SlideShare a Scribd company logo
1 of 194
AM = Amplitude modulation 調幅,資料載在振幅上
FM = Frequency modulation 調頻,資料載在頻率上
ASK = amplitude shift keying 振福位移鍵送,電磁波振幅小代表0,振幅大代表1
PSK = phase shift keying 相位位移鍵送,電磁波相位0°(先上後下振動)代表0,相位180°(先下後上振動)代表1
FSK = frequency shift keying 頻率位移鍵送,電磁波頻率低代表0,頻率高代表1
ISI problem = Intersymbol interference problem 符號間干擾問題
RRC filter = root raised cosine filter 根餘弦濾波器
CPFSK = Continuous Phase Frequency Shift Keying 連續相位頻移鍵控
DPSK = Differential PSK 差分相位調變-移相180o
QPSK = Quadrature Phase Shift Keying 4階相位偏移調變-移相90o
OQPSK = offset QPSK 偏移QPSK-移相90o
p/4 QPSK =移相135o
MSK = Minimum Shift Keying最小頻移鍵控
PDF = Probability Density Function 概率密度函数
PSD = Power Spectral Density 功率譜密度
FIR = finite impulse response有限脈衝響應濾波器
ARQ = Automatic repeat request systems自動重複請求系統
TDD = Time division duplex 時分雙工
FDD = Frequency division duplex 頻分雙工
TDM = Time division multiplexing 分時多工
FDM = Frequency division multiplexing 正交頻分多工
WDM = Wavelength division multiplexing 波長分波多工
TDMA = Time Division multiple Access 分時多工
FDMA = Frequency Division Multiple Access 分頻多重進接
CDMA = Code Division Multiple Access 分碼多重進接
ODMA = Orthogonal frequency-division multiplexing 正交分頻多工
AMPS = Advanced Mobile Phone System 類比式行動電話系統
NADC = North American Digital System
GSM = Global System for Mobile Communication 全球行動通訊系統
DECT = Digital European Cordless Telephone 數位增強無線通訊
2: Modulation and demodulation Slide 3
Amplitude Modulation
• Amplitude modulation
2: Modulation and demodulation Slide 4
Amplitude Modulation
• AM
• Sensitive to additive noise.
• Requires linear PA
( ) [1 ( )]cos
AM BB c
x t Ac mx t t

 
缺點
對雜訊敏感
需要線性PA
2: Modulation and demodulation Slide 5
AM Detector
• Coherent demodulation or Envelop detector
• The envelop of the modulated waveform does not cross zero
( ) 1 ( )
AM BB
x t mx t
 
AM 接收機
Coherent 同調
2: Modulation and demodulation Slide 6
FM Modulator
• VCO can be a FM modulator
• phase is an integral form of frequency
• VCO frequency is determined by value of the Inductor, which is
modulated by XBB(t).
( ) cos ( )
FM c c BB
x t A t m x t dt

 
 
 

FM 發射機
二極體就是一個可變
電容(在逆向導通區)
2: Modulation and demodulation Slide 7
Simple FM Demodulator
• Simple FM Demodulator :
• Differentiator
• High pass filter
 
   
1 1
( ) [ ( )]sin[ ( ) ]
out c c BB c BB
v t A R C mx t t m x t dt
FM 解調
微分器
高通濾波器
2: Modulation and demodulation Slide 8
Narrow Bandwidth FM (1)
• If << 1 rad
( ) cos ( )
FM c c BB
x t A t m x t dt

 
 
 

, ( ) cos (sin ) ( )
FM NB c c c c BB
x t A t A m t x t dt
 
  
 ( )
BB
m x t dt
微分-高通
積分-低通
2: Modulation and demodulation Slide 9
Narrow Bandwidth FM (2)
• Single tone test , if 

( ) cos
BB m m
x t A t
( ) cos ( )
FM c c BB
x t A t m x t dt

 
 
 

2: Modulation and demodulation Slide 10
Narrow Bandwidth FM
• NBFM Spectrum
2: Modulation and demodulation Slide 11
FM spectrum
• Bessel Function
( ) cos
BB m m
x t A t


( ) cos[ ( / )sin ]
FM C C m m m
x t A t mA t
  
 
( ) ( )cos( )
FM C n C m
n
x t A J n t
  


 

m
m
mA



0 1
If << 1 rad
( ) 1
, ( ) Narrow Band FM
2
( ) 0 for 1
n
J J
J n


 





   



  
2: Modulation and demodulation Slide 12
Carson’s rule
• Carson’s rule : If the bandwidth of FM ( ) is defined as containing
98% signal power, the following formula is derived
2( 1)
FM BB
BW BW

 
FM
BW
2: Modulation and demodulation Slide 13
Digital Modulations
• ASK, PSK, FSK
PSK---技術最複雜,抗雜訊能力最好,因此較常用在無線通訊
ASK---技術最簡單,抗雜訊能力最差,較少使用在無線通訊,而是使用在光纖通訊
FSK---技術複雜,但抗雜訊能力比ASK 好,錯誤率低,可使用在無線通訊
2: Modulation and demodulation Slide 14
Digital Modulations
n
n
cos , if b 1
( )
0 ,if b 0
c
ASK
A t
x t
 

 


1 n
n
cos , if b 1
( )
cos 2 ,if b 0
FSK
A t
x t
A t




 


1 n
1 n
cos , if b 1
( )
cos ,if b 0
PSK
A t
x t
A t




 
 

2: Modulation and demodulation Slide 15
ASK
• The simplest form of bandpass data modulation is Amplitude Shift Keying (ASK).
• In binary ASK, where only two symbol states are needed, the carrier is simply turned on or off.
• ASK is sometimes referred to as ON-OFF Keying (OOK).
2: Modulation and demodulation Slide 16
ASK data spectrum
• This ASK spectrum is a double sideband spectrum
• It has an upper and lower sideband with respect to the carrier.
• If we now include all the components in the baseband stream which will mix with the carrier to generate a frequency
sum(+) and difference(-) component,
then 1. resulting spectrum is symmetrical about the carrier frequency
then 2. spectrum is with a positive and reversed image of the baseband 'sinc' spectrum for an unfiltered binary data
stream.
Data stream in
2: Modulation and demodulation Slide 17
Factors affecting signal bandwidth
• Reducing the width of the pulse but keeping the period of the
waveform constant results in
• the lower harmonic levels
• an increase in the level of the higher harmonics
2: Modulation and demodulation Slide 18
Smooth transition
• Because the sharp changes in waveform
can only be constructed from a large
number of low-level high frequency
sinusoids in a Fourier series expansion.
• So a waveform which has sharp
transitions in the time domain will have a
higher harmonic content than smooth
transitions.
• Hence, modulation that possess smooth
pulse shapes between symbol states are
to be favored when bandwidth is limited.
Nyquist filter
2: Modulation and demodulation Slide 19
Nyquist filters
• A commonly used pulse-shaping method is to pass the data stream
through a low pass filter having a raised cosine response.
• The raised cosine filter belongs to a family of filters called Nyquist
filters .
• It also reduces ISI problem.
2: Modulation and demodulation Slide 20
Bandpass filtering method
• In order to minimize the occupied bandwidth of the transmitted ASK signal, filtering or pulse
shaping is required either prior to or after modulation onto a carrier.
• The switching method of ASK generation does not allow any pre-filtering of the modulating
baseband symbol stream, as the switch is a non-linear process
Switch沒有辦法濾波
2: Modulation and demodulation Slide 21
Non-coherent detection
• ∵With ASK, the information is conveyed in the amplitude or
envelope of the modulated carrier signal.
∴ the data can thus be recovered using an envelope detector.
• An simplest envelope detector comprises a diode rectifier and smoothing filter
• non-coherent detector.
ASK解調
RFID會用到ASK
整流+濾波+比較器
2: Modulation and demodulation Slide 22
Non-coherent detection
• If quadrature versions of the modulated carrier signal are available in the receiver, that is,a(t) cos wct and
a(t) sin wct (where a(t) represents the data imposed amplitude modulation).
• Mathematically we get:
a(t)2 cos2wct + a(t)2 sin2wct
= a(t)2 (cos2wct + sin2wct) = a(t)2
沒有乘法器
抗雜訊較差一點
2: Modulation and demodulation Slide 23
ASK Coherent detection
• Representing the modulated data signal as a(t) cos wct and the reference carrier as cos(wct + q) ,
the mixer output becomes:
a(t) cos wct cos(wct + q)
= 0.5 a(t)cos(q) + 0.5 a(t)cos(2wct + q)
• If the carrier is phase coherent with the incoming modulated carrier signal (that is, there is no
frequency or phase difference between them, q = 0o), then
the output is proportional to a(t) and perfect detection is achieved.
Coherent
載波是什麼就成一
個一樣的訊號(SNR
較好)
缺點
會有一個相位差!
2: Modulation and demodulation Slide 24
Coherent Matched filter
• Matched filtering of baseband data signals is for
optimizing the signal to noise ratio at the output of
a data receiver.
• Matched filtering is applicable to bandpass
modulation detection.
• A matched filter pair such as the root raised
cosine(RRC filter) filters can thus be used to
• shape the source and
• received baseband data
symbols in ASK,
有最佳的SNR
可限制BW 可積分
2: Modulation and demodulation Slide 25
Carrier recovery for ASK
• It is beneficial to use coherent detection of ASK
• means of recovering the carrier frequency and phase from the
incoming data signal is needed.
• A technique that is well suited to this task is the phase-locked loop
(PLL)
• Issues:
• input referred noise
• Off state
2: Modulation and demodulation Slide 26
Coherent detection vs
non-coherent detection
• Let us now consider the case of detecting the ASK signal in the presence of noise. For simplicity
we will assume that the carrier is in the 'off' state and that we have a specific noise component of
length N and phase 60 degree
• The non-coherent detector,
• which is performing amplitude detection, is simply measuring the length of the composite
(ASK + Noise) vector regardless of the vector phase. It would thus produce an output voltage
proportional to N, the noise vector length.
• The coherent detector,
• acts by mixing the incoming signal with the reference carrier cos wt. The result is that the
voltage at the detector output due to the noise is reduced by a factor cos(60o) = 0.5 and is
thus proportional to N/2.
2: Modulation and demodulation Slide 27
Coherent detection vs
non-coherent detection
• On average, the coherent detection method reduces the noise voltage
out of the detector by a factor of root 2 and the noise power by 2.
• In other words, coherent detection of ASK can tolerate 3 dB more
noise than non-coherent ASK for the same likelihood of detection
error.
2: Modulation and demodulation Slide 28
BER performance of ASK
• The Eb/N0 value is for the average symbol power which is 3 dB less than the peak symbol power for ASK (the
carrier is off for approximately half of the transmitted symbols).
SNR的倍率
(類比)
錯
誤
率
(
數
位
)
類比數位溝通
的圖示
2: Modulation and demodulation Slide 29
FSK generation
• FSK can be generated by switching between distinct frequency
sources.
• Any phase discontinuity at the symbol boundary will result in a much
greater prominence of high frequency terms in the spectrum
2個不同頻率的訊
號做切換開關
不連續的地方有高
頻協波項
2: Modulation and demodulation Slide 30
FSK generation
• FSK can be realized by applying the data signal to a voltage controlled
oscillator (VCO) .
• The phase transition between consecutive symbol states is
guaranteed to be smooth (continuous).
• FSK with no phase discontinuity between symbols is known as a
Continuous Phase Frequency Shift Keying (CPFSK) format.
2: Modulation and demodulation Slide 31
Vector modulator
• Vector modulator or quadrature (正交)
modulator
• To generate FSK requires the
generation of two symbols, one at a
frequency (c + 1) and one at a
frequency (c – 1).
• In order to generate a frequency shift
of + 1 at the output of the vector
modulator, the I and Q inputs need to
be fed with
+/-cos 1 and sin 1, respectively.
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
2: Modulation and demodulation Slide 32
Spectrum of FSK
• The spectrum of the FSK signal is not as easy to derive as that for ASK
because the FSK generation process is non-linear.
• An approximation can be obtained by plotting the spectra for two ASK
streams centered on the respective carrier frequencies
2: Modulation and demodulation Slide 33
PLL-based FSK detection
• VCO control voltage must change in order for the PLL to track and lock
onto a new input frequency.
• It provides a direct measure of the input signal frequency for each
symbol in the FSK stream.
應用在低速
的應用
2: Modulation and demodulation Slide 34
BER
2: Modulation and demodulation Slide 35
Comparison
• Advantages of FSK
• FSK is a constant envelope modulation, and hence insensitive to amplitude (gain) variations
in the channel
• Compatible with non-linear transmitter and receiver systems.
• The detection of FSK can be based on relative frequency changes between symbol states and
thus does not require absolute frequency accuracy in the channel.
• (FSK is thus relatively tolerant to local oscillator drift and Doppler shift.)
• Disadvantages of FSK
• FSK is slightly less bandwidth efficient than ASK or PSK (excluding MSK implementation).
• The bit/symbol error rate performance of FSK is worse than for PSK under the same SNR.
2: Modulation and demodulation Slide 36
PSK generation
• The simplest means of realizing unfiltered binary PSK is to switch the
sign of the carrier using the data signal, causing a 0 or 180 degree
phase shift.
• Just as for ASK, this method of generation is not well suited to
obtaining a Nyquist filtered waveform.
• Owing to the difficulty in implementing bandpass high frequency, high Q
filters.
2: Modulation and demodulation Slide 37
PSK generation
• If filtering is required, then linear multiplication must be employed.
• The data stream to be pre-shaped at baseband prior to the
modulation process.
2: Modulation and demodulation Slide 38
PSK Detection
• There is no non-coherent equivalent detection process for PSK,
• We need zero phase error for optimum detection and must re-visit the whole area of carrier
recovery.
• Note that if the phase error reaches 90 the output falls to zero!
2: Modulation and demodulation Slide 39
The Costas loop
   
1
sin cos sin sin
2
     
 
   
 
   
1
cos sin sin sin
2
     
 
   
 
   
1
cos cos cos cos
2
     
 
   
 
   
1
sin sin cos cos
2
     
 
    
 
9
2: Modulation and demodulation Slide 40
The Costas loop
• If qi-qo > 0 , then input of VCO will increase to trace qi.
• Otherwise, it will operate inversely.
• Behave like a phase lock loop.
• LPF is used to enhance the stability of close loop.
Sin(qi-qo)
Vcoin
Enhance close loop
stability
9
2: Modulation and demodulation Slide 41
Differential data coding
• FSK is possible to determine the frequency corresponding to each bit.
• However, the phase of PSK relates to the time origin and has no
“absolute” meaning.
• Both Costas loop and squaring circuit suffer from phase ambiguity.
• Training sequence in the head of packet is a possible solution.
• Differential data coding : If the information lies in the phase change
from one bit to the next , then a time origin is not required.
改善PSK資料任取一段看不出相位的問題
2: Modulation and demodulation Slide 42
Differential data encoding
• Differentially Encoded.
• If the present input bit is a ONE, then the output state of encoder
does not change
2: Modulation and demodulation Slide 43
Differential data decoding
• If the now state is the same as the previous stat of input, then
decoder outputs ONE.
• What if the encoded Data are inverted?
• Or the first bit is ambiguous?
數位的作法
2: Modulation and demodulation Slide 44
Differential PSK (DPSK)
• Differential PSK (DPSK) is based on the same differential encoding technique as used in DEPSK.
• Mixer or Multiplier behaves like a XNOR
 
