SlideShare a Scribd company logo
The World Leader in High-Performance Signal Processing Solutions




  FUNDAMENTALS OF THE RF
TRANSMISSION AND RECEPTION
            OF
      DIGITAL SIGNALS
The World Leader in High-Performance Signal Processing Solutions




    Part 1: Digital Modulation




2
Transmitting Bits
                    Bit Stream
    1     1   -1    1     1 -1       -1    -1   1     1          Bits

                                                            Divide into
    1     1   -1      1    1   -1    -1    -1   1     1      Symbols
                                                             (2 bits per Symbol)




                                       -135°        45°   Assign Phase
    45°        135°        -45°
                                                           to Symbols

                   135°             45°
                                                           Modulate
                                                          Phases on to
                                                            Carrier
                   -135°            -45°
3
Practical Digital Modulation using an IQ Modulator
         Filtered Bit Stream
                               I IN
                                      0

                                LO               RF OUT
           LO (from PLL)              90

                               Q IN
         Filtered Bit Stream                        Looks like Amplitude Modulation (AM) but this signal is
                                                   indeed phase modulated. Why the amplitude variations?



 Phase Splitter separates LO from PLL into “Quadrature” components of
  equal amplitude but 90 degrees out of phase
 Filtered bit streams from a dual DAC drive the I and Q inputs which are
  multiplied with the quadrature LOs
 The outputs of the two multipliers are combined to yield the modulated
  carrier
 This modulation coding scheme is called Quadrature Phase Shift Keying
  (QPSK)

    4
IQ Modulation in the Frequency Domain


                           I IN                             3 dB BW=Symbol Rate

                                    0

                           LO                  RF OUT
                  FLO               90
                                                                    FLO
                         Q IN



            3 dB BW=Symbol Rate/2




   I and Q baseband signals are mixed up to an IF or to RF. Modulated
    carrier bandwidth is twice the baseband bandwidth


5
Other Digital Phase Modulation Schemes
                       m=2, n=1                         m=4, n=2                              m=8, n=3




          BPSK – 1 bit/symbol              QPSK- 2 bits/symbol                 8-PSK – 3 bits/symbol
                                         m=16, n=4
                                                                                 m=64, n=8




                                                                 64 QAM – 6 bits/symbol
                       16 QAM – 4 bits/symbol

   By allowing more I and Q levels (beyond -1 and +1), we can implement higher order QAM
    modulation schemes.
   Higher Order Modulation Schemes → Higher Data Rate.
   But Symbols are closer together → Requires higher Signal-to-Noise Ratio for demodulation
   Increasing “Symbol Rate” increases data rate but widens Spectrum

6
Error Vector Magnitude - EVM
Q     Magnitude Error (I/Q error mag)
                {
    Actual                                             M
                                                       ∑ Z (k ) − R(k )
                                                                            2

    Signal                                     EVM =   k =1
                                                              M
                                                                                Unit = %
                                                                        2
                                                              ∑ R(k )
                                                              k =1




          φ            Ideal (Reference) Signal
                  Phase Error (I/Q error phase)
                                        I
   Noise and Imperfections in transmit and receive signal chains result in
    demodulated voltages which are displaced from their ideal location.
   Error Vector Magnitude expresses this dislocation
   Large EVM will result in Symbol Errors and degraded Bit Error Rate
   Higher Order Modulation Schemes → Symbols Closer Together → EVM More
    Critical

7
The Imperfect IQ Modulator                                       Gain
                                                              Imbalance
                                                   IQ MOD   (G1,G2,G3,G4)
                 IIN    Vofs1                                  Degrades
                                G3                               EVM
    Imbalance                          G1
     In Phase                         0
      Splitter                                        Vn
                                     89.5
     Degrades
       EVM                       G2
                 Q IN   Vofs2                               Noise risks
                                G4                          violation of
      Offset                                                 emissions
     Voltages                               LOIN            regulations
    Cause LO
    Leakage to
     RFOUT

8
Dealing with IQ Modulator Imperfections




 DAC incorporates Gain, Phase and Offset Voltage adjustment
  functions
 DAC and IQ Modulator have matching bias levels (0.5 V), permitting a
  glue-less interface with no level shifting requirements
 Modulator correction functions can also be performed in the digital
  domain

9
How Distortion Impacts Transmitters
                                      Marker 1 [T1]                  RBW     30 kHz         RF Att       20 dB
                     Ref Lvl                     -10.73 dBm          VBW    300 kHz
                     -10 dBm                99.48897796 MHz          SWT     84 ms          Unit            dBm
                                                          1
               -10
                                                                                  1 [T1]             -10.73 dBm
                                                                                                                   A
                                                                                                99.48897796 MHz
               -20
                                                                                 CH PWR                8.11 dBm
                                                                                 ACP Up              -58.77 dB
               -30                                                               ACP Low             -59.27 dB




ACLR=58 dBc    -40
                                                                                                                  1RM   Adjacent
               -50
                                                                                                                        Channel
               -60                                                                                                      Leakage
               -70
                                                                                                                        Ratio
                                                                                                                        Caused
               -80
                                                                                                                        By poor IMD
               -90
                                                                     C0
                                                       C0
                                                 cl1
              -100                    cl1
                                                                                          cu1
                                                                           cu1
              -110
                     Center 100 MHz                         3 MHz/                                  Span 30 MHz

              Date:        24.FEB.2006      12:00:50
  No Blockers to worry about in Transmitter.
  But excessive distortion creates Spectral Leakage into adjacent
   channels
  Distortion can be caused by any component in the signal chain,
   not just the modulator
10
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -79.38 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30
                                                                    1 [T1]            -79.38 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40
                                                                   CH PWR             -53.44 dBm
                                                                   ACP Up             -41.74 dB
      -50                                                          ACP Low            -41.71 dB



      -60
             1AVG                                                                                  1RM

      -70

                                                 1
      -80



      -90



     -100           ADJACENT                   MAIN                        ADJACENT
                     CHANNEL                  CHANNEL                       CHANNEL
     -110
                                                             C0
                                         C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
11
     Date:           9.NOV.2009   18:36:37
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -60.22 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30
                                                                    1 [T1]            -60.22 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40
                                                                   CH PWR             -35.08 dBm
                                                                   ACP Up             -60.05 dB
      -50                                                          ACP Low            -60.01 dB


                                                 1
      -60
             1AVG                                                                                  1RM

      -70



      -80



      -90



     -100           ADJACENT                   MAIN                        ADJACENT
                     CHANNEL                  CHANNEL                       CHANNEL
     -110
                                                             C0
                                         C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
12
     Date:           9.NOV.2009   18:33:38
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -33.52 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30                                        1
                                                                    1 [T1]            -33.52 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40
                                                                   CH PWR              -8.92 dBm
                                                                   ACP Up             -68.55 dB
      -50                                                          ACP Low            -71.69 dB



      -60
             1AVG                                                                                  1RM

      -70



      -80



      -90



     -100           ADJACENT                   MAIN                        ADJACENT
                     CHANNEL                  CHANNEL                       CHANNEL
     -110
                                                             C0
                                         C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
13
     Date:           9.NOV.2009   18:10:08
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -42.87 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30
                                                                    1 [T1]            -42.87 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40                                        1                 CH PWR             -17.67 dBm
                                                                   ACP Up             -73.47 dB
      -50                                                          ACP Low            -74.75 dB



