Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Multiplying Polynomials

1,214 views

Published on

  • Be the first to comment

  • Be the first to like this

Multiplying Polynomials

  1. 1. ADDING, SUBTRACTING, & MULTIPLYING POLYNOMIALS
  2. 2. ERROR ANALYSIS <ul><li>A student simplified 6a³ -a³ and got a 6 as a result. Write an explanation of the student’s error using the words coefficient and like terms. </li></ul>
  3. 3. CHALLANGE <ul><li>A 35-centimeter stick is cut into three pieces so that the two end pieces are each equal in length to one-third of the middle piece. How long is each piece? </li></ul>
  4. 4. MULTIPLYING POLYNOMIALS <ul><li>3a(6b + 7) </li></ul><ul><li>(3a)(6b) + (3a)(7) </li></ul><ul><li>18ab + 21a </li></ul><ul><li>2x(3x² + x – 4) </li></ul><ul><li>(2x)(3x²) + (2x)(x) + (2x)(-4) </li></ul><ul><li>6x³ + 2x² + -8x </li></ul>
  5. 5. YOUR TURN <ul><li>-4a²(-2a² + 3ab – 2b + 5) </li></ul>
  6. 6. MULTIPLYING BINOMIALS <ul><li>(x + 2)(x + 3) </li></ul><ul><li>x(x+ 3) + 2(x + 3) </li></ul><ul><li>(x)( x)+ (x)(3) + 2(x) + 2(3) </li></ul><ul><li>x² + 3x + 2x + 6 </li></ul><ul><li>x² + 5x + 6 </li></ul>
  7. 7. FOIL METHOD <ul><li>(x + 3)(x + 2) + + + </li></ul><ul><li>x² + 2x + 3x + 6 </li></ul><ul><li>x² + 5x+ 6 </li></ul>first 2) outer (x inside last First x·x Outer x ·2 Inside 3 · x Last 3 · 2
  8. 8. YOUR TURN – USE FOIL METHOD <ul><li>1. (x + 4)(x - 3) 2. (2x + 2)(x + 6) </li></ul><ul><li>3. (3ab² + b)(-2ab² - b) 4. (4xy + 3)(2x²y + 1) </li></ul>
  9. 9. FOIL <ul><li>1. (x + 4)(x – 4) 2. (x + 3)(x – 3) </li></ul><ul><li>3. (3y – 1)(3y + 1) 4. (2x² + 3)(2x² - 3) </li></ul><ul><li>5. (2x +y) (2x -y) 6. (x²y - 2)(x²y + 2) </li></ul>
  10. 10. FOIL <ul><li>1.(y + 1)(y + 1) 2. (x + 2)² </li></ul><ul><li>3. (2x - 3)² 4. .(y² + 1)² </li></ul><ul><li>5.(2x – y)² 6. .(2y² - 2x)² </li></ul>
  11. 11. SOME BINOMIAL PRODUCTS APPEAR SO MUCH WE NEED TO RECOGNIZE THE PATTERNS! <ul><li>Sum & Difference (S&D): </li></ul><ul><li>(a + b)(a – b) = a 2 – b 2 </li></ul><ul><li>Example: (x + 3)(x – 3) = x 2 – 9 </li></ul><ul><li>Square of Binomial: </li></ul><ul><li>(a + b) 2 = a 2 + 2ab + b 2 </li></ul><ul><li>(a - b) 2 = a 2 – 2ab + b 2 </li></ul>
  12. 12. MULTIPLYING POLYNOMIALS : HORIZONTALLY <ul><li>(3x 2 – 2x – 4)(x – 3) = </li></ul><ul><li>(3x 2 )(x – 3) </li></ul><ul><li>+ (-2x)(x – 3) </li></ul><ul><li>+ (-4)(x – 3) = </li></ul><ul><li>(3x 3 – 9x 2 ) + (-2x 2 + 6x) + (-4x + 12) = </li></ul><ul><li>3x 3 – 9x 2 – 2x 2 + 6x – 4x +12 = </li></ul><ul><li>3x 3 – 11x 2 + 2x + 12 </li></ul>
  13. 13. MULTIPLYING POLYNOMIALS: VERTICALLY <ul><li>(-x 2 + 2x + 4)(x – 3)= </li></ul><ul><li>-x 2 + 2x + 4 * x – 3 </li></ul><ul><li> 3x 2 – 6x – 12 </li></ul><ul><li> -x 3 + 2x 2 + 4x_____ </li></ul><ul><li> -x 3 + 5x 2 – 2x – 12 </li></ul>
  14. 14. MULTIPLYING 3 BINOMIALS : <ul><li>(x – 1)(x + 4)(x + 3) = </li></ul><ul><li>FOIL the first two: </li></ul><ul><li>(x 2 – x +4x – 4)(x + 3) = </li></ul><ul><li>(x 2 + 3x – 4)(x + 3) = </li></ul><ul><li>Then multiply the trinomial by the binomial </li></ul><ul><li>(x 2 + 3x – 4)(x) + (x 2 + 3x – 4)(3) = </li></ul><ul><li>(x 3 + 3x 2 – 4x) + (3x 2 + 9x – 12) = </li></ul><ul><li>x 3 + 6x 2 + 5x - 12 </li></ul>
  15. 15. LAST PATTERN <ul><li>Cube of a Binomial </li></ul><ul><li>(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 </li></ul><ul><li>(a – b) 3 = a 3 - 3a 2 b + 3ab 2 – b 3 </li></ul>
  16. 16. EXAMPLE: <ul><li>(x + 5) 3 = </li></ul><ul><li>a = x and b = 5 </li></ul><ul><li>x 3 + 3(x) 2 (5) + 3(x)(5) 2 + (5) 3 = </li></ul><ul><li>x 3 + 15x 2 + 75x + 125 </li></ul>

×