 

 
1 1
1 1
if cos( ) cos( ),after filtering it output 1
if cos( ) cos( ),after filtering it output -1
t t
t t
類比的做法
是一種非同調的相位調變系統 (noncoherent PSK)。對於同調解調相位調變系統,資料位元{ bk }會直接接影響傳送載波的相位進行調變。
DPSK則是以目前位元dk的載波相位與前一位元dk-1的載波相位差(0或π)作為傳送的資訊的調變,DPSK的編碼方式為:
=1
0
k k
k k
b d change
if
b d unchange
if 
也就是dk=bk⊕dk-1。傳送端只要偵測相臨兩位元(dk、dk-1)的載波相位差即可以還原出資料位元bk。
2: Modulation and demodulation Slide 45
Differential PSK (DPSK)
• It improves upon it by incorporating the differential decoding task as part of the data
demodulation task.
• It does away with the need for a 'carrier recovery' mechanism .它消除了“載波恢復”機制的需
要。
• It rolls ‘coherent detection’ and ‘differential decoding’ into one operation.它將“一致性檢測”
和“差分解碼”合併為一個操作
• Clearly, this detection process is much simpler than that required for true coherent PSK.
• DPSK is widely used in wired and radio modems for medium-rate signalling (up to 4800 bps).
• DPSK, however, has a slightly poorer noise immunity than PSK since the phase reference for DPSK
is now a noisy delayed version of the input signal rather than potentially a well-filtered, virtually
noiseless reference from a carrier recovery process.
2: Modulation and demodulation Slide 46
Probability Density Function
• The PDF is defined as : Px(x)dx=probability that the amplitude is
between x and x+dx.
• Note that PDF does not tell us how fast the waveform varies, that
means no frequency relativity.
2: Modulation and demodulation Slide 47
Gaussian distribution
• Central Limit Theorem : If many independent random process with
arbitrary PDFs are added, the PDF of the sum approaches a Gaussian
distribution
• Gaussian PDF:
where and m are the standard deviation and the
mean,respectively.
• Remember that 68% for the sampled values fall between m- and
m+ and 99% between m-3 and m+3
2
2
1 ( )
( ) exp
2
2
x
x m
p x

 p
 



  
m平均值
變異量

2: Modulation and demodulation Slide 48
Power Spectral Density
• The PSD, Sn(f), of a random signal x(t) indicates how much power the
signal carries in a small bandwidth around frequency f.
2: Modulation and demodulation Slide 49
PDF and PSD
• PDF is statistical indication of how often the amplitude of a random
process falls in a given range of values.
• PSD shows how much power the signal is expected to contain in a
small frequency interval.
• In general, the PDF and PSD bear no relationship.
• Thermal noise has a Gaussian PDF and white PSD.
• Flicker noise the same type of PDF but a PSD proportional to 1/f.
越低頻雜訊越高
2: Modulation and demodulation Slide 50
PDF of Binary Modulation
2: Modulation and demodulation Slide 51
BER calculation
• It demonstrates that BER is only concerned with
SNR
• To gain a max SNR , E must be maximized too.
 
 
2
2 1
2 1
2
0
( ) ( )
2 2
2
e
n n
A A
A A E
p Q Q Q
N
 
 

  
  
 
 
2
2 1
2
0
( )
where,
/ 2
n
A A E
SNR
N


 
2: Modulation and demodulation Slide 52
Coherent BPSK


 

2
1 2
according to [ ( ) ( )]
Ed p t p t dt




2
0
2
(2 cos )
2
b
T
C c
c b
A t dt
A T
 
 

 
 
2
0
Hence c b
e
A T
P Q
N

 

2
2
b 0
E ( cos )
2
b
T
c b
C
A T
A t dt
 
  
 
 
0
2
Hence b
e
E
P Q
N
Large Ac&Tb cause low Pe
2: Modulation and demodulation Slide 53
Coherent FSK
• For a given probability of error and noise density, the bit energy in
BFSK must be twice that in BPSK.
• The minimum distance between the points in the constellation is
greater in BPSK.
• Recall that SNRmax=2Ed/N0, the value of Ed reach its maximum if
p1(t)=-p2(t), which is the case for BPSK.
• BPSK has a 3-dB advantage over BFSK
• However, BFSK is widely used in low data rate application where Eb
can be maximized by allowing a long Tb.
週期長一點,SNR變好,速度變慢
2: Modulation and demodulation Slide 54
Quadrature Modulation
• It is often beneficial to subdivide a binary data stream into pairs of
two bits and perform the Quadrature modulation:
PSK同時使用cos和sin的訊號
2: Modulation and demodulation Slide 55
Quadrature Modulation
• Quadrature modulation encompasses two broad categories:
• Quadrature Phase Shift Keying (QPSK),
• Minimum Shift Keying (MSK)
QPSK
2: Modulation and demodulation Slide 56
QPSK 解調
2: Modulation and demodulation Slide 57
Phase transition
• Large phase (maximum 180 degrees) changes occurs at the end of
each symbol.
• Large phase transition causes large envelope variation.(180 degree
cross zero is worst).
• Such transition needs a linear power amplifier
相位角會差180
產生劇烈波型變化
造成頻域上突然變寬一下
2: Modulation and demodulation Slide 58
OQPSK
• Offset QPSK remedies the drawback of QPSK
• The bit error rate and spectrum of OQPSK are identical to those of
QPSK
• Offset QPSK (OQPSK) delays one of the bit streams after serial parallel
conversion:
解決弦波不要變化太劇烈
2: Modulation and demodulation Slide 59
OQPSK
• Thus, A and B cannot simultaneously change state.
• a smoother transition here relaxes the linearity requirement of the
power amp.
• Maximum phase change is 90 degrees. 相位小頻寬就
較不佔空間
雖然速度和PSK差不多但
是相位差差了90度(PSK
180)
2: Modulation and demodulation Slide 60
p/4 QPSK
• The signal set consists of two QPSK schemes, one shifted by π/4 with
respect to the other:
• The spectrum and BER of it are identical to those of QPSK
2: Modulation and demodulation Slide 61
p/4 QPSK 可以讓I,Q同時傳
速度變快
2: Modulation and demodulation Slide 62
p/4 QPSK
• Maximum phase change is 135 degree
2: Modulation and demodulation Slide 63
Envelop variation of QPSK
• Quadrature Phase Shift Keying can be filtered using raised cosine
filters to achieve excellent out of band suppression.
• Large envelope variations occur during phase transitions, thus
requiring linear amplification.
180的位置濾
波會影響後面
的波
2: Modulation and demodulation Slide 64
Spectrum regrowth
Non-linear
Amplifier
不線性放大
2: Modulation and demodulation Slide 65
Spectrum Comparison
• MSK (or GMSK) has wider but sharper baseband spectrum
2: Modulation and demodulation Slide 66
MSK Generation
• From the view of frequency. MSK is a subset of FSK, which satisfies
the following condition:
 