      -60
             1AVG                                                                                  1RM

      -70



      -80



      -90



     -100



     -110
                                                             C0
                                        C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
14
     Date:          9.NOV.2009   18:12:07
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -36.78 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30
                                                 1                  1 [T1]            -36.78 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40
                                                                   CH PWR             -11.53 dBm
                                                                   ACP Up             -72.85 dB
      -50                                                          ACP Low            -74.71 dB



      -60
             1AVG                                                                                  1RM

      -70



      -80



      -90



     -100



     -110
                                                             C0
                                        C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
15
     Date:          9.NOV.2009   19:14:23
Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
            Ref Lvl                     -33.52 dBm     VBW    100 kHz
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
      -30                                        1
                                                                    1 [T1]            -33.52 dBm
                                                                                                    A
                                                                               1.95950000 GHz
      -40
                                                                   CH PWR              -8.92 dBm
                                                                   ACP Up             -68.55 dB
      -50                                                          ACP Low            -71.69 dB



      -60
             1AVG                                                                                  1RM

      -70



      -80



      -90



     -100



     -110
                                                             C0
                                        C0
                                  cl1
     -120 cl1
                                                                                            cu1
                                                                     cu1
     -130
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
16
     Date:          9.NOV.2009   18:10:08
What is happening here?
 50
                                                                  *
                                                                 Intercept
                                             SLOPE=1                 of
 0                                                            Fundamentals
                   Fundamentals                                     and
                           *
                       * *
                                                                Intermods
                   * *       IMD(dBc)
                                                                   (IP3)

 -50                                          SLOPE=3



                                  *
-100                          *
                           * Intermods
                       *
                   *
-150
             -20           -10           0     10       20   30       40     50
      OIP3 Intercept(dBm) = PFUND – (IMD/2)
      Knowing the OIP3 allows you to calculate Intermodulation Distortion
       (IMD) at any power level
17    Many devices do not follow this rule
Striking a Balance
                                  Poor SNR                                                                      Excessive Distortion
                                                                                                                                  Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
                              Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
                                                                                                                Ref Lvl                     -33.52 dBm     VBW    100 kHz
            Ref Lvl                     -79.38 dBm     VBW    100 kHz
                                                                                                                -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
            -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
                                                                                                          -30                                        1
      -30
                                                                    1 [T1]            -79.38 dBm                                                                        1 [T1]            -33.52 dBm
                                                                                                    A
                                                                                                                                                                                                        A
                                                                               1.95950000 GHz                                                                                      1.95950000 GHz
      -40                                                                                                 -40
                                                                   CH PWR             -53.44 dBm                                                                       CH PWR              -8.92 dBm
                                                                   ACP Up             -41.74 dB                                                                        ACP Up             -68.55 dB

      -50                                                          ACP Low            -41.71 dB           -50                                                          ACP Low            -71.69 dB



      -60                                                                                                 -60
             1AVG                                                                                  1RM           1AVG                                                                                  1RM

      -70                                                                                                 -70

                                                 1
      -80                                                                                                 -80


      -90
                                                                                                          -90


     -100
                                                                                                         -100


     -110
                                                             C0                                          -110
                                        C0                                                                                                                       C0
                                  cl1                                                                                                       C0
     -120 cl1                                                                                                                         cl1
                                                                                            cu1          -120 cl1
                                                                     cu1                                                                                                                        cu1
     -130
                                                                                                                                                                         cu1
            Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz            -130
                                                                                                                Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
     Date:          9.NOV.2009   18:36:37
                                                                                                         Date:          9.NOV.2009   18:10:08




 We need to set our gains and levels so that we can strike a balance
  between SNR and Distortion
 This is why our customers simultaneously demand low noise and
  low distortion
 Gain is generally distributed throughout the channel to achieve
  this goal
18
Last Word on Distortion…..
                                                      Marker 1 [T1]            RBW        10 kHz     RF Att        0 dB
                                    Ref Lvl                     -42.87 dBm     VBW    100 kHz
                                    -30 dBm                 1.95950000 GHz     SWT    370 ms         Unit            dBm
 •During an IP3               -30
                                                                                            1 [T1]            -42.87 dBm
                                                                                                                            A
 sweep, at a certain          -40                                        1
                                                                                                       1.95950000 GHz
                                                                                           CH PWR             -17.67 dBm
 power level, the                                                                          ACP Up             -73.47 dB

 power of the IMD             -50                                                          ACP Low            -74.75 dB


 tones will be equal          -60

 to the noise power                 1AVG                                                                                   1RM


 in a defined                 -70

                                           Spurious
 bandwidth. The SNR           -80
                                           Free
 at this point is the
                                           Dynamic
 SFDR of the
                              -90

                                           Range
 component                   -100

 •Don’t mix this up
                             -110
 with the SFDR of an                                            C0
                                                                                     C0

                                                          cl1
 ADC or DAC                  -120 cl1
                                                                                                                    cu1
                                                                                             cu1
                             -130
                                    Center 1.96 GHz                   1.46848 MHz/                   Span 14.6848 MHz
SFDR = (2/3)(IIP3-NF-10log(kTB))
                            Date:           9.NOV.2009   18:12:07

19
Key IQ Modulator Specifications

 Input IP3 (IIP3): Same as OIP3 but referred to input:
  Intermodulating Blockers can create IMD products that fall
  on the desired signal
 Noise Figure

 IP2: Figure of Merit for Second order Intermodulation
  Distortion. Poor IP2 can intermodulate with the desired
  signal and produce dc offsets
 LO Quadrature accuracy: Affects EVM/BER of recovered data




20
I/Q Modulator Key specifications
  Part      Freq                                 LO Sideband Noise P1dB OIP3 Specs       P/N                    Isy
                              Desc                                                                  Vs(V)             Package
 Number    (MHz)                               (dBm) (dBc) (dBm/Hz) (dBm) (dBm) @ (MHz) dBc/Hz                 (mA)
                                                                                                                       5.1×6.4
 AD8345   140-1000      Low Power I/Q Mod       -42    -42     -154.5   2.5    25     800    N/A    2.7-5.5     65
                                                                                                                      TSSOP-16
                                                                                                                       5.1×6.4
 AD8346   800-2500      Low Power I/Q Mod       -42    -36     -147      -3    20     1900   N/A    2.7-5.5     45
                                                                                                                      TSSOP-16
                                                                                                                       5.1x6.4
 AD8349   700-2700      Low Power I/Q Mod       -45    -35     -155     7.6    21     900    N/A   4.75-5.5    135
                                                                                                                      TSSOP-16
                                                                                                                         7X7
ADF9010   840-960      IQ Mod & Int-N PLL       -40    -46     -158     10     24     900    -83   3.15-3.45   360
                                                                                                                      LFCSP-48
                                                                                                                         4×4
ADL5370   300-1000     Narrowband IQ Mod        -50    -41     -160     11.0   24     450    N/A   4.75-5.25   205
                                                                                                                      LFCSP-24
                                                                                                                         4×4
ADL5371   500-1500     Narrowband IQ Mod        -50    -55     -158.6   14.4   27     900    N/A   4.75-5.25   175
                                                                                                                      LFCSP-24
                                                                                                                         4×4
ADL5372 1500-2500      Narrowband IQ Mod        -45    -45     -158     14.2   27     1900   N/A   4.75-5.25   165
                                                                                                                      LFCSP-24
                                                                                                                         4x4
ADL5373 2300-3000      Narrowband IQ Mod        -32    -57     -157.1   13.8   26     2500   N/A   4.75-5.25   174
                                                                                                                      LFCSP-24
                                                                                                                         4×4
ADL5374 3000-4000      Narrowband IQ Mod       -32.8   -50     -159.6   12.0   22.8   3500   N/A   4.75-5.25   173
                                                                                                                      LFCSP-24
                                                                                                                         4×4
ADL5375   400-6000   IQ Mod w Output Disable   -46.2   -52.1   -160     9.4    26.8   900    N/A   4.75-5.25   200
                                                                                                                      LFCSP-24
                                                                                                                         4×4
ADL5385   50-2200    2XLO Broadband IQ Mod      -46    -50     -159     11.0   26     350    N/A   4.75-5.5    215
                                                                                                                      LFCSP-24
                                                                                                                         6×6
ADL5386   50-2200    2XLO IQ Mod & VVA&AGC      -38    -46     -160     11.1   25     350    N/A   4.75-5.5    230
                                                                                                                      LFCSP-40
                                                                                                                         6x6
ADRF6701 750-1100 IQ Mod & Frac-N PLL&VCO       -45    -40     -158     14     29     900    -93   4.75-5.25   260
                                                                                                                      LFCSP-40
                                                                                                                         6x6
ADRF6702 1550-2150 IQ Mod & Frac-N PLL&VCO      -40    -33     -158     14     26     1800   -90   4.75-5.25   260
                                                                                                                      LFCSP-40
                                                                                                                         6x6
ADRF6703 2100-2600 IQ Mod & Frac-N PLL&VCO      -40    -40     -158     15     33     2200   -93   4.75-5.5    260
                                                                                                                      LFCSP-40
                                                                                                                         6x6
ADRF6704 2500-2900 IQ Mod & Frac-N PLL&VCO      -41    -40     -158     15     31     2600   -92   4.75-5.5    260
                                                                                                                      LFCSP-40
                                                                                                                         8X8
ADRF6750 950-1575    IQ Mod & Frac-N PLL&VCO    -45    -45     -157     8.5    21     1200   -93   4.75-5.25   310
                                                                                                                      LFCSP-56


