − 4 x y 2 2 2 −3x y + x − 2xy + y − y
  • 37.
  • 38.
    Homework p. 378 #1-39 odd “Deeds, not stones, are the true monuments of the great.” - John L. Motley