Hence, phase change is within one b
f T T
   0.5
b
f T
2: Modulation and demodulation Slide 67
MSK
• MSK exhibiting the same error rate as QPSK with sharper decay in its
spectrum than the retangular-pulse QPSK family.
• The smooth phase transitions in MSK lower the signal power in the
sidelobes of the spectrum
• But widens the main lobe.
• MSK spectrum has a decay proportional to 4
f
2: Modulation and demodulation Slide 68
Phase change
• Phase change of MSK and GMSK
• All continuous in phase domain
• MSK is discontinuous in frequency domain
紅色:QPSK的相位變
化(瞬間)
MSK在一個週期內
完成相位變化
2: Modulation and demodulation Slide 69
GMSK
• Generation of GMSK signal
2: Modulation and demodulation Slide 70
Gaussian filter
• In MSK , the BT is infinity and this allows the square bit transients to
directly modulate the VCO.
• BT is 3dB bandwidth symbol time product
• If BT is less than 0.3, some form of combating the ISI is required.
2: Modulation and demodulation Slide 71
GMSK
• Lowe BT
• Narrow BW
• Sever ISI Problem
3:Data Transmission Slide 72
Intersymbol interference
• Filter can be used to shape the pulse and limit the bandwidth.
• Filtering effect will cause a spreading of individual data symbols.
• For consecutive symbols, this spreading causes part of the symbol energy to overlap with
neighboring symbols, causing intersymbol interference (ISI).
symbol一個周期的資料
Data一個瞬間抓取的資料
3:Data Transmission Slide 73
Zero ISI
• Pulse shaping for zero ISI: Nyquist channel filtering.
• It is also evident that the sample timing must be very accurate to
minimize the ISI problem.
3:Data Transmission Slide 74
Raised cosine filtering
• A commonly used realization of the Nyquist filter is a raised cosine
filter.
• So called because the transition band (the zone between passband
and stopband) is shaped like part of a cosine waveform.
• The sharpness of the filter is controlled by the parameter , the filter
roll-off factor.
• When  = 0 this conforms to an ideal brick-wall filter.
3:Data Transmission Slide 75
Raised cosine filtering
• Actual modulation bandwidth, B = 0.5 X 1/Ts (1 + )
3:Data Transmission Slide 76
FIR
• Traditionally it has been difficult to construct a filter having a Nyquist
response using analogue components.
• and it has taken the development of the digital signal processor (DSP)
to bring Nyquist and raised cosine filters into everyday use.
• finite impulse response (FIR)
3:Data Transmission Slide 77
Choice of 
• Benefits of small 
– Maximum bandwidth efficiency achieved.實現最大的帶寬效率。
• Benefits of large 
– Simpler filter – fewer stages (taps) hence easier to implement
with less processing delay.更簡單的過濾器 - 更少的階段(水龍頭),因此更容
易實現與更少的處理延遲。
– Less signal overshoot, resulting in lower peak to mean excursions of
the transmitted signal.
較少的信號過衝,導致較低的峰值意味著發送信號的偏移。
– Less sensitivity to symbol timing accuracy – wider eye opening.對符號計
時精度的敏感度較低 - 較大的眼圖張開。
3:Data Transmission Slide 78
Gain distortion – filters
• Filters are never perfectly 'flat' in the passband .
• Elliptic or Chebychev filters have very high passband ripple, but also achieve very fast roll-off.
• Butterworth or Bessel filters have much less ripple but also much slower roll-off.
• The raised cosine filter also
exhibits passband ripple,
• It depends on the length (number
of taps) used in the filter.
• The degree of ripple can be
small with very long filter
length, but complex.
3:Data Transmission Slide 79
Phase distortion
• Many filters have phase variations across the passband and in the
transition band.
• Bessel filter having a very good near linear phase response with
frequency, and
• But Elliptic filter having a very poor response.
3:Data Transmission Slide 80
Group delay
• Group delay is defined as the rate of change of phase shift with
frequency.
• For a non-linear phase response, the group delay will vary with
frequency as shown here,
3:Data Transmission Slide 81
Phase distortion
• High power amplifiers
• have non-linear amplitude response with input power.
• they also usually have a non-linear phase response with input power
• Caused by non-linear devices
• Such as varactors.
• Cause AM-PM distortion.
• Has a detrimental effect on
phase based modulation
formats such as M-ary PSK.
3:Data Transmission Slide 82
Multipath distortion
• More than one propagation path exist
• It causes significant distortion of the received data symbols.
• The same source signal,
arriving by a different route,
will experience a different
path length and hence a
different propagation delay
同向變強
反向變弱
3:Data Transmission Slide 83
Multipath fading
• If the phase difference approaches 180° ,then the signals will in fact
partially cancel each other.
• If the phase difference approaches 0 ° they will reinforce.
3:Data Transmission Slide 84
frequency selective fading
• The effect is known as frequency selective fading and gives rise to
notches in the frequency response of the channel.
收訊好
傳輸速度越快
3:Data Transmission Slide 85
Multipath fading
• Time domain problem : intersymbol interference will occur.
• Channel equalizers are often employed. 通道均衡器經常被使用
3:Data Transmission Slide 86
Coping with multipath fading
• Spectral spreading
• Direct sequence spread spectrum uses a wideband data sequence to mix with a narrowband data
signal and thence spread the energy .
• A small proportion of the spread signal energy will be lost in the frequency selective fades and
the majority will pass.
• By de-spreading the signal in the receiver, a reasonable copy of the original transmitted signal can
be obtained.
• Data coding and channel equalization are often employed in addition to the spreading to improve
the integrity of the channel.
展頻
應用:wifi
Multipath很嚴重
因為訊號會一直在室內反彈
3:Data Transmission Slide 87
Coping with multipath fading
• Frequency hopping
• It approach means that for some of the time the signal will fall within
a selective fade, but for most of the time, it will be passed within a
non-fading portion of the channel.
• With extra coding a high integrity communications link can be
established
跳頻
應用:藍芽
3:Data Transmission Slide 88
Diversity
Space Diversity
Time Diversity
Frequency Diversity
3:Data Transmission Slide 89
Channel coding
• Error detection schemes – ARQ (Automatic Repeat Request Systems).
• Stop and Wait ARQ,Go Back N ARQ ,Selective ARQ
• Error detection and correction –This process is known as FEC
(Forward Error Correction).
3:Data Transmission Slide 90
Parity Check
• Parity Check
UART在使用的
3:Data Transmission Slide 91
Parity Check Circuit
• Parity Check Circuit
3:Data Transmission Slide 92
Block coding
• Hamming codes
• Interleaving
• BCH (Bose-Chaudhuri-Hocquenghem)
• Reed–Solomon (RS) codes
3:Data Transmission Slide 93
Convolutional coding
• Viterbi convolutional code
• Trellis Diagrams
• Turbo Code
3:Data Transmission Slide 94
Viterbi algorithm
• The Viterbi algorithm was conceived by Andrew Viterbi.
• It is an error-correction scheme for noisy digital communication links.
• It’s finding universal application in decoding the convolutional codes
used in both CDMA and GSM digital cellular, dial-up modems, satellite,
deep-space communications, and 802.11 wireless LANs.
• It is now also commonly used in speech recognition, keyword spotting,
computational linguistics, and bioinformatics.
雙工,復用和多路訪問
3:Data Transmission Slide 96
Duplex
• Half-duplex
• Full-duplex
• Time division duplex (TDD)
• Time division duplex has a strong advantage in the case where the asymmetry
of the uplink and downlink data speed is variable
• Frequency division duplex (FDD)
• Frequency division duplex is much more efficient in the case of symmetric
traffic. In this case TDD tends to waste bandwidth during switchover from
transmit to receive.
• 時分雙工(英文縮寫為TDD,Time-Division Duplexing),是利用時間分隔多工技術來分隔傳送及接收的信號。 它利
用一個半雙工的傳輸來模擬全雙工的傳輸過程。時分雙工在非對稱網路(上傳及下載頻寬不平衡的網路)有明顯
的優點,它可以根據上傳及下載的資料量,動態的調整對應的頻寬,如果上傳資料量大時,就會提高上傳的頻寬,
若資料量減少時再將頻寬降低。時分雙工的另一個好處是在緩慢移動的系統中,上傳及下載的無線電路徑大致相
同,因此類似波束成形的技術可以運用在時分雙工的系統中
• 頻分雙工(英文縮寫為FDD,Frequency-Division Duplexing),是利用頻率分隔多工技術來分隔傳送及接收的信號。
上傳及下載的區段之間用「頻率偏移」(frequency offset)的方式分隔。若上傳及下載的資料量相近時,頻分雙工
比時分雙工更有效率。 在這個情形下,時分雙工會在切換傳送接收時,浪費一些頻寬,因此延遲時間較長,而且
其線路較複雜且耗電。頻分雙工的另一個好處是在無線電收發規劃上較簡單且較有效率,因為一個裝置傳送及接
收使用不同的頻帶,因此裝置不會接收到自己傳出的資料,傳送及接收的資料也不會互相影響。在時分雙工系統
中,需在鄰近的區段中增加保護區段(guard band),但這會使頻譜效率下降。否則就要有同步機制,使一裝置的
傳送和另一裝置的接收同步。同步機制會增加系統的複雜度及成本,而且因為所有的裝置及時間區塊都要同步,
也降低了頻寬使用的靈活性。
3:Data Transmission Slide 98
Multiplexing 多工
• Multiplexer :Multiplexing is the combining of two or more
information channels onto a common transmission medium.
• Generally, it is always used in telecommunication.
• In electrical communications, the two basic forms of multiplexing are :
• time-division multiplexing (TDM) and
• frequency-division multiplexing (FDM).
• In optical communications:
• FDM is referred to as wavelength-division multiplexing (WDM).
分時多工(Time-Division Multiplexing,TDM)是一種數位或者模擬(較罕見)的多工技術。使用這種技術,兩個
以上的訊號或資料流可以同時在一條通訊線路上傳輸,其表現為同一通訊頻道的子頻道。但在物理上來看,訊號
還是輪流占用物理通道的。時間域被分成周期迴圈的一些小段,每段時間長度是固定的,每個時段用來傳輸一個
子頻道。例如子頻道1的採樣,可能是位元組或者是資料塊,使用時間段1,子頻道2使用時間段2,等等。一個
TDM的影格包含了一個子頻道的一個時間段,當最後一個子頻道傳輸完畢,這樣的過程將會再重複來傳輸新的影
格,也就是下個訊號片段。
波長分波多工(Wavelength Division Multiplexing,WDM)是利用多個雷射器在單條光纖上同時發送多束不同波長
雷射的技術。每個訊號經過數據(文本、語音、視訊等)調變後都在它獨有的色帶內傳輸。WDM能使電話公司和
其他運營商的現有光纖基礎設施容量大增。
正交分頻多工(英語:Orthogonal frequency-division multiplexing, OFDM)有時又稱為分離複頻調變技術(英語:
discrete multitone modulation, DMT),可以視為多載波傳輸的一個特例,具備高速率資料傳輸的能力,加上能有效
對抗頻率選擇性衰減,而逐漸獲得重視與採用。
OFDM使用大量緊鄰的正交子載波(Orthogonal sub-carrier),每個子載波採用傳統的調變方案,進行低符號率調製。
可以視為一調變技術與多工技術的結合。
3:Data Transmission Slide 100
Difference
• - Time Division Multiplexing (TDM) imply partitioning the bandwidth
of the channel connecting two nodes into finite set of time slots.
• - Time Division multiple Access (TDMA) imply partitioning the
bandwidth of a channel shared by many nodes, typically an
infrastructure node and several mobile nodes, where each node gets
to access its dedicated time slot.
3:Data Transmission Slide 101
Multiple Access
• FDMA : Speak with different pitches
• TDMA : Speak alternately
• CDMA : Speak with different language
TDMA : 是一種為實現共享傳輸介質(一般是無線電領域)或者網路的通
訊技術。它允許多個用戶在不同的時間片(時槽)來使用相同的頻率。
用戶迅速的傳輸,一個接一個,每個用戶使用他們自己的時間片。這允
許多用戶共享同樣的傳輸媒體(例如:無線電頻率)。
TDMA在美國通常也指第二代(2G)行動電話標準,具體說是指IS-136或
者D-AMPS這些標準使用TDMA技術分時共享載波的帶寬。
FDMA :是利用不同的頻率分割成不同頻道的多址技術。FDMA技術為用
戶單獨分配了一或多個頻段,或通道,用於類比傳輸過程,如固網電
信、無線電、衛星通訊等。FDMA的替代品包括TDMA,CDMA和SDMA。
缺點:串擾可能造成頻率間的干擾並破壞傳輸。
CDMA : 是一種多址接入的無線通訊技術。CDMA最早用於軍用通訊,但時
至今日,已廣泛應用到全球不同的民用通訊中。在CDMA行動通訊中,將
話音訊號轉換為數位訊號,給每組數據話音封包增加一個地址,進行擾碼
處理,然後將它發射到空中。CDMA最大的優點就是相同的帶寬下可以容
納更多的呼叫,而且它還可以隨話音傳送數據資訊。
3:Data Transmission Slide 103
FDMA
• Frequency Division Multiple Access
• If a channel has a bandwidth W Hz, and individual users require B Hz,
then the channel in theory should be able to support W/B users
3:Data Transmission Slide 104
FDMA
• Efficiency of frequency multiplexing
• It is governed by how effectively the transmission bandwidth is constrained
by each user, such as  of RRC.
• It is also dependent on how good (selective) the 'de-multiplexing' system is at
filtering out the modulation corresponding to each user.
優點
頻率復用的效率
它受到每個用戶(如RRC)傳輸帶寬的有效限制。
這也取決於“多路分解”系統在篩選出對應於每個用
戶的調製時有多好(選擇性)。
3:Data Transmission Slide 105
Challenges of FDMA
• Near-far effect
• very large variations in received signal power that arise from users in
different frequency is one of the biggest challenges.
• If the strong signal is producing any out-of-band radiation in the slot
occupied by the weak signal, this can easily swamp the weak signal corrupting
the communications
• Typical up to 100 dB
缺點
不同頻率的用戶產生的接收信號功率的巨大變化是最大的挑戰之一。
如果強信號在弱信號佔用的時隙中產生任何帶外輻射,則這可以容易地淹沒破壞通信的弱信號
典型值高達100 dB
3:Data Transmission Slide 106
Challenges of FDMA
• Solution :
• Side-lobe energy of digital modulation formats, such as and on designing modulation formats
that are not overly sensitive to amplifier distortion.
• CPFSK , GMSK: are all driven by this near-far problem in the wireless application
• Other challenges
• Doppler shift and local oscillator error : in the radio environment include dealing with the
frequency cause uncertainty for any individual user .
• This inevitable error requires guard-bands to be allocated between frequency slots, thus
sacrificing some of the efficiency of the FDMA scheme.
解答:
數字調製格式的旁瓣能量,例如設計對調製器失真不太敏感的調製格式。
CPFSK,GMSK:在無線應用中都受到這個近遠程問題的驅動
其他挑戰
多普勒頻移和本地振盪器誤差:在無線電環境中包括處理任何個人用戶的頻率不確定性。
這個不可避免的錯誤需要在頻隙之間分配保護頻帶,從而犧牲了FDMA方案的一些效率。
3:Data Transmission Slide 107
Advantages of FDMA
• Better ISI performance arising from path delay
• Longer symbol time
• Another advantage of FDMA is that the bandwidth of the TX and RX
circuitry is kept to a minimum or narrow, (particularly the bandwidth
over which power amplifiers are to be made linear),
重要優點
路徑延遲引起的ISI性能更好
更長的符號時間
FDMA的另一個優點是TX和RX電路的帶寬保
持在最小或者窄(特別是功率放大器線性
化的帶寬),
3:Data Transmission Slide 108
Disadvantage of FDMA
• Frequency stability : if the guard-bands are to be kept to a minimum,
the need for guard-bands has traditionally been a bigger problem for
FDMA use.
• Solution : Requiring very costly and high stability oscillators in the modems.
• Frequency selective fading :
• FDMA has the susceptibility of any individual narrow frequency slot to
frequency selective fading which can cause loss of signal.
頻率穩定度:如果要將保護頻帶保持在最低限度,保護頻帶的需求傳統上是FDMA使用中的一個更大的問題。
解決方案:在調製解調器中需要非常昂貴和高穩定性的振盪器。
頻率選擇性衰落:
FDMA具有任何單個窄頻隙對頻率選擇性衰落的敏感性,這會導致信號丟失。
3:Data Transmission Slide 109
TDMA
• Operation : The user has access to a modem operating at a rate
several times.
• Channel Capacity : if the data rate on the channel is w bits/second,
and each individual user requires only b bits/second, then the system
can support w/b simultaneous users.
3:Data Transmission Slide 110
Capacity of TDMA TDMA的容量
• Issue : TDMA is very likely that the channel capacity is being
'wasted‘ because time slots are regularly assigned.
• Solution :To maximize the use of a channel resource under these
circumstances.
• packet based transmission is now common on wired links. (e.g. Ethernet)
• user is not given a fixed repeated time slot, but rather allocated a time slot
'on demand'
問題:由於時隙是定期分配的,TDMA很可能是“浪費”了信道
容量。
解決方案:在這種情況下最大限度地使用渠道資源。
基於分組的傳輸現在在有線鏈路上很常見。 (例如以太網)
用戶沒有被賦予固定的重複時隙,而是分配了“按需”的時隙
3:Data Transmission Slide 111
Challenges of TDMA
• Challenge : Again, the 'near-far' effect comes into play, with signals
from a distant user taking longer to arrive at the base-station than
those from a near user.
• Solution : Guard-times are required between time slots
• Challenge : The near-far problem also gives rise to the same signal
strength fluctuations in the base-station.
• Result : No problem with adjacent channel interference as no user is
operating concurrently with another.
挑戰:再次,“近遠”效應發揮作用,遠方用戶的信號比來自近用戶的信號需要更長的時間才能到達基站。
解決方案:時隙之間需要保護時間
挑戰:近遠端問題也會在基站中產生相同的信號強度波動。
結果:由於沒有用戶與另一個用戶同時操作,所以鄰頻干擾沒有問題。
3:Data Transmission Slide 112
Challenges of TDMA
• Challenges : Round-trip delay
• If the distance between MS&BS is 30Km, the delay is about 0.2ms.
• Solutions : Time Advance
• The timing advance(TA) is calculated by the BSS, based on the bursts received
from the MS.
• automatically advances the start time of its own uplink transmission in order
to compensate for the up-link time delay.
挑戰:往返延遲
如果MS和BS之間的距離是30Km,則延遲約為0.2ms。
解決方案:時間提前
時間提前量(TA)由BSS根據從MS接收到的突發來計算。
自動提前其自己的上行鏈路傳輸的開始時間以便補償上行鏈路時間延遲。
3:Data Transmission Slide 113
Advantages of TDMA
• Slighter Frequency selective fading:
• Variable user data rate : the ease with which users can be given variable
data rate services by simply assigning them multiple time slots.
可變的用戶數據速率:通過簡單地為用戶分配多個時隙,用