  21
The World Leader in High-Performance Signal Processing Solutions




     Part 2: Digital Demodulation




22
Recovering Data from a Digitally Modulated Carrier

                                    Iout

                                             0
                         VREF
                                             90




                                    Qout
                                                         70 MHz
                         VREF
              Comparators
     (real systems use Dual ADCs)
                                            70 MHz
                                           Sine Wave


  Reverse process to IQ Modulation
  IQ Demodulator extracts phase (and amplitude) information from
   the modulated signal and presents it in XY (or IQ) format.
  Apply I and Q outputs to an ADC or Comparator and bits can be
   recovered.
23
Critical IQ Demodulator Specs – LO to RF Leakage


             -60dBm
                                                        -30dBm(~20mVp-p)

                                                        -40dBm

                  FLO
                                                                           ω

                      A               B             C
                            LNA                                    ADC
  -70dBm
                                  Leakage
        Desired


                                       0dBm                      Assume,
                        ω
                                                        Gain from A to C =30dB


                                              FLO        LO to RF leakage ~ 60dB


 •If some of the LO leaks to the RF input, it mixes
 (multiplies) with itself in the mixer generating unwanted dc
 offsets on top of the recovered baseband data stream

 24
What is causing the poor quality of
          this demodulated Constellation?




                                                                  Symbol
                                                                  Decision
                                                                 Threshold
                                                                  If the symbol lands
                                                                on the edge or outside
                                                                 of the box, bit errors
                                                                        will occur




    Very poor LO Quadrature Phase Split (in DMOD)
    Dc Offset of the complete constellation (probably LO to RF Leakage)
    Noise has enlarged the footprint of the constellation points (poor Receiver
     Noise Figure)
25
Reading the Demodulated Constellation




 Signal   Compression (signal chain is being over driven)
Key IQ DMOD Specifications

 Input IP3 (IIP3): Same as OIP3 but referred to input:
  Intermodulating Blockers can create IMD products that fall
  on the desired signal
 Noise Figure

 IP2: Figure of Merit for Second order Intermodulation
  Distortion. Poor IP2 can intermodulate with the desired
  signal and produce dc offsets
 LO Quadrature accuracy: Affects EVM/BER of recovered data




27
IQ Demodulators
                      VGA    IQ   Quadrature             Noise
            Freq                              P1dB  IIP3        Specs   Isy          VS
Part No.             Range 3dB BW    Error               Figure                                Package
           (MHz)                             (dBm) (dBm)        @(MHz) (mA)          (V)
                      (dB)  (MHz)  (dB/deg)              (dBm)

                                                                                                9.7x6.4
 AD8347 800-2700      70     65     0.3/1º      -2    +11.5    11     1900   64     2.7-5.5
                                                                                               TSSOP-28

                                                                                                9.7x6.4
 AD8348    50-1000    44    125    0.25/0.5º   +13    +28     10.75   380    48     2.7-5.5
                                                                                               TSSOP-28

                                                                                                 4X4
ADL5382 700-2700      N/A   370    0.05/0.2º   14.4   30.5    15.6    1900   220   4.75-5.25
                                                                                               LFCSP-24

                                                                                                 4X4
ADL5387 50-2000       N/A   240    0.05/0.2º   +13    +31      12     140    180      5
                                                                                               LFCSP-24

                                                                                                 4X4
ADL5380 400-6000      N/A   390   0.07/0.25º   11.6   27.8    11.7    1900   245      5
                                                                                               LFCSP-24

                                                                                                 8X8
ADRF6850 100-1000     60    300    0.1/0.5º    12     22.5     11     800    350   3.15-3.45
                                                                                               LFCSP-56




  28
Application Example – Complete Direct Conversion Receiver




                                       Direct Conversion
                                        Receiver has no IFs and
                                        no IF Filters
                                       Variable gain after IQ
                                        DMOD is used to
                                        optimize the peak-to-
                                        peak swing of the signal
                                        for the ADCs


29
Receiver EVM vs Input power

                                using ADF4350 PLL/VCO as LO source
                    -10

                    -15
Modulation Error Rate-




                                                      using ADF4350
                    -20                               PLL/VCO as LO
                                                      source
      MER-dB




                    -25

                    -30

                    -35

                    -40
                          -90   -80    -70      -60     -50           -40   -30   -20
                                             Input Power (dBm)
30
An IQ DMOD-based Receiver




 Filtersand Amplifiers amplify signal and remove out-of-band
  blockers
 Variable gain after IQ DMOD is used to optimize the peak-to-peak
  swing of the signal for the ADCs
 When the input frequency to the IQ Modulator is also the receive
  frequency, we have a Direct Conversion Receiver (Zero IF)

 31
AD8348 IQ Demodulator with Integrated VGA




 Built-in VGA has 45 dB of gain control range
 VGA will still require external circuitry to implement AGC




32

More Related Content

What's hot

Receiver design
Receiver designReceiver design
Receiver design
Pei-Che Chang
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering
criterion123
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debug
Pei-Che Chang
 
Carrier Aggregation Discussion
Carrier Aggregation DiscussionCarrier Aggregation Discussion
Carrier Aggregation Discussion
criterion123
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
criterion123
 
RF fundamentals
RF fundamentalsRF fundamentals
RF fundamentals
Dhanraj Puduchery Venu
 
LTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwideLTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwide
criterion123
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
Sura Satish Babu
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
criterion123
 
RF Issue Due To PA Timing
RF Issue Due To PA TimingRF Issue Due To PA Timing
RF Issue Due To PA Timing
criterion123
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
Phani Kumar
 
Introduction to PAMiD
Introduction to PAMiDIntroduction to PAMiD
Introduction to PAMiD
criterion123
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
Ritul Sonania
 