戶可以輕鬆獲得可變數據速率業務。
3:Data Transmission Slide 114
Advantages of TDMA
• Only one PA : There is only one power amplifier required to support
multiple users for all time slot users.
• Traditionally with FDMA, each user channel at the base-station has
required an individual power amplifier, the output of which is
combined at high power to feed a single common antenna.
• Because the frequency is different.
• Saves Power : Each units is only on for part of time for receiver.
只有一個PA:只有一個功率放大器需要支持所有時隙用戶的多個用戶。
傳統上使用FDMA,基站的每個用戶信道都需要一個單獨的功率放大器,其輸出以高功率組合以饋送一個公共天
線。
因為頻率不同。
節省電力:每個單位只有部分時間接收。
3:Data Transmission Slide 115
Disadvantages of TDMA
• System Timing Issue : For the same data rate, TDMA is with shorter
symbol data period than FDMA.
• higher peak power rating for the power amplifier :
• Because TDMA use also requires each user terminal to support a much higher
data rate than the user information rate
系統時序問題:對於相同的數據速率,TDMA比FDMA具有更短的符號數據周期。
功率放大器的峰值功率額定值更高:
由於TDMA使用也要求每個用戶終端支持比用戶信息速率高得多的數據速率
3:Data Transmission Slide 116
CDMA
• Code Division Multiple Access (CDMA)
• Advantages :
• The interference immunity of CDMA for multi-user communications
• It has very good spectral efficiency characteristics.
• There are two very distinct types of CDMA system classified as :
• direct sequence CDMA
• frequency hopping CDMA
碼分多址(CDMA)
優點 :
CDMA對多用戶通信的抗干擾性
它具有非常好的頻譜效率特性。
有兩種非常不同的CDMA系統分類為:
直接序列CDMA
跳頻CDMA
3:Data Transmission Slide 117
Frequency hopped CDMA
• Frequency Hopping : it involves taking the narrow bandpass signals
for individual users and constantly changing their positions in
frequency with time.
• Benefit : changing frequency is to ensure that any one user's signal
will not remain within a fade for any prolonged period of time.
• Operation : the carrier
frequencies are assigned
according to a predetermined
sequence or code.
跳頻:它涉及到為個人用戶提供窄帶通信號,並隨著時間不斷地改
變他們的位置。
好處:改變頻率是為了確保任何一個用戶的信號都不會長時間處於
衰落狀態。
運營:運營商
頻率被分配
根據預定
序列或代碼。
3:Data Transmission Slide 118
Frequency hopped CDMA
• Speed : Frequency hopping is most effective if a fast hopping rate is
used (several thousand times per second)
• Problem 1:
• Need the design of fast switching synthesizers
• Broadband power amplifiers which in practice put an upper limit on the
hopping rate
• Problem 2: the narrowband channels are susceptible to Doppler shift,
local oscillator error.
• Advantages : less vulnerable to
• discrete narrowband interference
• near-far effect problems.
速度:如果使用快速跳躍速率(每秒數千次),跳頻是最有效的
問題1:
需要快速切換合成器的設計
寬帶功率放大器實際上對跳頻速率提出了一個上限
問題2:窄帶信道容易受到多普勒頻移,本地振盪器誤差的影響。
優點:不容易受到
離散的窄帶乾擾
近遠期效應問題。
3:Data Transmission Slide 119
Direct sequence CDMA
• The wideband spreading signal is generated using a pseudo-random
sequence generator clocked at a very high rate (termed the chipping
rate).
• De-spreading :
• the correct sequence is used at both ends of links.
• the two sequences are time aligned
展頻的CDMA
寬帶擴展信號是使用以非常高的速率
(稱為碼片速率)定時的偽隨機序列發
生器產生的。
去擴散:
鏈接兩端都使用正確的順序。
這兩個序列是時間對齊的
3:Data Transmission Slide 120
Direct sequence CDMA
• Capacity Limits : If there is some correlation between spreading codes,
as is almost always the case, then there will be a small contribution to
any individual de-spread user signal from all the other spread users
on the channel.
共享經濟
容量限制:如果擴頻碼之間存在某種相
關性,幾乎總是如此,那麼對於來自信
道上的所有其他擴頻用戶的任何單個解
擴用戶信號將有一個小貢獻。
3:Data Transmission Slide 121
Advantages of CDMA
• Spread spectrum CDMA overcomes frequency selective fading by
ensuring that most of the spread signal energy falls outside the fading
'notches‘.
• Flexible user data rate: flexibility to accommodate variable user data
capacity
• Each user in a spread spectrum CDMA system can increase their modulation
rate and local narrowband modulation bandwidth.
• Flexible user numbers :
• By slightly over-subscribing the number of users and their 'spread energy
quota' on a spread spectrum CDMA system
優點
擴頻CDMA通過確保大多數擴頻信號能量落在衰落“陷波”之外來克服頻率選
靈活的用戶數據速率:靈活地適應可變的用戶數據容量
擴頻CDMA系統中的每個用戶可以增加其調製速率和本地窄帶調製帶寬。
靈活的用戶號碼:
通過在擴頻CDMA系統上略微超額訂購用戶數量及其“擴頻能量配額”
3:Data Transmission Slide 122
Disadvantages of CDMA
• Penalty : the signal processing overhead involved with such high rate
and bandwidth transmission.
• Power control : it has also been identified as a critical issue in
maximizing the number of users that can be supported on a given
common frequency channel.
• Contiguous block :CDMA also requires a large amount of bandwidth
to be available in a contiguous block
• Typically bandwidths of 5 MHz upwards are desirable for best
communications performance.
• 1.25 MHz for IS-95
訊號處理要
很強
缺點
懲罰:涉及如此高速率和帶寬傳輸的信號處理開銷。
功率控制:在給定的公共頻道上可以支持的用戶數量最大化的過程中,
它也被認為是一個關鍵問題。
連續的塊:CDMA也需要大量的帶寬在連續的塊中可用
為了獲得最佳的通信性能,通常需要5 MHz以上的帶寬。
3:Data Transmission Slide 123
Combination
• TDMA / FDMA combination
• We have already seen some examples of digital communication
systems exploiting combinations of multi-user access techniques.
• GSM, although primarily a TDMA system, requires several 200 kHz
frequency channels (each carrying eight time slots) in order to
provide a practical high capacity cellular system and can thus be
viewed as an FDMA system also.
TDMA / FDMA組合
我們已經看到一些利用多用戶訪問技術組合的數字通信系
統的例子。
GSM雖然主要是TDMA系統,但為了提供實用的高容量蜂
窩系統,需要幾個200kHz頻率信道(每個信道攜帶8個時
隙),因此也可以被看作FDMA系統。
3:Data Transmission Slide 124
AMPS
• Channel Number : 833
3:Data Transmission Slide 125
NADC
• North American Digital System
• IS-54 when it includes AMPS
3:Data Transmission Slide 126
GSM
• Global System for Mobile Communication
• TDMA/FDM
3:Data Transmission Slide 127
IS95
• Qualcomm CDMA
3:Data Transmission Slide 128
DECT
• Digital European Cordless Telephone
3:Data Transmission Slide 129
Analog Cellular Telephone
n/a
n/a
n/a
Channel Bit Rate
FM
FM
FM
Modulation
NMT-450: 25 kHz
NMT-900: 12.5 kHz
ETACS: 25 kHz
NTACS: 12.5 kHz
AMPS: 30 kHz
NAMPS: 10 kHz
Channel Spacing
1
Users Per Channel
NMT-450: 200
NMT-900: 1999
ETACS: 1240
NTACS: 400
AMPS: 832
NAMPS: 2496
Number of Channels
FDD
FDD
FDD
Duplex Method
FDMA
FDMA
FDMA
Multiple Access
Method
NMT-450:
Rx: 463-468
Tx: 453-458
NMT-900:
Rx: 935-960
Tx: 890-915
ETACS:
Rx: 916-949
Tx: 871-904
NTACS:
Rx: 860-870
Tx: 915-925
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
NMT
Nordic Mobile
Telephone
TACS
Total Access
Communication System
AMPS/NAMPS
Narrow Band Advanced
Mobile Phone System
Standard
Analog Cellular Telephones
n/a
n/a
n/a
Channel Bit Rate
FM
FM
FM
Modulation
NMT-450: 25 kHz
NMT-900: 12.5 kHz
ETACS: 25 kHz
NTACS: 12.5 kHz
AMPS: 30 kHz
NAMPS: 10 kHz
Channel Spacing
1
Users Per Channel
NMT-450: 200
NMT-900: 1999
ETACS: 1240
NTACS: 400
AMPS: 832
NAMPS: 2496
Number of Channels
FDD
FDD
FDD
Duplex Method
FDMA
FDMA
FDMA
Multiple Access
Method
NMT-450:
Rx: 463-468
Tx: 453-458
NMT-900:
Rx: 935-960
Tx: 890-915
ETACS:
Rx: 916-949
Tx: 871-904
NTACS:
Rx: 860-870
Tx: 915-925
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
NMT
Nordic Mobile
Telephone
TACS
Total Access
Communication System
AMPS/NAMPS
Narrow Band Advanced
Mobile Phone System
Standard
Analog Cellular Telephones
3:Data Transmission Slide 130
Digital Cellular Telephone
270.833 kb/s
1.2288 Mb/s
48.6 kb/s
Channel Bit Rate
GMSK
(0.3 Gaussian Filter)
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
p/4 DQPSK
Modulation
200 kHz
200 kHz
1250 kHz
30 kHz
Channel Spacing
8
15-50
3
Users Per Channels
374
124
20
832
Number of Channels
FDD
FDD
FDD
FDD
Duplex Method
TDMA/FDM
TDMA/FDM
CDMA/FDM
TDMA/FDM
Multiple Access
Method
Rx: 1805-1880
Tx: 1710-1785
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
DCS 1800/DCS 1900
Digital Communication System
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
TDMA
IS-54/IS-136
Time Division Multiple Access
Standard
Digital Cellular Telephones
270.833 kb/s
1.2288 Mb/s
48.6 kb/s
Channel Bit Rate
GMSK
(0.3 Gaussian Filter)
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
p/4 DQPSK
Modulation
200 kHz
200 kHz
1250 kHz
30 kHz
Channel Spacing
8
15-50
3
Users Per Channels
374
124
20
832
Number of Channels
FDD
FDD
FDD
FDD
Duplex Method
TDMA/FDM
TDMA/FDM
CDMA/FDM
TDMA/FDM
Multiple Access
Method
Rx: 1805-1880
Tx: 1710-1785
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
DCS 1800/DCS 1900
Digital Communication System
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
TDMA
IS-54/IS-136
Time Division Multiple Access
Standard
Digital Cellular Telephones
3:Data Transmission Slide 131
Digital Cellular Telephone
270.833 kb/s
1.2288 Mb/s
48.6 kb/s
Channel Bit Rate
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
p/4 DQPSK
Modulation
200 kHz
1250 kHz
30 kHz
Channel Spacing
8
15-50
3
Users Per Channels
124
20
832
Number of Channels
FDD
FDD
FDD
Duplex Method
TDMA/FDM
CDMA/FDM
TDMA/FDM
Multiple Access
Method
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
TDMA
IS-54/IS-136
Time Division Multiple Access
Standard
Digital Cellular Telephones
270.833 kb/s
1.2288 Mb/s
48.6 kb/s
Channel Bit Rate
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
p/4 DQPSK
Modulation
200 kHz
1250 kHz
30 kHz
Channel Spacing
8
15-50
3
Users Per Channels
124
20
832
Number of Channels
FDD
FDD
FDD
Duplex Method
TDMA/FDM
CDMA/FDM
TDMA/FDM
Multiple Access
Method
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
TDMA
IS-54/IS-136
Time Division Multiple Access
Standard
Digital Cellular Telephones
42 kb/s
270.833 kb/s
270.833 kb/s
1.2288 Mb/s
p/4 DQPSK
GMSK
(0.3 Gaussian Filter)
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
25 kHz
200 kHz
200 kHz
1250 kHz
3
8
15-50
1600
374
124
20
FDD
FDD
FDD
FDD
TDMA/FDM
TDMA/FDM
TDMA/FDM
CDMA/FDM
Rx: 810-826
Tx: 940-956
Rx: 1429-1453
Tx: 1477-1501
Rx: 1805-1880
Tx: 1710-1785
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
PDC
Personal Digital Cellular
DCS 1800/DCS 1900
Digital Communication System
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
cess
Digital Cellular Telephones
42 kb/s
270.833 kb/s
270.833 kb/s
1.2288 Mb/s
p/4 DQPSK
GMSK
(0.3 Gaussian Filter)
GMSK
(0.3 Gaussian Filter)
8-PSK (EDGE only)
QPSK/OQPSK
25 kHz
200 kHz
200 kHz
1250 kHz
3
8
15-50
1600
374
124
20
FDD
FDD
FDD
FDD
TDMA/FDM
TDMA/FDM
TDMA/FDM
CDMA/FDM
Rx: 810-826
Tx: 940-956
Rx: 1429-1453
Tx: 1477-1501
Rx: 1805-1880
Tx: 1710-1785
Rx: 869-894
Tx: 824-849
Rx: 925-960
Tx: 880-915
Rx: 1805-1880
Tx: 1710-1785
Rx: 1930-1990
Tx: 1850-1910
Rx: 869-894
Tx: 824-849
Rx: 1930-1990
Tx: 1850-1910
Rx: 2110-2170
Tx: 1920-1980
(CDMA2000 Asia)
PDC
Personal Digital Cellular
DCS 1800/DCS 1900
Digital Communication System
GSM
Global System for Mobile Communication
CDMA
IS-95
Code Division Multiple Access
cess
Digital Cellular Telephones
3:Data Transmission Slide 132
Analog Cordless Telephone
n/a
n/a
Channel Bit Rate
FM
FM
Modulation
25 kHz
1.7, 20, 25 or 40 kHz
Channel Spacing
CT1: 40
CT1+: 80
10, 12, 15, 20 or 25
Number of Channels
FDD
FDD
Duplex Method
FDMA
FDMA
Multiple Access
Method
CT1: 914/960
CT1+: 885/932
2/48 (U.K.)
26/41 (France)
30/39 (Australia)
31/40 (The Netherlands/Spain)
46/49 (China, S. Korea, Taiwan, U.S.A.)
48/74 (China)
Mobile Frequency
Range (MHz)
CT1/CT1+
Cordless Telephone 1
CT0
Cordless Telephone 0
Standard
Analog Cordless Telephones
n/a
n/a
Channel Bit Rate
FM
FM
Modulation
25 kHz
1.7, 20, 25 or 40 kHz
Channel Spacing
CT1: 40
CT1+: 80
10, 12, 15, 20 or 25
Number of Channels
FDD
FDD
Duplex Method
FDMA
FDMA
Multiple Access
Method
CT1: 914/960
CT1+: 885/932
2/48 (U.K.)
26/41 (France)
30/39 (Australia)
31/40 (The Netherlands/Spain)
46/49 (China, S. Korea, Taiwan, U.S.A.)
48/74 (China)
Mobile Frequency
Range (MHz)
CT1/CT1+
Cordless Telephone 1
CT0
Cordless Telephone 0
Standard
Analog Cordless Telephones
3:Data Transmission Slide 133
Digital Cordless Telephone
384 kb/s
1.152 Mb/s
72 kb/s
Channel Bit Rate
p/4 DQPSK
GFSK
(0.5 Gaussian Filter)
GFSK
(0.5 Gaussian Filter)
Modulation
300 kHz
1.728 MHz
100 kHz
Channel Spacing
4
12
1
Users Per Channel
300
10
40
Number of Channels
TDD
TDD
TDD
Duplex Method
TDMA/FDM
TDMA/FDM
TDMA/FDM
Multiple Access
Method
1895-1918
1880-1900
CT2: 864/868
CT2+: 944/948
Mobile Frequency
Range (MHz)
PHS
Personal Handy Phone System
DECT
Digital Enhanced Cordless Telephone
CT2/CT2+
Cordless Telephone 2
Standard
Digital Cordless Telephones
384 kb/s
1.152 Mb/s
72 kb/s
Channel Bit Rate
p/4 DQPSK
GFSK
(0.5 Gaussian Filter)
GFSK
(0.5 Gaussian Filter)
Modulation
300 kHz
1.728 MHz
100 kHz
Channel Spacing
4
12
1
Users Per Channel
300
10
40
Number of Channels
TDD
TDD
TDD
Duplex Method
TDMA/FDM
TDMA/FDM
TDMA/FDM
Multiple Access
Method
1895-1918
1880-1900
CT2: 864/868
CT2+: 944/948
Mobile Frequency
Range (MHz)
PHS
Personal Handy Phone System
DECT
Digital Enhanced Cordless Telephone
CT2/CT2+
Cordless Telephone 2
Standard
Digital Cordless Telephones
歐洲電話
3:Data Transmission Slide 134
Wireless Data
25
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Channel Bit Rate
(0.5 G
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
Modulation
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
Channel Spacing
127
127
8 active
7 active, 200 inactive
1
Users Per Channel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
Number of Channels
TDD
TDD
TDD
TDD
FDD
Duplex Method
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
Multiple Access
Method
24
100
(N.
24
100
(
10
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
IEEE
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
Standard
Wireless Data
(see telephone specs for data over cell phone)
25
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Channel Bit Rate
(0.5 G
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
Modulation
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
Channel Spacing
127
127
8 active
7 active, 200 inactive
1
Users Per Channel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
Number of Channels
TDD
TDD
TDD
TDD
FDD
Duplex Method
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
Multiple Access
Method
24
100
(N.
24
100
(
10
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
IEEE
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
Standard
Wireless Data
(see telephone specs for data over cell phone)
3:Data Transmission Slide 135
Wireless Data
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Channel Bit Rate
(0
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
Modulation
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
Channel Spacing
127
127
8 active
7 active, 200 inactive
1
Users Per Channel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
Number of Channels
TDD
TDD
TDD
TDD
FDD
Duplex Method
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
Multiple Access
Method
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
Standard
Wireless Data
(see telephone specs for data over cell phone)
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Channel Bit Rate
(0
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
Modulation
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
Channel Spacing
127
127
8 active
7 active, 200 inactive
1
Users Per Channel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
Number of Channels
TDD
TDD
TDD
TDD
FDD
Duplex Method
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
Multiple Access
Method
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
Mobile Frequency
Range (MHz)
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
Standard
Wireless Data
(see telephone specs for data over cell phone)
250/28 kb/s
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Rate
GFSK
(0.5 Gaussian Filter)
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
n
4 MHz
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
cing
255
127
127
8 active
7 active, 200 inactive
1