Doppler Spread and Coherence Time.pptx
Doppler Spread and Coherence Time.pptxDoppler Spread and Coherence Time.pptx
Doppler Spread and Coherence Time.pptx
BhavanaMU012
 
QAM
QAMQAM
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
SHIV DUTT
 
Mimo
MimoMimo
Mimo
Virak Sou
 
Introduction to I/Q signal
Introduction to I/Q signalIntroduction to I/Q signal
Introduction to I/Q signal
criterion123
 
Reverse IMD
Reverse IMDReverse IMD
Reverse IMD
criterion123
 
Cwte_Wi-Fii6-presentation_dec_7_2021
Cwte_Wi-Fii6-presentation_dec_7_2021Cwte_Wi-Fii6-presentation_dec_7_2021
Cwte_Wi-Fii6-presentation_dec_7_2021
Mayur Sarode
 

What's hot (20)

Receiver design
Receiver designReceiver design
Receiver design
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debug
 
Carrier Aggregation Discussion
Carrier Aggregation DiscussionCarrier Aggregation Discussion
Carrier Aggregation Discussion
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
RF fundamentals
RF fundamentalsRF fundamentals
RF fundamentals
 
LTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwideLTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwide
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
 
RF Issue Due To PA Timing
RF Issue Due To PA TimingRF Issue Due To PA Timing
RF Issue Due To PA Timing
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
 
Introduction to PAMiD
Introduction to PAMiDIntroduction to PAMiD
Introduction to PAMiD
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Doppler Spread and Coherence Time.pptx
Doppler Spread and Coherence Time.pptxDoppler Spread and Coherence Time.pptx
Doppler Spread and Coherence Time.pptx
 
QAM
QAMQAM
QAM
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Mimo
MimoMimo
Mimo
 
Introduction to I/Q signal
Introduction to I/Q signalIntroduction to I/Q signal
Introduction to I/Q signal
 
Reverse IMD
Reverse IMDReverse IMD
Reverse IMD
 
Cwte_Wi-Fii6-presentation_dec_7_2021
Cwte_Wi-Fii6-presentation_dec_7_2021Cwte_Wi-Fii6-presentation_dec_7_2021
Cwte_Wi-Fii6-presentation_dec_7_2021
 

Viewers also liked

A Glimpse into Developing Software-Defined Radio by Python
A Glimpse into Developing Software-Defined Radio by PythonA Glimpse into Developing Software-Defined Radio by Python
A Glimpse into Developing Software-Defined Radio by Python
Albert Huang
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
ankit_master
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
Rohde & Schwarz North America
 
Vsat handbook
Vsat handbookVsat handbook
Vsat handbook
Tiệp Vũ Quang
 
180 hybrid-coupler
180 hybrid-coupler180 hybrid-coupler
180 hybrid-coupler
Ahmad Mahfouz
 
Integrated Software-Defined Radio (SDR) - VE2013
Integrated Software-Defined Radio (SDR) - VE2013Integrated Software-Defined Radio (SDR) - VE2013
Integrated Software-Defined Radio (SDR) - VE2013
Analog Devices, Inc.
 
Design Con VNA
Design Con VNADesign Con VNA
Design Con VNA
Neil Jarvis
 
18629611 rf-and-gsm-fundamentals
18629611 rf-and-gsm-fundamentals18629611 rf-and-gsm-fundamentals
18629611 rf-and-gsm-fundamentals
ugamadi
 
True Differential S-Parameter Measurements
True Differential S-Parameter MeasurementsTrue Differential S-Parameter Measurements
True Differential S-Parameter Measurements
Rohde & Schwarz North America
 
Telvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna PptTelvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna Ppt
soumya_12
 
FTTH versus LTE : Friend or Foe
FTTH versus LTE : Friend or FoeFTTH versus LTE : Friend or Foe
FTTH versus LTE : Friend or Foe
Dr.Joko Suryana
 
Microwave Coupler
Microwave CouplerMicrowave Coupler
Microwave Coupler
Írfän Ínginé
 
Software defined radio technology : ITB research activities
Software defined radio technology : ITB research activitiesSoftware defined radio technology : ITB research activities
Software defined radio technology : ITB research activities
Dr.Joko Suryana
 
Lecture 3 analisis radioprop p1
Lecture 3 analisis radioprop   p1Lecture 3 analisis radioprop   p1
Lecture 3 analisis radioprop p1
nica2009
 
Software Defined Radio (SDR)
Software Defined Radio (SDR)Software Defined Radio (SDR)
Software Defined Radio (SDR)
Drew Fustini
 
Microwave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsMicrowave- directional coupler paramets & applications
Microwave- directional coupler paramets & applications
JETISH
 
Two port network
Two port networkTwo port network
Two port network
kaushal boghani
 
Cw 4 q16 earnings presentation final
Cw 4 q16 earnings presentation finalCw 4 q16 earnings presentation final
Cw 4 q16 earnings presentation final
q4curtisswright
 
Spectrum analyzer
Spectrum  analyzerSpectrum  analyzer
Spectrum analyzer
skysunilyadav
 

Viewers also liked (20)

A Glimpse into Developing Software-Defined Radio by Python
A Glimpse into Developing Software-Defined Radio by PythonA Glimpse into Developing Software-Defined Radio by Python
A Glimpse into Developing Software-Defined Radio by Python
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
 
Vsat handbook
Vsat handbookVsat handbook
Vsat handbook
 
180 hybrid-coupler
180 hybrid-coupler180 hybrid-coupler
180 hybrid-coupler
 
Integrated Software-Defined Radio (SDR) - VE2013
Integrated Software-Defined Radio (SDR) - VE2013Integrated Software-Defined Radio (SDR) - VE2013
Integrated Software-Defined Radio (SDR) - VE2013
 
Design Con VNA
Design Con VNADesign Con VNA
Design Con VNA
 
18629611 rf-and-gsm-fundamentals
18629611 rf-and-gsm-fundamentals18629611 rf-and-gsm-fundamentals
18629611 rf-and-gsm-fundamentals
 
True Differential S-Parameter Measurements
True Differential S-Parameter MeasurementsTrue Differential S-Parameter Measurements
True Differential S-Parameter Measurements
 
Telvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna PptTelvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna Ppt
 
FTTH versus LTE : Friend or Foe
FTTH versus LTE : Friend or FoeFTTH versus LTE : Friend or Foe
FTTH versus LTE : Friend or Foe
 
Spectrum analyzer
Spectrum analyzerSpectrum analyzer
Spectrum analyzer
 
Microwave Coupler
Microwave CouplerMicrowave Coupler
Microwave Coupler
 
Software defined radio technology : ITB research activities
Software defined radio technology : ITB research activitiesSoftware defined radio technology : ITB research activities
Software defined radio technology : ITB research activities
 
Lecture 3 analisis radioprop p1
Lecture 3 analisis radioprop   p1Lecture 3 analisis radioprop   p1
Lecture 3 analisis radioprop p1
 
Software Defined Radio (SDR)
Software Defined Radio (SDR)Software Defined Radio (SDR)
Software Defined Radio (SDR)
 
Microwave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsMicrowave- directional coupler paramets & applications
Microwave- directional coupler paramets & applications
 
Two port network
Two port networkTwo port network
Two port network
 
Cw 4 q16 earnings presentation final
Cw 4 q16 earnings presentation finalCw 4 q16 earnings presentation final
Cw 4 q16 earnings presentation final
 
Spectrum analyzer
Spectrum  analyzerSpectrum  analyzer
Spectrum analyzer
 

Similar to Fundamentals of the RF Transmission and Reception of Digital Signals

Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
taha25
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
Anaren, Inc.
 
Wideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
Wideband Complex Modulation Analysis Using a Real-Time Digital DemodulatorWideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
Wideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
Rohde & Schwarz North America
 
Performances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéairePerformances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéaire
Rachidz
 
DPSK.pptx
DPSK.pptxDPSK.pptx
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass ModulationM-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
DrAimalKhan
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
SiddharthWagh14
 
05 signal encodingtechniques
05 signal encodingtechniques05 signal encodingtechniques
05 signal encodingtechniques
Orbay Yeşil
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
Magdi Mohamed
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
Bise Mond
 
17
1717
3 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver13 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver1
Mohd Ehtesham Khan Afridi
 
3 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver13 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver1
sonalikiran
 
Adc f05
Adc f05Adc f05
Phase shift keying
Phase shift keyingPhase shift keying
Phase shift keying
BushraShaikh44
 
Design and implementation of qpsk modulator using digital subcarrier
Design and implementation of qpsk modulator using digital subcarrierDesign and implementation of qpsk modulator using digital subcarrier
Design and implementation of qpsk modulator using digital subcarrier
Gongadi Nagaraju
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
ssuserb4d806
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
shrutishreya14
 
Basics of RF
Basics of RFBasics of RF
The introduction to Telecomunication engineering
The introduction to Telecomunication engineeringThe introduction to Telecomunication engineering
The introduction to Telecomunication engineering
novrain1
 

Similar to Fundamentals of the RF Transmission and Reception of Digital Signals (20)

Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
 
Wideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
Wideband Complex Modulation Analysis Using a Real-Time Digital DemodulatorWideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
Wideband Complex Modulation Analysis Using a Real-Time Digital Demodulator
 
Performances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéairePerformances des turbo codes parallèles pour un canal satellite non linéaire
Performances des turbo codes parallèles pour un canal satellite non linéaire
 
DPSK.pptx
DPSK.pptxDPSK.pptx
DPSK.pptx
 
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass ModulationM-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
 
05 signal encodingtechniques
05 signal encodingtechniques05 signal encodingtechniques
05 signal encodingtechniques
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
 
17
1717
17
 
3 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver13 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver1
 
3 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver13 g 4g adv_chal 041406 ver1
3 g 4g adv_chal 041406 ver1
 
Adc f05
Adc f05Adc f05
Adc f05
 
Phase shift keying
Phase shift keyingPhase shift keying
Phase shift keying
 
Design and implementation of qpsk modulator using digital subcarrier
Design and implementation of qpsk modulator using digital subcarrierDesign and implementation of qpsk modulator using digital subcarrier
Design and implementation of qpsk modulator using digital subcarrier
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Basics of RF
Basics of RFBasics of RF
Basics of RF
 
The introduction to Telecomunication engineering
The introduction to Telecomunication engineeringThe introduction to Telecomunication engineering
The introduction to Telecomunication engineering
 

More from Analog Devices, Inc.

AD-IP-JESD204 JESD204B Interface Framework
AD-IP-JESD204 JESD204B Interface FrameworkAD-IP-JESD204 JESD204B Interface Framework
AD-IP-JESD204 JESD204B Interface Framework
Analog Devices, Inc.
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Analog Devices, Inc.
 
RadioVerse
RadioVerseRadioVerse
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training Module
Analog Devices, Inc.
 
RF Control Products Training Module
RF Control Products Training ModuleRF Control Products Training Module
RF Control Products Training Module
Analog Devices, Inc.
 
Digital Audio Bus Technology
Digital Audio Bus TechnologyDigital Audio Bus Technology
Digital Audio Bus Technology
Analog Devices, Inc.
 
Applying Digital Isolators in Motor Control
Applying Digital Isolators in Motor ControlApplying Digital Isolators in Motor Control
Applying Digital Isolators in Motor Control
Analog Devices, Inc.
 
Isolated Gate Drivers for Industrial Motor Drives
Isolated Gate Drivers for Industrial Motor Drives Isolated Gate Drivers for Industrial Motor Drives
Isolated Gate Drivers for Industrial Motor Drives
Analog Devices, Inc.
 
The Internet of Tomato
The Internet of TomatoThe Internet of Tomato
The Internet of Tomato
Analog Devices, Inc.
 
Software-defined radio: The Wireless Revolution
Software-defined radio: The Wireless RevolutionSoftware-defined radio: The Wireless Revolution
Software-defined radio: The Wireless Revolution
Analog Devices, Inc.
 
SPIsolator Dedicated Digital Isolator for SPI Communications
SPIsolator Dedicated Digital Isolator for SPI CommunicationsSPIsolator Dedicated Digital Isolator for SPI Communications
SPIsolator Dedicated Digital Isolator for SPI Communications
Analog Devices, Inc.
 
Industry’s performance leading ultra low-power dsp solution
Industry’s performance leading ultra low-power dsp solutionIndustry’s performance leading ultra low-power dsp solution
Industry’s performance leading ultra low-power dsp solution
Analog Devices, Inc.
 
Powering Noise Sensitive Systems - VE2013
Powering Noise Sensitive Systems - VE2013Powering Noise Sensitive Systems - VE2013
Powering Noise Sensitive Systems - VE2013
Analog Devices, Inc.
 
Motor Control - VE2013
Motor Control - VE2013Motor Control - VE2013
Motor Control - VE2013
Analog Devices, Inc.
 
Signal Chain Designer: A New Way to Design Online - VE2013
Signal Chain Designer: A New Way to Design Online - VE2013Signal Chain Designer: A New Way to Design Online - VE2013
Signal Chain Designer: A New Way to Design Online - VE2013
Analog Devices, Inc.
 
Sensors for Low Level Signal Acquisition - VE2013
Sensors for Low Level Signal Acquisition - VE2013Sensors for Low Level Signal Acquisition - VE2013
Sensors for Low Level Signal Acquisition - VE2013
Analog Devices, Inc.
 
Process Control Systems - VE2013
Process Control Systems - VE2013Process Control Systems - VE2013
Process Control Systems - VE2013
Analog Devices, Inc.
 
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Analog Devices, Inc.
 
Instrumentation: Liquid and Gas Sensing - VE2013
Instrumentation: Liquid and Gas Sensing - VE2013Instrumentation: Liquid and Gas Sensing - VE2013
Instrumentation: Liquid and Gas Sensing - VE2013
Analog Devices, Inc.
 
High Speed Data Connectivity: More Than Hardware - VE2013
High Speed Data Connectivity: More Than Hardware - VE2013High Speed Data Connectivity: More Than Hardware - VE2013
High Speed Data Connectivity: More Than Hardware - VE2013
Analog Devices, Inc.
 