annel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
annels
FDD
TDD
TDD
TDD
TDD
FDD
hod
TDMA
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
ess
2402-2480
1000 mW/MHz
(N. America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
ency
Hz)
IEEE 802.15.4
ZigBee
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
d
Wireless Data
(see telephone specs for data over cell phone)
250/28 kb/s
12 Mb/s symbol rate
5.5-54 Mb/s
1, 2 or 11 MB/s
1 Mb/s symbol rate
1.6, 10 Mbps
1 Mb/s symbol rate
721 kb/s raw data
56 kb/s return
19.2 kb/s
Rate
GFSK
(0.5 Gaussian Filter)
OFDM: QPSK, QAM
(0.5 Gaussian filter)
OFDM: BPSK (5.5 Mb/s)
OFDM: 16QAM (24, 26 Mb/s)
OFDM: 64QAM (54 Mb/s)
FHSS: GFSK
(0.5 Gaussian Filter)
DSSS: DBPSK (1/MB/s)
DQPSK (2 MB/s)
CCK: QPSK (11 Mb/s)
FHSS
(0.5 Gaussian Filter)
Shaped Binary FM
(0.5 Gaussian Filter)
GMSK
(0.5 Gaussian Filter)
n
4 MHz
OFDM: 20 MHz
FHSS: 1 MHz
DSSS: 25 MHz
1 MHz, 3.5 MHz
1 MHz
30 kHz
cing
255
127
127
8 active
7 active, 200 inactive
1
annel
FHSS: 79
DSSS: 11
79
(23 in Japan, Spain, France)
832
annels
FDD
TDD
TDD
TDD
TDD
FDD
hod
TDMA
CSMA/CA
CSMA/CA
Frequency hopping
Frequency hopping
FDMA
ess
2402-2480
1000 mW/MHz
(N. America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
5150-5250
(USA lower band)
5250-5350
(USA middle band)
5725-5825
(USA upper band)
2401-2462
1000 mW/MHz
(North America)
2412-2472
100 mW/MHz
(Europe)
2483
10 mW/MHz
(Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
2402-2480
(North America & Europe)
2447-2473 (Spain)
2448-2482 (France)
2473-2495 (Japan)
Rx: 869-894
Tx: 824-849
ency
Hz)
IEEE 802.15.4
ZigBee
IEEE 802.11a
IEEE 802.11b
HomeRF
Bluetooth
CDPD
Cellular Digital
Packet Data (WAN)
d
Wireless Data
(see telephone specs for data over cell phone)
3:Data Transmission Slide 136
Personal Communication Systems
•PACS
(based on PHS cordless)
•DCT-U
(based on DECT cordless)
•Composite CDMA/TDMA
•PCS TDMA
(based on IS-136 cellular)
•PCS CDMA
(based on IS-95 cellular)
•PCS 1900
(based on GSM cellular)
Wideband CDMA
Multiple Access
Method
Rx: 1930-1990
Tx: 1850-1910
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
Low Tier Standards
High Tier Standards
Standard
Personal Communication Systems
•PACS
(based on PHS cordless)
•DCT-U
(based on DECT cordless)
•Composite CDMA/TDMA
•PCS TDMA
(based on IS-136 cellular)
•PCS CDMA
(based on IS-95 cellular)
•PCS 1900
(based on GSM cellular)
Wideband CDMA
Multiple Access
Method
Rx: 1930-1990
Tx: 1850-1910
Rx: 1930-1990
Tx: 1850-1910
Mobile Frequency
Range (MHz)
Low Tier Standards
High Tier Standards
Standard
Personal Communication Systems
4: Transceiver Architecture Slide 137
Outline
• Receiver :
• Linearity -> IP3, P1dB
• Noise -> SNR
• Sensitivity & Dynamic Range
• Channel filtering
• Transmitter
4: Transceiver Architecture Slide 138
1-dB compression point
• The input level that causes the small-signal gain to drop by 1dB.
• Because of : Nonlinearity
• Around -25~-20dBm(63.2m ~ 35.6mV in 50Ω system)
非線性系統-
增益會掉
4: Transceiver Architecture Slide 139
Desensitization and Blocking
• Cause : A small signal is received and accompanied with a strong
interference.
• If 3 is negative, then gain is reduced.
• RF receiver must withstand 60~70dB signal difference.
4: Transceiver Architecture Slide 140
Intermodulation(I)
• Harmonics distortion is not very useful to characterize nonliearity.
• ∵ For examples, a low pass filter reduce the hamonics.
4: Transceiver Architecture Slide 141
Intermodulation(II)
• Perform “two-tone” test.
• If
• Then main part
• and harmonics
Third order intermodulation
Second order intermodulation
4: Transceiver Architecture Slide 142
Intermodulation(III)
• We call the components at and the 21±2 and 22±1 third-order
intermodulation products
• Note the 21- 2 and 22- 1 tone. It comes closest to the main
tone due to nonlinearity effect.
• Ex : A1=A2, if 1A=1V and 3A3/4=10mV
then we say IM componet is -40dBc, where c means with respect to
the carrier.
4: Transceiver Architecture Slide 143
Intermodulation(IV)
• IM is a troublesome effect in RF system.
• IM causes a weak signal is corrupted by two strong interference.
• While operating by AM, it still degrades the PM. Because zero-
crossing points are still affected.
• The effect can not be observed from Harmonic distortions.
4: Transceiver Architecture Slide 144
Intermodulation(V)
• IP3 : Third intercept point
• It is very useful to characterize the linearity
IM3 component increases with A3.
• IIP3 is the input IP3 and OIP3 is at output.
• Figures (a) in linear scale and (b) in log scale.
RF評估非線性的方法
4: Transceiver Architecture Slide 145
Intermodulation(VI)
• How to calculate IP3
• Let
• Suppose
• then
4: Transceiver Architecture Slide 146
Intermodulation(VII)
• How to measure IIP3 with a single measurement
• While
• then
IIP3越大越好(表示越線性)
4: Transceiver Architecture Slide 147
IIP3 & P1dB
• The theoretically relationship is
4: Transceiver Architecture Slide 148
Cascade Nonlinear Stages
• If
• then
4: Transceiver Architecture Slide 149
Cascade Nonlinear Stages
• Practical usage :
• Approximation:
• More cascade stages
第一級的增
益
**後級的線性度會被前一級的增益搞砸
sol:前級增益不能太大,越後級線性度越重要(後級幾乎決定
線性度)
4: Transceiver Architecture Slide 150
General Considerations
• Receiver :
• Linearity -> IP3, P1dB
• Noise -> NF
• Sensitivity & Dynamic Range
• Channel filtering
越前級越重要
4: Transceiver Architecture Slide 151
Thermal Noise
• In the MOSFET
• Short channel: g > 2 ( process dependent )
• Long channel: g =2/3
電晶體的輸出級用電流來看雜訊
4: Transceiver Architecture Slide 152
Flicker noise
• Flicker noise
• It arise from random trapping of charge at the
oxide-silicon interface of MOSFETs.
• K is a constant and process dependant.
4: Transceiver Architecture Slide 153
Shot noise
• If carriers cross a potential barrier, then the overall current actually
consists of a large number of random current pulses.
• Usually exists in the BJT
• The random component of the current is called “shot noise” .
• It is
4: Transceiver Architecture Slide 154
Input Referred Noise
• The overall noise of a circuit can be represented by only two sources placed at the input:
• Ex.
• Note: The two sources are correlated here because they
represent the same mechanism.
4: Transceiver Architecture Slide 155
Noise Figure
• NF is a measure of how much the SNR degrades as the signal passes
through system.
• Definition :
• Usually in dB unit ( 10log10)
• NF > 1
• If no input noise, NF -> ∞. (not meaningful)
4: Transceiver Architecture Slide 156
Noise Figure Calculation
(for measurement)
4: Transceiver Architecture Slide 157
Noise Figure Calculation
• Ex. : In 50ohm system
What is the NF?
4: Transceiver Architecture Slide 158
Noise Figure of Cascaded Stages
• NF calculation
4: Transceiver Architecture Slide 159
Noise Figure of Cascaded Stages
• For a special case :
第一級佔非常多的noise
4: Transceiver Architecture Slide 160
General Considerations
• Receiver :
• Linearity -> IP3, P1dB
• Noise -> NF
• Sensitivity & Dynamic Range
• Channel filtering
4: Transceiver Architecture Slide 161
Sensitivity
• From NF :
• We get :
• Because the RF is 50ohm system :
• Then :
,where B is bandwidth
4: Transceiver Architecture Slide 162
Sensitivity Calculation
• Ex.:For GSM,SNRmin ~ 12dB, B = 200kHz
• If NF of the receiver path is 9dB,
Then : Sensitivity is -174+9+53+12 = -100 dBm
• If we have a specification with sensitivity of -105dBm,
Then : NF should be : -105+174-53-12 = 4dB
4: Transceiver Architecture Slide 163
SFDR
• The upper end of DR (actually “spurious-free” dynamic range,(SFDR)
is defined as the max.
• IM <= the noise floor:
• where Noise floor=-174 dBm+NF+10log B
• Then :
4: Transceiver Architecture Slide 164
SFDR
• Example: GSM,SNRmin ~ 12dB, B = 200kHz, NF is 9, suppose IIP3 =-15
dBm.
• Then, SFDR=2/3(-15-(-112))-12=52.7 dB
• SFDR indicates how much interference the system can tolerate while
providing an acceptable signal quality.
4: Transceiver Architecture Slide 165
General Considerations
• Receiver :
• SNR
• Linearity -> IP3
• Sensitivity & Dynamic Range
• Channel filtering -> Receiver Architecture
4: Transceiver Architecture Slide 166
Channel filtering
• Receiver :
• Interference Rejection
• High Q filter
• Ex : 900MHz receiver with 60db ANT of 90kHz => Q:~1E7
4: Transceiver Architecture Slide 167
Channel filtering
• Receiver :
• Bandpass filter selection
• Tradeoff : In-band Loss & Out-band Rejection
• In-band Loss => High Noise (NF) & Low SNR
4: Transceiver Architecture Slide 168
Channel filtering
• Receiver :
• Band Selection
• Channel Selection
• Reject image
• Relax linearity requirement
4: Transceiver Architecture Slide 169
Heterodyne Receiver
• Heterodyne : the signal band is translated to much lower frequencies
(IF) so as to relax the Q required of the channel-select filter.
• IF : intermediate frequency.
• It filters out some strong interference to relax the linearity
requirement for the following stages.
2次降頻完成
4: Transceiver Architecture Slide 170
Problem of image
• Both desirable and undesirable frequency band are all mixed down to
IF
• Solution : We need proper “image rejection”
雖然訊號從1.8
降到0.1但是如
果1.6有訊也會
被一起降到0.1
4: Transceiver ArchitectureSlide 171
Image rejection
• Trade-off for IF frequency selection
• High IF: good image rejection, poor channel selection
• Low IF : good channel selection, image rejection
較好
4: Transceiver Architecture Slide 172
Image rejection
• High side injection : if LO > in, then image is higher than LO.
• Low side injection : if LO < in, then image is lower than LO.
• High side injection needs high VCO frequency operation.
• Another consideration depends on the distribution of image band
noise.
4: Transceiver Architecture Slide 173
Half IF
• If an interference is at , the signal is
down-converted to half IF .
• If the following stage suffers from nonlinearity effect, the second
order distortion of the half IF will fall down the wanted IF band.
4: Transceiver Architecture Slide 174
Heterodyne Receiver
• To enhance the sensitivity and selectivity, heterodyne receiver
downconverts signal two times.
沒有這段就是
Homedyne
(1次降到0Hz)
4: Transceiver Architecture Slide 175
Homedyne Receiver
• It converts the RF signal once to the baseband.
• Called Homedyne , direct-conversion, zero-IF architecture.
• In Fig.(a), it operates properly on with double –side band AM signal because it overlaps +
and - input spectrum.
• FM & QPSK has the different spectrum in the upper and lower band. Hence , quadrature
modulation is necessary.
• Fig.(b) operated for the quadrature modulation.
4: Transceiver Architecture Slide 176
Homedyne Receiver
• Advantages:
• No image
• Need no image rejection filter
• Monolithic integration
• LNA need no 50ohm output matching
• Disadvantage :
• DC offset
• IQ mismatch
• Flicker noise_mos在0HZ時有一個低平的雜訊
• LO leakage
缺點:要把這些全部解決才可以
(皆是低頻的問題)
4: Transceiver Architecture Slide 177
DC offset
• DC offset is very important issue for zero-IF.
• It corrupts the signal.
• It saturates the following stages.
• It arise from :
• Device mismatch
• Signal reflection
• Tx leaks to RX
self-mixing(源頭)
4: Transceiver Architecture Slide 178
DC offset
• (a) Self-mixing of LO signal
• (b) Strong interferer from input
4: Transceiver Architecture Slide 179
DC offset Cancellation
• Solution 1: High pass filter can cancel DC offset
• Issue 1: Around dc signal also loses engery.
• Issue 2: A larger capacitor fail to track fast variation in the offset voltage.
• Solutions 2 : DC free coding
• A modulation or coding method carries little signal around the DC
• Suitable for wideband signal
• Solution 3 : Stores the dc offset
• In the TDMA system, the dc offset value can be stored in the C1 with a switch
S1.
4: Transceiver Architecture Slide 180
DC offset Cancellation
• Issue 3:
• Mandating large C1 due to thermal noise kT/C.
• Offset due to VCO can be detected and stored.
• However, interferer signal randomly appears.
• Hence, averaged dc offset value is necessary.
stored cancelled
C1先記電壓值,開始工作後再抵銷DC offset
4: Transceiver Architecture Slide 181
I/Q mismatch
• A homodyne incorporates Quadrate mixing for the frequency and
phase modulation scheme.
• Scheme (b) is preferred due to not interfering the main signal path.
通常使用(b)
(a)RF經過90度可
能會有loss,也就
是雜訊
4: Transceiver Architecture Slide 182
Even Order Distortion
• IP2 : It is used to characterize even order distortion
• Solutions : Differential circuits
• Issue 1 : The front end antenna and duplexer are usually single ended.
• Hence : Transformer is necessary for single to differential but its loss causes higher NF.
• Issue 2 : Differential circuits consume more power.
降共模雜訊
4: Transceiver Architecture Slide 183
Flicker Noise
• Flicker noise :
• Its noise power is proportional to 1/f.
• It corrupts input signal significantly around DC frequency.
• In the homedyne receiver the down-converted signal is only amplified LNA &
Mixer (~30dB). Hence signal is still very small and prone to corrupted by the
flicker noise.
• Solution : incorporate large device size to minimize the magnitude of
flicker noise.
閃爍噪音:
其噪聲功率與1 / f成正比。
它顯著地損壞了直流頻率的輸入信號。
在homedyne接收機中,下變頻信號僅被放大LNA和混頻器(〜
30dB)。 因此,信號仍然非常小,易受到閃爍噪聲的干擾。
解決方案:採用大尺寸的器件來減小閃爍噪聲的大小。
4: Transceiver Architecture Slide 184
Channel permutation
• (a) Allowing A for nonlinearity and high gain for ADC
• However, the first filter suffers from noise and linearity issue.
• (b) Relax filter noise requirement
• However, requires linear Amp
• (c) Easy to implement filter in digital circuits
• However, require linear and low thermal and quantization noise ADC
越前面線性度要越高
也表示越前面越難做
a和b比選b會比
較好一點,因為
filter比較不好做
4: Transceiver Architecture Slide 185
Digital IF architecture
• Digital IF : Second down-conversion is performed in the digital circuits.
• Advantages :
• Alleviate DC offset and flicker noise issue
• No IQ phase and gain mismatch issue
• Difficulty : Need high dynamic and high bandwidth ADC.
主流架構
4: Transceiver Architecture Slide 186
Sampling IF architecture
• Sample and hold action in the ADC also perform the down-conversion.
• Sampling frequency could be a little lower than IF frequency.
• Still needs high performance ADC with high speed and high linearity.
讓訊號再降頻一次
4: Transceiver Architecture Slide 187
Subsampling Receiver
• Sampling in the time domain causes periodically repeated spectrum
in the frequency domain.
• Signal then can be down-converted by very low frequency sampling
rate.
4: Transceiver Architecture Slide 188
Subsampling Receiver
• Drawback : Subsampling by a factor of m multiplies the
downconverted noise power of the sampling circuit by a factor of m.
4: Transceiver Architecture Slide 189
Direct Conversion Transmitter
• Direct conversion : the transmitted frequency is equal to the LO
frequency.
• Matching network :
• It is to provide a maximum power transferring to the antenna.
• It also filters out the out-of-band component that results from the
nonlinearity of PA.
可以順便濾波
4: Transceiver Architecture Slide 190
Transmitter Architecture
• Baseband / RF interface
• Quadrature modulation :
4: Transceiver Architecture Slide 191
Transmitter Architecture
• Baseband pulse shaping
4: Transceiver Architecture Slide 192
Two-step transmitter
• Advantages:
• Avoid the pulling effect from PA
• Better I/Q matching due to lower frequency operation.
• Difficulty : Second BPF must reject out-of-band signal at (1-2) up
to 50 ~ 60 dB.
4: Transceiver Architecture Slide 193
Philips Pager Rx
• Philips Pager Rx 可降虛部
4: Transceiver Architecture Slide 194
Lucent GSM Transceiver
• Lucent GSM Transceiver
降2次就需要
怕和前面的71一樣
被干擾到,所以用
284/4來做71