More from Analog Devices, Inc. (20)

AD-IP-JESD204 JESD204B Interface Framework
AD-IP-JESD204 JESD204B Interface FrameworkAD-IP-JESD204 JESD204B Interface Framework
AD-IP-JESD204 JESD204B Interface Framework
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
 
RadioVerse
RadioVerseRadioVerse
RadioVerse
 
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training Module
 
RF Control Products Training Module
RF Control Products Training ModuleRF Control Products Training Module
RF Control Products Training Module
 
Digital Audio Bus Technology
Digital Audio Bus TechnologyDigital Audio Bus Technology
Digital Audio Bus Technology
 
Applying Digital Isolators in Motor Control
Applying Digital Isolators in Motor ControlApplying Digital Isolators in Motor Control
Applying Digital Isolators in Motor Control
 
Isolated Gate Drivers for Industrial Motor Drives
Isolated Gate Drivers for Industrial Motor Drives Isolated Gate Drivers for Industrial Motor Drives
Isolated Gate Drivers for Industrial Motor Drives
 
The Internet of Tomato
The Internet of TomatoThe Internet of Tomato
The Internet of Tomato
 
Software-defined radio: The Wireless Revolution
Software-defined radio: The Wireless RevolutionSoftware-defined radio: The Wireless Revolution
Software-defined radio: The Wireless Revolution
 
SPIsolator Dedicated Digital Isolator for SPI Communications
SPIsolator Dedicated Digital Isolator for SPI CommunicationsSPIsolator Dedicated Digital Isolator for SPI Communications
SPIsolator Dedicated Digital Isolator for SPI Communications
 
Industry’s performance leading ultra low-power dsp solution
Industry’s performance leading ultra low-power dsp solutionIndustry’s performance leading ultra low-power dsp solution
Industry’s performance leading ultra low-power dsp solution
 
Powering Noise Sensitive Systems - VE2013
Powering Noise Sensitive Systems - VE2013Powering Noise Sensitive Systems - VE2013
Powering Noise Sensitive Systems - VE2013
 
Motor Control - VE2013
Motor Control - VE2013Motor Control - VE2013
Motor Control - VE2013
 
Signal Chain Designer: A New Way to Design Online - VE2013
Signal Chain Designer: A New Way to Design Online - VE2013Signal Chain Designer: A New Way to Design Online - VE2013
Signal Chain Designer: A New Way to Design Online - VE2013
 
Sensors for Low Level Signal Acquisition - VE2013
Sensors for Low Level Signal Acquisition - VE2013Sensors for Low Level Signal Acquisition - VE2013
Sensors for Low Level Signal Acquisition - VE2013
 
Process Control Systems - VE2013
Process Control Systems - VE2013Process Control Systems - VE2013
Process Control Systems - VE2013
 
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013
 
Instrumentation: Liquid and Gas Sensing - VE2013
Instrumentation: Liquid and Gas Sensing - VE2013Instrumentation: Liquid and Gas Sensing - VE2013
Instrumentation: Liquid and Gas Sensing - VE2013
 
High Speed Data Connectivity: More Than Hardware - VE2013
High Speed Data Connectivity: More Than Hardware - VE2013High Speed Data Connectivity: More Than Hardware - VE2013
High Speed Data Connectivity: More Than Hardware - VE2013
 

Recently uploaded

GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
kumardaparthi1024
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
WeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation TechniquesWeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation Techniques
Postman
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Webinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data WarehouseWebinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data Warehouse
Federico Razzoli
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
Zilliz
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
innovationoecd
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
Edge AI and Vision Alliance
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
Zilliz
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 

Recently uploaded (20)

GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
WeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation TechniquesWeTestAthens: Postman's AI & Automation Techniques
WeTestAthens: Postman's AI & Automation Techniques
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Webinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data WarehouseWebinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data Warehouse
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
 

Fundamentals of the RF Transmission and Reception of Digital Signals

  • 1. The World Leader in High-Performance Signal Processing Solutions FUNDAMENTALS OF THE RF TRANSMISSION AND RECEPTION OF DIGITAL SIGNALS
  • 2. The World Leader in High-Performance Signal Processing Solutions Part 1: Digital Modulation 2
  • 3. Transmitting Bits Bit Stream 1 1 -1 1 1 -1 -1 -1 1 1 Bits Divide into 1 1 -1 1 1 -1 -1 -1 1 1 Symbols (2 bits per Symbol) -135° 45° Assign Phase 45° 135° -45° to Symbols 135° 45° Modulate Phases on to Carrier -135° -45° 3
  • 4. Practical Digital Modulation using an IQ Modulator Filtered Bit Stream I IN 0 LO RF OUT LO (from PLL) 90 Q IN Filtered Bit Stream Looks like Amplitude Modulation (AM) but this signal is indeed phase modulated. Why the amplitude variations?  Phase Splitter separates LO from PLL into “Quadrature” components of equal amplitude but 90 degrees out of phase  Filtered bit streams from a dual DAC drive the I and Q inputs which are multiplied with the quadrature LOs  The outputs of the two multipliers are combined to yield the modulated carrier  This modulation coding scheme is called Quadrature Phase Shift Keying (QPSK) 4
  • 5. IQ Modulation in the Frequency Domain I IN 3 dB BW=Symbol Rate 0 LO RF OUT FLO 90 FLO Q IN 3 dB BW=Symbol Rate/2  I and Q baseband signals are mixed up to an IF or to RF. Modulated carrier bandwidth is twice the baseband bandwidth 5
  • 6. Other Digital Phase Modulation Schemes m=2, n=1 m=4, n=2 m=8, n=3 BPSK – 1 bit/symbol QPSK- 2 bits/symbol 8-PSK – 3 bits/symbol m=16, n=4 m=64, n=8 64 QAM – 6 bits/symbol 16 QAM – 4 bits/symbol  By allowing more I and Q levels (beyond -1 and +1), we can implement higher order QAM modulation schemes.  Higher Order Modulation Schemes → Higher Data Rate.  But Symbols are closer together → Requires higher Signal-to-Noise Ratio for demodulation  Increasing “Symbol Rate” increases data rate but widens Spectrum 6
  • 7. Error Vector Magnitude - EVM Q Magnitude Error (I/Q error mag) { Actual M ∑ Z (k ) − R(k ) 2 Signal EVM = k =1 M Unit = % 2 ∑ R(k ) k =1 φ Ideal (Reference) Signal Phase Error (I/Q error phase) I  Noise and Imperfections in transmit and receive signal chains result in demodulated voltages which are displaced from their ideal location.  Error Vector Magnitude expresses this dislocation  Large EVM will result in Symbol Errors and degraded Bit Error Rate  Higher Order Modulation Schemes → Symbols Closer Together → EVM More Critical 7
  • 8. The Imperfect IQ Modulator Gain Imbalance IQ MOD (G1,G2,G3,G4) IIN Vofs1 Degrades G3 EVM Imbalance G1 In Phase 0 Splitter Vn 89.5 Degrades EVM G2 Q IN Vofs2 Noise risks G4 violation of Offset emissions Voltages LOIN regulations Cause LO Leakage to RFOUT 8
  • 9. Dealing with IQ Modulator Imperfections  DAC incorporates Gain, Phase and Offset Voltage adjustment functions  DAC and IQ Modulator have matching bias levels (0.5 V), permitting a glue-less interface with no level shifting requirements  Modulator correction functions can also be performed in the digital domain 9
  • 10. How Distortion Impacts Transmitters Marker 1 [T1] RBW 30 kHz RF Att 20 dB Ref Lvl -10.73 dBm VBW 300 kHz -10 dBm 99.48897796 MHz SWT 84 ms Unit dBm 1 -10 1 [T1] -10.73 dBm A 99.48897796 MHz -20 CH PWR 8.11 dBm ACP Up -58.77 dB -30 ACP Low -59.27 dB ACLR=58 dBc -40 1RM Adjacent -50 Channel -60 Leakage -70 Ratio Caused -80 By poor IMD -90 C0 C0 cl1 -100 cl1 cu1 cu1 -110 Center 100 MHz 3 MHz/ Span 30 MHz Date: 24.FEB.2006 12:00:50  No Blockers to worry about in Transmitter.  But excessive distortion creates Spectral Leakage into adjacent channels  Distortion can be caused by any component in the signal chain, not just the modulator 10
  • 11. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -79.38 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 [T1] -79.38 dBm A 1.95950000 GHz -40 CH PWR -53.44 dBm ACP Up -41.74 dB -50 ACP Low -41.71 dB -60 1AVG 1RM -70 1 -80 -90 -100 ADJACENT MAIN ADJACENT CHANNEL CHANNEL CHANNEL -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 11 Date: 9.NOV.2009 18:36:37
  • 12. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -60.22 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 [T1] -60.22 dBm A 1.95950000 GHz -40 CH PWR -35.08 dBm ACP Up -60.05 dB -50 ACP Low -60.01 dB 1 -60 1AVG 1RM -70 -80 -90 -100 ADJACENT MAIN ADJACENT CHANNEL CHANNEL CHANNEL -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 12 Date: 9.NOV.2009 18:33:38
  • 13. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -33.52 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 1 [T1] -33.52 dBm A 1.95950000 GHz -40 CH PWR -8.92 dBm ACP Up -68.55 dB -50 ACP Low -71.69 dB -60 1AVG 1RM -70 -80 -90 -100 ADJACENT MAIN ADJACENT CHANNEL CHANNEL CHANNEL -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 13 Date: 9.NOV.2009 18:10:08
  • 14. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -42.87 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 [T1] -42.87 dBm A 1.95950000 GHz -40 1 CH PWR -17.67 dBm ACP Up -73.47 dB -50 ACP Low -74.75 dB -60 1AVG 1RM -70 -80 -90 -100 -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 14 Date: 9.NOV.2009 18:12:07
  • 15. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -36.78 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 1 [T1] -36.78 dBm A 1.95950000 GHz -40 CH PWR -11.53 dBm ACP Up -72.85 dB -50 ACP Low -74.71 dB -60 1AVG 1RM -70 -80 -90 -100 -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 15 Date: 9.NOV.2009 19:14:23
  • 16. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -33.52 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 1 [T1] -33.52 dBm A 1.95950000 GHz -40 CH PWR -8.92 dBm ACP Up -68.55 dB -50 ACP Low -71.69 dB -60 1AVG 1RM -70 -80 -90 -100 -110 C0 C0 cl1 -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz 16 Date: 9.NOV.2009 18:10:08
  • 17. What is happening here? 50 * Intercept SLOPE=1 of 0 Fundamentals Fundamentals and * * * Intermods * * IMD(dBc) (IP3) -50 SLOPE=3 * -100 * * Intermods * * -150 -20 -10 0 10 20 30 40 50  OIP3 Intercept(dBm) = PFUND – (IMD/2)  Knowing the OIP3 allows you to calculate Intermodulation Distortion (IMD) at any power level 17  Many devices do not follow this rule
  • 18. Striking a Balance Poor SNR Excessive Distortion Marker 1 [T1] RBW 10 kHz RF Att 0 dB Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -33.52 dBm VBW 100 kHz Ref Lvl -79.38 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm -30 1 -30 1 [T1] -79.38 dBm 1 [T1] -33.52 dBm A A 1.95950000 GHz 1.95950000 GHz -40 -40 CH PWR -53.44 dBm CH PWR -8.92 dBm ACP Up -41.74 dB ACP Up -68.55 dB -50 ACP Low -41.71 dB -50 ACP Low -71.69 dB -60 -60 1AVG 1RM 1AVG 1RM -70 -70 1 -80 -80 -90 -90 -100 -100 -110 C0 -110 C0 C0 cl1 C0 -120 cl1 cl1 cu1 -120 cl1 cu1 cu1 -130 cu1 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz Date: 9.NOV.2009 18:36:37 Date: 9.NOV.2009 18:10:08  We need to set our gains and levels so that we can strike a balance between SNR and Distortion  This is why our customers simultaneously demand low noise and low distortion  Gain is generally distributed throughout the channel to achieve this goal 18
  • 19. Last Word on Distortion….. Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl -42.87 dBm VBW 100 kHz -30 dBm 1.95950000 GHz SWT 370 ms Unit dBm •During an IP3 -30 1 [T1] -42.87 dBm A sweep, at a certain -40 1 1.95950000 GHz CH PWR -17.67 dBm power level, the ACP Up -73.47 dB power of the IMD -50 ACP Low -74.75 dB tones will be equal -60 to the noise power 1AVG 1RM in a defined -70 Spurious bandwidth. The SNR -80 Free at this point is the Dynamic SFDR of the -90 Range component -100 •Don’t mix this up -110 with the SFDR of an C0 C0 cl1 ADC or DAC -120 cl1 cu1 cu1 -130 Center 1.96 GHz 1.46848 MHz/ Span 14.6848 MHz SFDR = (2/3)(IIP3-NF-10log(kTB)) Date: 9.NOV.2009 18:12:07 19
  • 20. Key IQ Modulator Specifications  Input IP3 (IIP3): Same as OIP3 but referred to input: Intermodulating Blockers can create IMD products that fall on the desired signal  Noise Figure  IP2: Figure of Merit for Second order Intermodulation Distortion. Poor IP2 can intermodulate with the desired signal and produce dc offsets  LO Quadrature accuracy: Affects EVM/BER of recovered data 20
  • 21. I/Q Modulator Key specifications Part Freq LO Sideband Noise P1dB OIP3 Specs P/N Isy Desc Vs(V) Package Number (MHz) (dBm) (dBc) (dBm/Hz) (dBm) (dBm) @ (MHz) dBc/Hz (mA) 5.1×6.4 AD8345 140-1000 Low Power I/Q Mod -42 -42 -154.5 2.5 25 800 N/A 2.7-5.5 65 TSSOP-16 5.1×6.4 AD8346 800-2500 Low Power I/Q Mod -42 -36 -147 -3 20 1900 N/A 2.7-5.5 45 TSSOP-16 5.1x6.4 AD8349 700-2700 Low Power I/Q Mod -45 -35 -155 7.6 21 900 N/A 4.75-5.5 135 TSSOP-16 7X7 ADF9010 840-960 IQ Mod & Int-N PLL -40 -46 -158 10 24 900 -83 3.15-3.45 360 LFCSP-48 4×4 ADL5370 300-1000 Narrowband IQ Mod -50 -41 -160 11.0 24 450 N/A 4.75-5.25 205 LFCSP-24 4×4 ADL5371 500-1500 Narrowband IQ Mod -50 -55 -158.6 14.4 27 900 N/A 4.75-5.25 175 LFCSP-24 4×4 ADL5372 1500-2500 Narrowband IQ Mod -45 -45 -158 14.2 27 1900 N/A 4.75-5.25 165 LFCSP-24 4x4 ADL5373 2300-3000 Narrowband IQ Mod -32 -57 -157.1 13.8 26 2500 N/A 4.75-5.25 174 LFCSP-24 4×4 ADL5374 3000-4000 Narrowband IQ Mod -32.8 -50 -159.6 12.0 22.8 3500 N/A 4.75-5.25 173 LFCSP-24 4×4 ADL5375 400-6000 IQ Mod w Output Disable -46.2 -52.1 -160 9.4 26.8 900 N/A 4.75-5.25 200 LFCSP-24 4×4 ADL5385 50-2200 2XLO Broadband IQ Mod -46 -50 -159 11.0 26 350 N/A 4.75-5.5 215 LFCSP-24 6×6 ADL5386 50-2200 2XLO IQ Mod & VVA&AGC -38 -46 -160 11.1 25 350 N/A 4.75-5.5 230 LFCSP-40 6x6 ADRF6701 750-1100 IQ Mod & Frac-N PLL&VCO -45 -40 -158 14 29 900 -93 4.75-5.25 260 LFCSP-40 6x6 ADRF6702 1550-2150 IQ Mod & Frac-N PLL&VCO -40 -33 -158 14 26 1800 -90 4.75-5.25 260 LFCSP-40 6x6 ADRF6703 2100-2600 IQ Mod & Frac-N PLL&VCO -40 -40 -158 15 33 2200 -93 4.75-5.5 260 LFCSP-40 6x6 ADRF6704 2500-2900 IQ Mod & Frac-N PLL&VCO -41 -40 -158 15 31 2600 -92 4.75-5.5 260 LFCSP-40 8X8 ADRF6750 950-1575 IQ Mod & Frac-N PLL&VCO -45 -45 -157 8.5 21 1200 -93 4.75-5.25 310 LFCSP-56 21
  • 22. The World Leader in High-Performance Signal Processing Solutions Part 2: Digital Demodulation 22
  • 23. Recovering Data from a Digitally Modulated Carrier Iout 0 VREF 90 Qout 70 MHz VREF Comparators (real systems use Dual ADCs) 70 MHz Sine Wave  Reverse process to IQ Modulation  IQ Demodulator extracts phase (and amplitude) information from the modulated signal and presents it in XY (or IQ) format.  Apply I and Q outputs to an ADC or Comparator and bits can be recovered. 23
  • 24. Critical IQ Demodulator Specs – LO to RF Leakage -60dBm -30dBm(~20mVp-p) -40dBm FLO ω A B C LNA ADC -70dBm Leakage Desired 0dBm Assume, ω Gain from A to C =30dB FLO LO to RF leakage ~ 60dB •If some of the LO leaks to the RF input, it mixes (multiplies) with itself in the mixer generating unwanted dc offsets on top of the recovered baseband data stream 24
  • 25. What is causing the poor quality of this demodulated Constellation? Symbol Decision Threshold If the symbol lands on the edge or outside of the box, bit errors will occur  Very poor LO Quadrature Phase Split (in DMOD)  Dc Offset of the complete constellation (probably LO to RF Leakage)  Noise has enlarged the footprint of the constellation points (poor Receiver Noise Figure) 25
  • 26. Reading the Demodulated Constellation  Signal Compression (signal chain is being over driven)
  • 27. Key IQ DMOD Specifications  Input IP3 (IIP3): Same as OIP3 but referred to input: Intermodulating Blockers can create IMD products that fall on the desired signal  Noise Figure  IP2: Figure of Merit for Second order Intermodulation Distortion. Poor IP2 can intermodulate with the desired signal and produce dc offsets  LO Quadrature accuracy: Affects EVM/BER of recovered data 27
  • 28. IQ Demodulators VGA IQ Quadrature Noise Freq P1dB IIP3 Specs Isy VS Part No. Range 3dB BW Error Figure Package (MHz) (dBm) (dBm) @(MHz) (mA) (V) (dB) (MHz) (dB/deg) (dBm) 9.7x6.4 AD8347 800-2700 70 65 0.3/1º -2 +11.5 11 1900 64 2.7-5.5 TSSOP-28 9.7x6.4 AD8348 50-1000 44 125 0.25/0.5º +13 +28 10.75 380 48 2.7-5.5 TSSOP-28 4X4 ADL5382 700-2700 N/A 370 0.05/0.2º 14.4 30.5 15.6 1900 220 4.75-5.25 LFCSP-24 4X4 ADL5387 50-2000 N/A 240 0.05/0.2º +13 +31 12 140 180 5 LFCSP-24 4X4 ADL5380 400-6000 N/A 390 0.07/0.25º 11.6 27.8 11.7 1900 245 5 LFCSP-24 8X8 ADRF6850 100-1000 60 300 0.1/0.5º 12 22.5 11 800 350 3.15-3.45 LFCSP-56 28
  • 29. Application Example – Complete Direct Conversion Receiver  Direct Conversion Receiver has no IFs and no IF Filters  Variable gain after IQ DMOD is used to optimize the peak-to- peak swing of the signal for the ADCs 29
  • 30. Receiver EVM vs Input power using ADF4350 PLL/VCO as LO source -10 -15 Modulation Error Rate- using ADF4350 -20 PLL/VCO as LO source MER-dB -25 -30 -35 -40 -90 -80 -70 -60 -50 -40 -30 -20 Input Power (dBm) 30
  • 31. An IQ DMOD-based Receiver  Filtersand Amplifiers amplify signal and remove out-of-band blockers  Variable gain after IQ DMOD is used to optimize the peak-to-peak swing of the signal for the ADCs  When the input frequency to the IQ Modulator is also the receive frequency, we have a Direct Conversion Receiver (Zero IF) 31
  • 32. AD8348 IQ Demodulator with Integrated VGA  Built-in VGA has 45 dB of gain control range  VGA will still require external circuitry to implement AGC 32