More Related Content

What's hot

Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freqPei-Che Chang
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
Network optimization presentation generic dec18
Network optimization presentation generic dec18Network optimization presentation generic dec18
Network optimization presentation generic dec18frankjoh
 
Introduction to I/Q signal
Introduction to I/Q signalIntroduction to I/Q signal
Introduction to I/Q signalcriterion123
 
pulse shaping and equalization
pulse shaping and equalizationpulse shaping and equalization
pulse shaping and equalizationremyard
 
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipset
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G ChipsetRF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipset
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipsetsystem_plus
 
Core Network Optimization: The Control Plane, Data Plane & Beyond
Core Network Optimization: The Control Plane, Data Plane & BeyondCore Network Optimization: The Control Plane, Data Plane & Beyond
Core Network Optimization: The Control Plane, Data Plane & BeyondRadisys Corporation
 
5G NR radio protocols to support URLLC
5G NR radio protocols to support URLLC5G NR radio protocols to support URLLC
5G NR radio protocols to support URLLC3G4G
 
How to dimension user traffic in LTE
How to dimension user traffic in LTEHow to dimension user traffic in LTE
How to dimension user traffic in LTEAlthaf Hussain
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifierscriterion123
 
Antenna synthesis
Antenna synthesisAntenna synthesis
Antenna synthesisAJAL A J
 
VoWiFi testing challenges
VoWiFi testing challengesVoWiFi testing challenges
VoWiFi testing challengesDave Crossley
 
5G Huawei BTS5900
5G Huawei BTS5900 5G Huawei BTS5900
5G Huawei BTS5900 Aziz Abamni
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Receiver structures(optical communication)
Receiver structures(optical communication)Receiver structures(optical communication)
Receiver structures(optical communication)shraddha bajaj
 

What's hot (20)

lecture5.ppt
lecture5.pptlecture5.ppt
lecture5.ppt
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freq
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
Receiver design
Receiver designReceiver design
Receiver design
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Network optimization presentation generic dec18
Network optimization presentation generic dec18Network optimization presentation generic dec18
Network optimization presentation generic dec18
 
Introduction to I/Q signal
Introduction to I/Q signalIntroduction to I/Q signal
Introduction to I/Q signal
 
pulse shaping and equalization
pulse shaping and equalizationpulse shaping and equalization
pulse shaping and equalization
 
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipset
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G ChipsetRF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipset
RF Front-End Module Comparison 2021 – Vol. 2 – Focus on 5G Chipset
 
Core Network Optimization: The Control Plane, Data Plane & Beyond
Core Network Optimization: The Control Plane, Data Plane & BeyondCore Network Optimization: The Control Plane, Data Plane & Beyond
Core Network Optimization: The Control Plane, Data Plane & Beyond
 
5G NR radio protocols to support URLLC
5G NR radio protocols to support URLLC5G NR radio protocols to support URLLC
5G NR radio protocols to support URLLC
 
PAPR Reduction
PAPR ReductionPAPR Reduction
PAPR Reduction
 
How to dimension user traffic in LTE
How to dimension user traffic in LTEHow to dimension user traffic in LTE
How to dimension user traffic in LTE
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
 
Antenna synthesis
Antenna synthesisAntenna synthesis
Antenna synthesis
 
VoWiFi testing challenges
VoWiFi testing challengesVoWiFi testing challenges
VoWiFi testing challenges
 
5G Huawei BTS5900
5G Huawei BTS5900 5G Huawei BTS5900
5G Huawei BTS5900
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Receiver structures(optical communication)
Receiver structures(optical communication)Receiver structures(optical communication)
Receiver structures(optical communication)
 

Similar to 射頻期中整理.pptx

Modulation
ModulationModulation
Modulationsristykp
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniquesShriyaGautam3
 
Modulation technology
Modulation technologyModulation technology
Modulation technologyPei-Che Chang
 
Digital modulation
Digital modulationDigital modulation
Digital modulationAnkur Kumar
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulationavocado1111
 
Chapter7_Lathi_4thed_JAN_2021.pptx
Chapter7_Lathi_4thed_JAN_2021.pptxChapter7_Lathi_4thed_JAN_2021.pptx
Chapter7_Lathi_4thed_JAN_2021.pptxSubhanBihan1
 
Digital modulation techniques updated
Digital modulation techniques updatedDigital modulation techniques updated
Digital modulation techniques updatedMuhammad Mohsin Raza
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniquesSakshi Verma
 
Lecture Notes: EEEC6440315 Communication Systems - Digital Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Digital ModulationLecture Notes:  EEEC6440315 Communication Systems - Digital Modulation
Lecture Notes: EEEC6440315 Communication Systems - Digital ModulationAIMST University
 
Performance Analysis Of Different Digital Modulation Scheme
Performance Analysis Of Different Digital Modulation SchemePerformance Analysis Of Different Digital Modulation Scheme
Performance Analysis Of Different Digital Modulation SchemeAjay Walia
 
Non Linear Signal Processing
Non Linear Signal ProcessingNon Linear Signal Processing
Non Linear Signal ProcessingTejasPrajapati25
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and DemodulatorKannanKrishnana
 
Amplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsAmplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsWaqas Afzal
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tueVin Voro
 

Similar to 射頻期中整理.pptx (20)

Modulation
ModulationModulation
Modulation
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
Modulation technology
Modulation technologyModulation technology
Modulation technology
 
Dc unit 2
Dc unit 2Dc unit 2
Dc unit 2
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
mod.pptx
mod.pptxmod.pptx
mod.pptx
 
Chapter7_Lathi_4thed_JAN_2021.pptx
Chapter7_Lathi_4thed_JAN_2021.pptxChapter7_Lathi_4thed_JAN_2021.pptx
Chapter7_Lathi_4thed_JAN_2021.pptx
 
14 FM_Generation.pdf
14 FM_Generation.pdf14 FM_Generation.pdf
14 FM_Generation.pdf
 
Digital modulation techniques updated
Digital modulation techniques updatedDigital modulation techniques updated
Digital modulation techniques updated
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
Lecture Notes: EEEC6440315 Communication Systems - Digital Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Digital ModulationLecture Notes:  EEEC6440315 Communication Systems - Digital Modulation
Lecture Notes: EEEC6440315 Communication Systems - Digital Modulation
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
D1 06
D1 06D1 06
D1 06
 
Performance Analysis Of Different Digital Modulation Scheme
Performance Analysis Of Different Digital Modulation SchemePerformance Analysis Of Different Digital Modulation Scheme
Performance Analysis Of Different Digital Modulation Scheme
 
Non Linear Signal Processing
Non Linear Signal ProcessingNon Linear Signal Processing
Non Linear Signal Processing
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
Group no 11
Group no 11Group no 11
Group no 11
 
Amplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsAmplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signals
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
 

More from ssuserb4d806

Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.pptssuserb4d806
 
Analog_chap_01.ppt
Analog_chap_01.pptAnalog_chap_01.ppt
Analog_chap_01.pptssuserb4d806
 
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdfssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptxssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptxssuserb4d806
 
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...ssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptxssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptxssuserb4d806
 
RFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.pptRFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.pptssuserb4d806
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfssuserb4d806
 
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdfAIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdfssuserb4d806
 
Lecture 1 System View.pptx - 已修復.pdf
Lecture 1 System View.pptx  -  已修復.pdfLecture 1 System View.pptx  -  已修復.pdf
Lecture 1 System View.pptx - 已修復.pdfssuserb4d806
 
Training L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptxTraining L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptxssuserb4d806
 
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdfLecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdfssuserb4d806
 
Lecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdfLecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdfssuserb4d806
 
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdfLecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdfssuserb4d806
 

More from ssuserb4d806 (20)

5.pdf
5.pdf5.pdf
5.pdf
 
4.pdf
4.pdf4.pdf
4.pdf
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
Analog_chap_01.ppt
Analog_chap_01.pptAnalog_chap_01.ppt
Analog_chap_01.ppt
 
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
 
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
 
RFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.pptRFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.ppt
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
 
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdfAIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
 
virtuoso
virtuosovirtuoso
virtuoso
 
Lecture 1 System View.pptx - 已修復.pdf
Lecture 1 System View.pptx  -  已修復.pdfLecture 1 System View.pptx  -  已修復.pdf
Lecture 1 System View.pptx - 已修復.pdf
 
Labs_20210809.pdf
Labs_20210809.pdfLabs_20210809.pdf
Labs_20210809.pdf
 
Training L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptxTraining L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptx
 
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdfLecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
 
Lecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdfLecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdf
 
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdfLecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
 

Recently uploaded

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 

Recently uploaded (20)