Editor's Notes

  1. The blue arrows indicate possible phase transitions. Note that 180° phase changes (through center of constellation in QPSK case) cause the envelope of the RF carrier waveform to go to zero for an instant. Also the instantaneous phase transitions result in a very wide bandwidth signal, normally the signal will need to be filtered (i.e. raised cosine) to suppress the sidelobes of the sin(x)/x response due to the digital BB square waves. However, the filtering causes a non-constant amplitude of the QPSK signal. This now requires a linear power amplifier , while for the unfiltered QPSK signal a nonlinear power amplifier would have sufficed. This is an example of the trade-off between spectral and power efficiency . Furthermore, if the required linear PA is not perfect, the non-linearity causes the spectrum to widen again - this is called spectral re-growth . The effect of this is an increase in adjacent channel power which causes ACI in a neighboring channel. One modified version of the QPSK modulation that avoids 180° phase changes is the  /4-QPSK modulation; it has at most 135° phase changes. Therefore, a less linear (i.e. more efficient) PA can be used. Another class of modulation schemes that is even more power efficient than the QPSK family are MSK (Minimum Shift Keying) signals. However, MSK signals require larger bandwidths than QPSK waveforms. But they belong to the class of constant envelope modulations which allow the use of highly efficient, non-linear Class C power amplifiers. GMSK is one popular example of this class of modulation schemes. NOTE : To increase the data rate for a fixed channel BW in a system like GSM, requires that the modulation needs to be changed; i.e. the constant envelope of GMSK won’t hold anymore. From the discussion above it should be obvious that now linear PAs are required !!! Therefore in the move from GSM to GSM EDGE, parts that can be helpful in PA linearization , l ike the AD8302, AD8347, AD8313 are in high demand.
  2. 04/12/12
  3. This analysis will help to understand how DC offsets are generated. Suppose Leakage from LO port to point A is 60dBc. There is finite leakage from LO to point B. The S12 of the LNA would somewhat determine leakage at point B. Also there is some direct leakage from LO port to point A. The -70dBm is the desired signal level. Gain from A to C is 30dB. Total Gain from Antenna to X is ~ 60dB to have some signal amplitude at ADC input. Therefore, the remaining gain (after point C) amplifies the offset voltage to saturate the following stages, prohibiting amplification of the desired signal.
  4. 04/12/12
  5. - VGA used to compensate for limited SFDR of low resolution ADCs. This becomes critical in the presence of a large blocker signal. The use of higher resolution ADCs may negate the need for a VGA function. - Accurate amplitude and phase conformance on I and Q channels is essential for high image rejection.