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 

射頻期中整理.pptx

  • 1. AM = Amplitude modulation 調幅,資料載在振幅上 FM = Frequency modulation 調頻,資料載在頻率上 ASK = amplitude shift keying 振福位移鍵送,電磁波振幅小代表0,振幅大代表1 PSK = phase shift keying 相位位移鍵送,電磁波相位0°(先上後下振動)代表0,相位180°(先下後上振動)代表1 FSK = frequency shift keying 頻率位移鍵送,電磁波頻率低代表0,頻率高代表1 ISI problem = Intersymbol interference problem 符號間干擾問題 RRC filter = root raised cosine filter 根餘弦濾波器 CPFSK = Continuous Phase Frequency Shift Keying 連續相位頻移鍵控 DPSK = Differential PSK 差分相位調變-移相180o QPSK = Quadrature Phase Shift Keying 4階相位偏移調變-移相90o OQPSK = offset QPSK 偏移QPSK-移相90o p/4 QPSK =移相135o MSK = Minimum Shift Keying最小頻移鍵控 PDF = Probability Density Function 概率密度函数 PSD = Power Spectral Density 功率譜密度 FIR = finite impulse response有限脈衝響應濾波器 ARQ = Automatic repeat request systems自動重複請求系統 TDD = Time division duplex 時分雙工 FDD = Frequency division duplex 頻分雙工 TDM = Time division multiplexing 分時多工 FDM = Frequency division multiplexing 正交頻分多工 WDM = Wavelength division multiplexing 波長分波多工
  • 2. TDMA = Time Division multiple Access 分時多工 FDMA = Frequency Division Multiple Access 分頻多重進接 CDMA = Code Division Multiple Access 分碼多重進接 ODMA = Orthogonal frequency-division multiplexing 正交分頻多工 AMPS = Advanced Mobile Phone System 類比式行動電話系統 NADC = North American Digital System GSM = Global System for Mobile Communication 全球行動通訊系統 DECT = Digital European Cordless Telephone 數位增強無線通訊
  • 3. 2: Modulation and demodulation Slide 3 Amplitude Modulation • Amplitude modulation
  • 4. 2: Modulation and demodulation Slide 4 Amplitude Modulation • AM • Sensitive to additive noise. • Requires linear PA ( ) [1 ( )]cos AM BB c x t Ac mx t t    缺點 對雜訊敏感 需要線性PA
  • 5. 2: Modulation and demodulation Slide 5 AM Detector • Coherent demodulation or Envelop detector • The envelop of the modulated waveform does not cross zero ( ) 1 ( ) AM BB x t mx t   AM 接收機 Coherent 同調
  • 6. 2: Modulation and demodulation Slide 6 FM Modulator • VCO can be a FM modulator • phase is an integral form of frequency • VCO frequency is determined by value of the Inductor, which is modulated by XBB(t). ( ) cos ( ) FM c c BB x t A t m x t dt         FM 發射機 二極體就是一個可變 電容(在逆向導通區)
  • 7. 2: Modulation and demodulation Slide 7 Simple FM Demodulator • Simple FM Demodulator : • Differentiator • High pass filter       1 1 ( ) [ ( )]sin[ ( ) ] out c c BB c BB v t A R C mx t t m x t dt FM 解調 微分器 高通濾波器
  • 8. 2: Modulation and demodulation Slide 8 Narrow Bandwidth FM (1) • If << 1 rad ( ) cos ( ) FM c c BB x t A t m x t dt         , ( ) cos (sin ) ( ) FM NB c c c c BB x t A t A m t x t dt       ( ) BB m x t dt 微分-高通 積分-低通
  • 9. 2: Modulation and demodulation Slide 9 Narrow Bandwidth FM (2) • Single tone test , if   ( ) cos BB m m x t A t ( ) cos ( ) FM c c BB x t A t m x t dt        
  • 10. 2: Modulation and demodulation Slide 10 Narrow Bandwidth FM • NBFM Spectrum
  • 11. 2: Modulation and demodulation Slide 11 FM spectrum • Bessel Function ( ) cos BB m m x t A t   ( ) cos[ ( / )sin ] FM C C m m m x t A t mA t      ( ) ( )cos( ) FM C n C m n x t A J n t         m m mA    0 1 If << 1 rad ( ) 1 , ( ) Narrow Band FM 2 ( ) 0 for 1 n J J J n                   
  • 12. 2: Modulation and demodulation Slide 12 Carson’s rule • Carson’s rule : If the bandwidth of FM ( ) is defined as containing 98% signal power, the following formula is derived 2( 1) FM BB BW BW    FM BW
  • 13. 2: Modulation and demodulation Slide 13 Digital Modulations • ASK, PSK, FSK PSK---技術最複雜,抗雜訊能力最好,因此較常用在無線通訊 ASK---技術最簡單,抗雜訊能力最差,較少使用在無線通訊,而是使用在光纖通訊 FSK---技術複雜,但抗雜訊能力比ASK 好,錯誤率低,可使用在無線通訊
  • 14. 2: Modulation and demodulation Slide 14 Digital Modulations n n cos , if b 1 ( ) 0 ,if b 0 c ASK A t x t        1 n n cos , if b 1 ( ) cos 2 ,if b 0 FSK A t x t A t         1 n 1 n cos , if b 1 ( ) cos ,if b 0 PSK A t x t A t         
  • 15. 2: Modulation and demodulation Slide 15 ASK • The simplest form of bandpass data modulation is Amplitude Shift Keying (ASK). • In binary ASK, where only two symbol states are needed, the carrier is simply turned on or off. • ASK is sometimes referred to as ON-OFF Keying (OOK).
  • 16. 2: Modulation and demodulation Slide 16 ASK data spectrum • This ASK spectrum is a double sideband spectrum • It has an upper and lower sideband with respect to the carrier. • If we now include all the components in the baseband stream which will mix with the carrier to generate a frequency sum(+) and difference(-) component, then 1. resulting spectrum is symmetrical about the carrier frequency then 2. spectrum is with a positive and reversed image of the baseband 'sinc' spectrum for an unfiltered binary data stream. Data stream in
  • 17. 2: Modulation and demodulation Slide 17 Factors affecting signal bandwidth • Reducing the width of the pulse but keeping the period of the waveform constant results in • the lower harmonic levels • an increase in the level of the higher harmonics
  • 18. 2: Modulation and demodulation Slide 18 Smooth transition • Because the sharp changes in waveform can only be constructed from a large number of low-level high frequency sinusoids in a Fourier series expansion. • So a waveform which has sharp transitions in the time domain will have a higher harmonic content than smooth transitions. • Hence, modulation that possess smooth pulse shapes between symbol states are to be favored when bandwidth is limited. Nyquist filter
  • 19. 2: Modulation and demodulation Slide 19 Nyquist filters • A commonly used pulse-shaping method is to pass the data stream through a low pass filter having a raised cosine response. • The raised cosine filter belongs to a family of filters called Nyquist filters . • It also reduces ISI problem.
  • 20. 2: Modulation and demodulation Slide 20 Bandpass filtering method • In order to minimize the occupied bandwidth of the transmitted ASK signal, filtering or pulse shaping is required either prior to or after modulation onto a carrier. • The switching method of ASK generation does not allow any pre-filtering of the modulating baseband symbol stream, as the switch is a non-linear process Switch沒有辦法濾波
  • 21. 2: Modulation and demodulation Slide 21 Non-coherent detection • ∵With ASK, the information is conveyed in the amplitude or envelope of the modulated carrier signal. ∴ the data can thus be recovered using an envelope detector. • An simplest envelope detector comprises a diode rectifier and smoothing filter • non-coherent detector. ASK解調 RFID會用到ASK 整流+濾波+比較器
  • 22. 2: Modulation and demodulation Slide 22 Non-coherent detection • If quadrature versions of the modulated carrier signal are available in the receiver, that is,a(t) cos wct and a(t) sin wct (where a(t) represents the data imposed amplitude modulation). • Mathematically we get: a(t)2 cos2wct + a(t)2 sin2wct = a(t)2 (cos2wct + sin2wct) = a(t)2 沒有乘法器 抗雜訊較差一點
  • 23. 2: Modulation and demodulation Slide 23 ASK Coherent detection • Representing the modulated data signal as a(t) cos wct and the reference carrier as cos(wct + q) , the mixer output becomes: a(t) cos wct cos(wct + q) = 0.5 a(t)cos(q) + 0.5 a(t)cos(2wct + q) • If the carrier is phase coherent with the incoming modulated carrier signal (that is, there is no frequency or phase difference between them, q = 0o), then the output is proportional to a(t) and perfect detection is achieved. Coherent 載波是什麼就成一 個一樣的訊號(SNR 較好) 缺點 會有一個相位差!
  • 24. 2: Modulation and demodulation Slide 24 Coherent Matched filter • Matched filtering of baseband data signals is for optimizing the signal to noise ratio at the output of a data receiver. • Matched filtering is applicable to bandpass modulation detection. • A matched filter pair such as the root raised cosine(RRC filter) filters can thus be used to • shape the source and • received baseband data symbols in ASK, 有最佳的SNR 可限制BW 可積分
  • 25. 2: Modulation and demodulation Slide 25 Carrier recovery for ASK • It is beneficial to use coherent detection of ASK • means of recovering the carrier frequency and phase from the incoming data signal is needed. • A technique that is well suited to this task is the phase-locked loop (PLL) • Issues: • input referred noise • Off state
  • 26. 2: Modulation and demodulation Slide 26 Coherent detection vs non-coherent detection • Let us now consider the case of detecting the ASK signal in the presence of noise. For simplicity we will assume that the carrier is in the 'off' state and that we have a specific noise component of length N and phase 60 degree • The non-coherent detector, • which is performing amplitude detection, is simply measuring the length of the composite (ASK + Noise) vector regardless of the vector phase. It would thus produce an output voltage proportional to N, the noise vector length. • The coherent detector, • acts by mixing the incoming signal with the reference carrier cos wt. The result is that the voltage at the detector output due to the noise is reduced by a factor cos(60o) = 0.5 and is thus proportional to N/2.
  • 27. 2: Modulation and demodulation Slide 27 Coherent detection vs non-coherent detection • On average, the coherent detection method reduces the noise voltage out of the detector by a factor of root 2 and the noise power by 2. • In other words, coherent detection of ASK can tolerate 3 dB more noise than non-coherent ASK for the same likelihood of detection error.
  • 28. 2: Modulation and demodulation Slide 28 BER performance of ASK • The Eb/N0 value is for the average symbol power which is 3 dB less than the peak symbol power for ASK (the carrier is off for approximately half of the transmitted symbols). SNR的倍率 (類比) 錯 誤 率 ( 數 位 ) 類比數位溝通 的圖示
  • 29. 2: Modulation and demodulation Slide 29 FSK generation • FSK can be generated by switching between distinct frequency sources. • Any phase discontinuity at the symbol boundary will result in a much greater prominence of high frequency terms in the spectrum 2個不同頻率的訊 號做切換開關 不連續的地方有高 頻協波項
  • 30. 2: Modulation and demodulation Slide 30 FSK generation • FSK can be realized by applying the data signal to a voltage controlled oscillator (VCO) . • The phase transition between consecutive symbol states is guaranteed to be smooth (continuous). • FSK with no phase discontinuity between symbols is known as a Continuous Phase Frequency Shift Keying (CPFSK) format.
  • 31. 2: Modulation and demodulation Slide 31 Vector modulator • Vector modulator or quadrature (正交) modulator • To generate FSK requires the generation of two symbols, one at a frequency (c + 1) and one at a frequency (c – 1). • In order to generate a frequency shift of + 1 at the output of the vector modulator, the I and Q inputs need to be fed with +/-cos 1 and sin 1, respectively. sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ
  • 32. 2: Modulation and demodulation Slide 32 Spectrum of FSK • The spectrum of the FSK signal is not as easy to derive as that for ASK because the FSK generation process is non-linear. • An approximation can be obtained by plotting the spectra for two ASK streams centered on the respective carrier frequencies
  • 33. 2: Modulation and demodulation Slide 33 PLL-based FSK detection • VCO control voltage must change in order for the PLL to track and lock onto a new input frequency. • It provides a direct measure of the input signal frequency for each symbol in the FSK stream. 應用在低速 的應用
  • 34. 2: Modulation and demodulation Slide 34 BER
  • 35. 2: Modulation and demodulation Slide 35 Comparison • Advantages of FSK • FSK is a constant envelope modulation, and hence insensitive to amplitude (gain) variations in the channel • Compatible with non-linear transmitter and receiver systems. • The detection of FSK can be based on relative frequency changes between symbol states and thus does not require absolute frequency accuracy in the channel. • (FSK is thus relatively tolerant to local oscillator drift and Doppler shift.) • Disadvantages of FSK • FSK is slightly less bandwidth efficient than ASK or PSK (excluding MSK implementation). • The bit/symbol error rate performance of FSK is worse than for PSK under the same SNR.
  • 36. 2: Modulation and demodulation Slide 36 PSK generation • The simplest means of realizing unfiltered binary PSK is to switch the sign of the carrier using the data signal, causing a 0 or 180 degree phase shift. • Just as for ASK, this method of generation is not well suited to obtaining a Nyquist filtered waveform. • Owing to the difficulty in implementing bandpass high frequency, high Q filters.
  • 37. 2: Modulation and demodulation Slide 37 PSK generation • If filtering is required, then linear multiplication must be employed. • The data stream to be pre-shaped at baseband prior to the modulation process.
  • 38. 2: Modulation and demodulation Slide 38 PSK Detection • There is no non-coherent equivalent detection process for PSK, • We need zero phase error for optimum detection and must re-visit the whole area of carrier recovery. • Note that if the phase error reaches 90 the output falls to zero!
  • 39. 2: Modulation and demodulation Slide 39 The Costas loop     1 sin cos sin sin 2                   1 cos sin sin sin 2                   1 cos cos cos cos 2                   1 sin sin cos cos 2                9
  • 40. 2: Modulation and demodulation Slide 40 The Costas loop • If qi-qo > 0 , then input of VCO will increase to trace qi. • Otherwise, it will operate inversely. • Behave like a phase lock loop. • LPF is used to enhance the stability of close loop. Sin(qi-qo) Vcoin Enhance close loop stability 9
  • 41. 2: Modulation and demodulation Slide 41 Differential data coding • FSK is possible to determine the frequency corresponding to each bit. • However, the phase of PSK relates to the time origin and has no “absolute” meaning. • Both Costas loop and squaring circuit suffer from phase ambiguity. • Training sequence in the head of packet is a possible solution. • Differential data coding : If the information lies in the phase change from one bit to the next , then a time origin is not required. 改善PSK資料任取一段看不出相位的問題
  • 42. 2: Modulation and demodulation Slide 42 Differential data encoding • Differentially Encoded. • If the present input bit is a ONE, then the output state of encoder does not change
  • 43. 2: Modulation and demodulation Slide 43 Differential data decoding • If the now state is the same as the previous stat of input, then decoder outputs ONE. • What if the encoded Data are inverted? • Or the first bit is ambiguous? 數位的作法
  • 44. 2: Modulation and demodulation Slide 44 Differential PSK (DPSK) • Differential PSK (DPSK) is based on the same differential encoding technique as used in DEPSK. • Mixer or Multiplier behaves like a XNOR        1 1 1 1 if cos( ) cos( ),after filtering it output 1 if cos( ) cos( ),after filtering it output -1 t t t t 類比的做法 是一種非同調的相位調變系統 (noncoherent PSK)。對於同調解調相位調變系統,資料位元{ bk }會直接接影響傳送載波的相位進行調變。 DPSK則是以目前位元dk的載波相位與前一位元dk-1的載波相位差(0或π)作為傳送的資訊的調變,DPSK的編碼方式為: =1 0 k k k k b d change if b d unchange if  也就是dk=bk⊕dk-1。傳送端只要偵測相臨兩位元(dk、dk-1)的載波相位差即可以還原出資料位元bk。
  • 45. 2: Modulation and demodulation Slide 45 Differential PSK (DPSK) • It improves upon it by incorporating the differential decoding task as part of the data demodulation task. • It does away with the need for a 'carrier recovery' mechanism .它消除了“載波恢復”機制的需 要。 • It rolls ‘coherent detection’ and ‘differential decoding’ into one operation.它將“一致性檢測” 和“差分解碼”合併為一個操作 • Clearly, this detection process is much simpler than that required for true coherent PSK. • DPSK is widely used in wired and radio modems for medium-rate signalling (up to 4800 bps). • DPSK, however, has a slightly poorer noise immunity than PSK since the phase reference for DPSK is now a noisy delayed version of the input signal rather than potentially a well-filtered, virtually noiseless reference from a carrier recovery process.
  • 46. 2: Modulation and demodulation Slide 46 Probability Density Function • The PDF is defined as : Px(x)dx=probability that the amplitude is between x and x+dx. • Note that PDF does not tell us how fast the waveform varies, that means no frequency relativity.
  • 47. 2: Modulation and demodulation Slide 47 Gaussian distribution • Central Limit Theorem : If many independent random process with arbitrary PDFs are added, the PDF of the sum approaches a Gaussian distribution • Gaussian PDF: where and m are the standard deviation and the mean,respectively. • Remember that 68% for the sampled values fall between m- and m+ and 99% between m-3 and m+3 2 2 1 ( ) ( ) exp 2 2 x x m p x   p         m平均值 變異量 
  • 48. 2: Modulation and demodulation Slide 48 Power Spectral Density • The PSD, Sn(f), of a random signal x(t) indicates how much power the signal carries in a small bandwidth around frequency f.
  • 49. 2: Modulation and demodulation Slide 49 PDF and PSD • PDF is statistical indication of how often the amplitude of a random process falls in a given range of values. • PSD shows how much power the signal is expected to contain in a small frequency interval. • In general, the PDF and PSD bear no relationship. • Thermal noise has a Gaussian PDF and white PSD. • Flicker noise the same type of PDF but a PSD proportional to 1/f. 越低頻雜訊越高
  • 50. 2: Modulation and demodulation Slide 50 PDF of Binary Modulation
  • 51. 2: Modulation and demodulation Slide 51 BER calculation • It demonstrates that BER is only concerned with SNR • To gain a max SNR , E must be maximized too.     2 2 1 2 1 2 0 ( ) ( ) 2 2 2 e n n A A A A E p Q Q Q N                2 2 1 2 0 ( ) where, / 2 n A A E SNR N    
  • 52. 2: Modulation and demodulation Slide 52 Coherent BPSK      2 1 2 according to [ ( ) ( )] Ed p t p t dt     2 0 2 (2 cos ) 2 b T C c c b A t dt A T          2 0 Hence c b e A T P Q N     2 2 b 0 E ( cos ) 2 b T c b C A T A t dt          0 2 Hence b e E P Q N Large Ac&Tb cause low Pe
  • 53. 2: Modulation and demodulation Slide 53 Coherent FSK • For a given probability of error and noise density, the bit energy in BFSK must be twice that in BPSK. • The minimum distance between the points in the constellation is greater in BPSK. • Recall that SNRmax=2Ed/N0, the value of Ed reach its maximum if p1(t)=-p2(t), which is the case for BPSK. • BPSK has a 3-dB advantage over BFSK • However, BFSK is widely used in low data rate application where Eb can be maximized by allowing a long Tb. 週期長一點,SNR變好,速度變慢
  • 54. 2: Modulation and demodulation Slide 54 Quadrature Modulation • It is often beneficial to subdivide a binary data stream into pairs of two bits and perform the Quadrature modulation: PSK同時使用cos和sin的訊號
  • 55. 2: Modulation and demodulation Slide 55 Quadrature Modulation • Quadrature modulation encompasses two broad categories: • Quadrature Phase Shift Keying (QPSK), • Minimum Shift Keying (MSK) QPSK
  • 56. 2: Modulation and demodulation Slide 56 QPSK 解調
  • 57. 2: Modulation and demodulation Slide 57 Phase transition • Large phase (maximum 180 degrees) changes occurs at the end of each symbol. • Large phase transition causes large envelope variation.(180 degree cross zero is worst). • Such transition needs a linear power amplifier 相位角會差180 產生劇烈波型變化 造成頻域上突然變寬一下
  • 58. 2: Modulation and demodulation Slide 58 OQPSK • Offset QPSK remedies the drawback of QPSK • The bit error rate and spectrum of OQPSK are identical to those of QPSK • Offset QPSK (OQPSK) delays one of the bit streams after serial parallel conversion: 解決弦波不要變化太劇烈
  • 59. 2: Modulation and demodulation Slide 59 OQPSK • Thus, A and B cannot simultaneously change state. • a smoother transition here relaxes the linearity requirement of the power amp. • Maximum phase change is 90 degrees. 相位小頻寬就 較不佔空間 雖然速度和PSK差不多但 是相位差差了90度(PSK 180)
  • 60. 2: Modulation and demodulation Slide 60 p/4 QPSK • The signal set consists of two QPSK schemes, one shifted by π/4 with respect to the other: • The spectrum and BER of it are identical to those of QPSK
  • 61. 2: Modulation and demodulation Slide 61 p/4 QPSK 可以讓I,Q同時傳 速度變快
  • 62. 2: Modulation and demodulation Slide 62 p/4 QPSK • Maximum phase change is 135 degree
  • 63. 2: Modulation and demodulation Slide 63 Envelop variation of QPSK • Quadrature Phase Shift Keying can be filtered using raised cosine filters to achieve excellent out of band suppression. • Large envelope variations occur during phase transitions, thus requiring linear amplification. 180的位置濾 波會影響後面 的波
  • 64. 2: Modulation and demodulation Slide 64 Spectrum regrowth Non-linear Amplifier 不線性放大
  • 65. 2: Modulation and demodulation Slide 65 Spectrum Comparison • MSK (or GMSK) has wider but sharper baseband spectrum
  • 66. 2: Modulation and demodulation Slide 66 MSK Generation • From the view of frequency. MSK is a subset of FSK, which satisfies the following condition:   Hence, phase change is within one b f T T    0.5 b f T
  • 67. 2: Modulation and demodulation Slide 67 MSK • MSK exhibiting the same error rate as QPSK with sharper decay in its spectrum than the retangular-pulse QPSK family. • The smooth phase transitions in MSK lower the signal power in the sidelobes of the spectrum • But widens the main lobe. • MSK spectrum has a decay proportional to 4 f
  • 68. 2: Modulation and demodulation Slide 68 Phase change • Phase change of MSK and GMSK • All continuous in phase domain • MSK is discontinuous in frequency domain 紅色:QPSK的相位變 化(瞬間) MSK在一個週期內 完成相位變化
  • 69. 2: Modulation and demodulation Slide 69 GMSK • Generation of GMSK signal
  • 70. 2: Modulation and demodulation Slide 70 Gaussian filter • In MSK , the BT is infinity and this allows the square bit transients to directly modulate the VCO. • BT is 3dB bandwidth symbol time product • If BT is less than 0.3, some form of combating the ISI is required.
  • 71. 2: Modulation and demodulation Slide 71 GMSK • Lowe BT • Narrow BW • Sever ISI Problem
  • 72. 3:Data Transmission Slide 72 Intersymbol interference • Filter can be used to shape the pulse and limit the bandwidth. • Filtering effect will cause a spreading of individual data symbols. • For consecutive symbols, this spreading causes part of the symbol energy to overlap with neighboring symbols, causing intersymbol interference (ISI). symbol一個周期的資料 Data一個瞬間抓取的資料
  • 73. 3:Data Transmission Slide 73 Zero ISI • Pulse shaping for zero ISI: Nyquist channel filtering. • It is also evident that the sample timing must be very accurate to minimize the ISI problem.
  • 74. 3:Data Transmission Slide 74 Raised cosine filtering • A commonly used realization of the Nyquist filter is a raised cosine filter. • So called because the transition band (the zone between passband and stopband) is shaped like part of a cosine waveform. • The sharpness of the filter is controlled by the parameter , the filter roll-off factor. • When  = 0 this conforms to an ideal brick-wall filter.
  • 75. 3:Data Transmission Slide 75 Raised cosine filtering • Actual modulation bandwidth, B = 0.5 X 1/Ts (1 + )
  • 76. 3:Data Transmission Slide 76 FIR • Traditionally it has been difficult to construct a filter having a Nyquist response using analogue components. • and it has taken the development of the digital signal processor (DSP) to bring Nyquist and raised cosine filters into everyday use. • finite impulse response (FIR)
  • 77. 3:Data Transmission Slide 77 Choice of  • Benefits of small  – Maximum bandwidth efficiency achieved.實現最大的帶寬效率。 • Benefits of large  – Simpler filter – fewer stages (taps) hence easier to implement with less processing delay.更簡單的過濾器 - 更少的階段(水龍頭),因此更容 易實現與更少的處理延遲。 – Less signal overshoot, resulting in lower peak to mean excursions of the transmitted signal. 較少的信號過衝,導致較低的峰值意味著發送信號的偏移。 – Less sensitivity to symbol timing accuracy – wider eye opening.對符號計 時精度的敏感度較低 - 較大的眼圖張開。
  • 78. 3:Data Transmission Slide 78 Gain distortion – filters • Filters are never perfectly 'flat' in the passband . • Elliptic or Chebychev filters have very high passband ripple, but also achieve very fast roll-off. • Butterworth or Bessel filters have much less ripple but also much slower roll-off. • The raised cosine filter also exhibits passband ripple, • It depends on the length (number of taps) used in the filter. • The degree of ripple can be small with very long filter length, but complex.
  • 79. 3:Data Transmission Slide 79 Phase distortion • Many filters have phase variations across the passband and in the transition band. • Bessel filter having a very good near linear phase response with frequency, and • But Elliptic filter having a very poor response.
  • 80. 3:Data Transmission Slide 80 Group delay • Group delay is defined as the rate of change of phase shift with frequency. • For a non-linear phase response, the group delay will vary with frequency as shown here,
  • 81. 3:Data Transmission Slide 81 Phase distortion • High power amplifiers • have non-linear amplitude response with input power. • they also usually have a non-linear phase response with input power • Caused by non-linear devices • Such as varactors. • Cause AM-PM distortion. • Has a detrimental effect on phase based modulation formats such as M-ary PSK.
  • 82. 3:Data Transmission Slide 82 Multipath distortion • More than one propagation path exist • It causes significant distortion of the received data symbols. • The same source signal, arriving by a different route, will experience a different path length and hence a different propagation delay 同向變強 反向變弱
  • 83. 3:Data Transmission Slide 83 Multipath fading • If the phase difference approaches 180° ,then the signals will in fact partially cancel each other. • If the phase difference approaches 0 ° they will reinforce.
  • 84. 3:Data Transmission Slide 84 frequency selective fading • The effect is known as frequency selective fading and gives rise to notches in the frequency response of the channel. 收訊好 傳輸速度越快
  • 85. 3:Data Transmission Slide 85 Multipath fading • Time domain problem : intersymbol interference will occur. • Channel equalizers are often employed. 通道均衡器經常被使用
  • 86. 3:Data Transmission Slide 86 Coping with multipath fading • Spectral spreading • Direct sequence spread spectrum uses a wideband data sequence to mix with a narrowband data signal and thence spread the energy . • A small proportion of the spread signal energy will be lost in the frequency selective fades and the majority will pass. • By de-spreading the signal in the receiver, a reasonable copy of the original transmitted signal can be obtained. • Data coding and channel equalization are often employed in addition to the spreading to improve the integrity of the channel. 展頻 應用:wifi Multipath很嚴重 因為訊號會一直在室內反彈
  • 87. 3:Data Transmission Slide 87 Coping with multipath fading • Frequency hopping • It approach means that for some of the time the signal will fall within a selective fade, but for most of the time, it will be passed within a non-fading portion of the channel. • With extra coding a high integrity communications link can be established 跳頻 應用:藍芽
  • 88. 3:Data Transmission Slide 88 Diversity Space Diversity Time Diversity Frequency Diversity
  • 89. 3:Data Transmission Slide 89 Channel coding • Error detection schemes – ARQ (Automatic Repeat Request Systems). • Stop and Wait ARQ,Go Back N ARQ ,Selective ARQ • Error detection and correction –This process is known as FEC (Forward Error Correction).
  • 90. 3:Data Transmission Slide 90 Parity Check • Parity Check UART在使用的
  • 91. 3:Data Transmission Slide 91 Parity Check Circuit • Parity Check Circuit
  • 92. 3:Data Transmission Slide 92 Block coding • Hamming codes • Interleaving • BCH (Bose-Chaudhuri-Hocquenghem) • Reed–Solomon (RS) codes
  • 93. 3:Data Transmission Slide 93 Convolutional coding • Viterbi convolutional code • Trellis Diagrams • Turbo Code
  • 94. 3:Data Transmission Slide 94 Viterbi algorithm • The Viterbi algorithm was conceived by Andrew Viterbi. • It is an error-correction scheme for noisy digital communication links. • It’s finding universal application in decoding the convolutional codes used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space communications, and 802.11 wireless LANs. • It is now also commonly used in speech recognition, keyword spotting, computational linguistics, and bioinformatics.
  • 96. 3:Data Transmission Slide 96 Duplex • Half-duplex • Full-duplex • Time division duplex (TDD) • Time division duplex has a strong advantage in the case where the asymmetry of the uplink and downlink data speed is variable • Frequency division duplex (FDD) • Frequency division duplex is much more efficient in the case of symmetric traffic. In this case TDD tends to waste bandwidth during switchover from transmit to receive.
  • 97. • 時分雙工(英文縮寫為TDD,Time-Division Duplexing),是利用時間分隔多工技術來分隔傳送及接收的信號。 它利 用一個半雙工的傳輸來模擬全雙工的傳輸過程。時分雙工在非對稱網路(上傳及下載頻寬不平衡的網路)有明顯 的優點,它可以根據上傳及下載的資料量,動態的調整對應的頻寬,如果上傳資料量大時,就會提高上傳的頻寬, 若資料量減少時再將頻寬降低。時分雙工的另一個好處是在緩慢移動的系統中,上傳及下載的無線電路徑大致相 同,因此類似波束成形的技術可以運用在時分雙工的系統中 • 頻分雙工(英文縮寫為FDD,Frequency-Division Duplexing),是利用頻率分隔多工技術來分隔傳送及接收的信號。 上傳及下載的區段之間用「頻率偏移」(frequency offset)的方式分隔。若上傳及下載的資料量相近時,頻分雙工 比時分雙工更有效率。 在這個情形下,時分雙工會在切換傳送接收時,浪費一些頻寬,因此延遲時間較長,而且 其線路較複雜且耗電。頻分雙工的另一個好處是在無線電收發規劃上較簡單且較有效率,因為一個裝置傳送及接 收使用不同的頻帶,因此裝置不會接收到自己傳出的資料,傳送及接收的資料也不會互相影響。在時分雙工系統 中,需在鄰近的區段中增加保護區段(guard band),但這會使頻譜效率下降。否則就要有同步機制,使一裝置的 傳送和另一裝置的接收同步。同步機制會增加系統的複雜度及成本,而且因為所有的裝置及時間區塊都要同步, 也降低了頻寬使用的靈活性。
  • 98. 3:Data Transmission Slide 98 Multiplexing 多工 • Multiplexer :Multiplexing is the combining of two or more information channels onto a common transmission medium. • Generally, it is always used in telecommunication. • In electrical communications, the two basic forms of multiplexing are : • time-division multiplexing (TDM) and • frequency-division multiplexing (FDM). • In optical communications: • FDM is referred to as wavelength-division multiplexing (WDM).
  • 99. 分時多工(Time-Division Multiplexing,TDM)是一種數位或者模擬(較罕見)的多工技術。使用這種技術,兩個 以上的訊號或資料流可以同時在一條通訊線路上傳輸,其表現為同一通訊頻道的子頻道。但在物理上來看,訊號 還是輪流占用物理通道的。時間域被分成周期迴圈的一些小段,每段時間長度是固定的,每個時段用來傳輸一個 子頻道。例如子頻道1的採樣,可能是位元組或者是資料塊,使用時間段1,子頻道2使用時間段2,等等。一個 TDM的影格包含了一個子頻道的一個時間段,當最後一個子頻道傳輸完畢,這樣的過程將會再重複來傳輸新的影 格,也就是下個訊號片段。 波長分波多工(Wavelength Division Multiplexing,WDM)是利用多個雷射器在單條光纖上同時發送多束不同波長 雷射的技術。每個訊號經過數據(文本、語音、視訊等)調變後都在它獨有的色帶內傳輸。WDM能使電話公司和 其他運營商的現有光纖基礎設施容量大增。 正交分頻多工(英語:Orthogonal frequency-division multiplexing, OFDM)有時又稱為分離複頻調變技術(英語: discrete multitone modulation, DMT),可以視為多載波傳輸的一個特例,具備高速率資料傳輸的能力,加上能有效 對抗頻率選擇性衰減,而逐漸獲得重視與採用。 OFDM使用大量緊鄰的正交子載波(Orthogonal sub-carrier),每個子載波採用傳統的調變方案,進行低符號率調製。 可以視為一調變技術與多工技術的結合。
  • 100. 3:Data Transmission Slide 100 Difference • - Time Division Multiplexing (TDM) imply partitioning the bandwidth of the channel connecting two nodes into finite set of time slots. • - Time Division multiple Access (TDMA) imply partitioning the bandwidth of a channel shared by many nodes, typically an infrastructure node and several mobile nodes, where each node gets to access its dedicated time slot.
  • 101. 3:Data Transmission Slide 101 Multiple Access • FDMA : Speak with different pitches • TDMA : Speak alternately • CDMA : Speak with different language
  • 102. TDMA : 是一種為實現共享傳輸介質(一般是無線電領域)或者網路的通 訊技術。它允許多個用戶在不同的時間片(時槽)來使用相同的頻率。 用戶迅速的傳輸,一個接一個,每個用戶使用他們自己的時間片。這允 許多用戶共享同樣的傳輸媒體(例如:無線電頻率)。 TDMA在美國通常也指第二代(2G)行動電話標準,具體說是指IS-136或 者D-AMPS這些標準使用TDMA技術分時共享載波的帶寬。 FDMA :是利用不同的頻率分割成不同頻道的多址技術。FDMA技術為用 戶單獨分配了一或多個頻段,或通道,用於類比傳輸過程,如固網電 信、無線電、衛星通訊等。FDMA的替代品包括TDMA,CDMA和SDMA。 缺點:串擾可能造成頻率間的干擾並破壞傳輸。 CDMA : 是一種多址接入的無線通訊技術。CDMA最早用於軍用通訊,但時 至今日,已廣泛應用到全球不同的民用通訊中。在CDMA行動通訊中,將 話音訊號轉換為數位訊號,給每組數據話音封包增加一個地址,進行擾碼 處理,然後將它發射到空中。CDMA最大的優點就是相同的帶寬下可以容 納更多的呼叫,而且它還可以隨話音傳送數據資訊。
  • 103. 3:Data Transmission Slide 103 FDMA • Frequency Division Multiple Access • If a channel has a bandwidth W Hz, and individual users require B Hz, then the channel in theory should be able to support W/B users
  • 104. 3:Data Transmission Slide 104 FDMA • Efficiency of frequency multiplexing • It is governed by how effectively the transmission bandwidth is constrained by each user, such as  of RRC. • It is also dependent on how good (selective) the 'de-multiplexing' system is at filtering out the modulation corresponding to each user. 優點 頻率復用的效率 它受到每個用戶(如RRC)傳輸帶寬的有效限制。 這也取決於“多路分解”系統在篩選出對應於每個用 戶的調製時有多好(選擇性)。
  • 105. 3:Data Transmission Slide 105 Challenges of FDMA • Near-far effect • very large variations in received signal power that arise from users in different frequency is one of the biggest challenges. • If the strong signal is producing any out-of-band radiation in the slot occupied by the weak signal, this can easily swamp the weak signal corrupting the communications • Typical up to 100 dB 缺點 不同頻率的用戶產生的接收信號功率的巨大變化是最大的挑戰之一。 如果強信號在弱信號佔用的時隙中產生任何帶外輻射,則這可以容易地淹沒破壞通信的弱信號 典型值高達100 dB
  • 106. 3:Data Transmission Slide 106 Challenges of FDMA • Solution : • Side-lobe energy of digital modulation formats, such as and on designing modulation formats that are not overly sensitive to amplifier distortion. • CPFSK , GMSK: are all driven by this near-far problem in the wireless application • Other challenges • Doppler shift and local oscillator error : in the radio environment include dealing with the frequency cause uncertainty for any individual user . • This inevitable error requires guard-bands to be allocated between frequency slots, thus sacrificing some of the efficiency of the FDMA scheme. 解答: 數字調製格式的旁瓣能量,例如設計對調製器失真不太敏感的調製格式。 CPFSK,GMSK:在無線應用中都受到這個近遠程問題的驅動 其他挑戰 多普勒頻移和本地振盪器誤差:在無線電環境中包括處理任何個人用戶的頻率不確定性。 這個不可避免的錯誤需要在頻隙之間分配保護頻帶,從而犧牲了FDMA方案的一些效率。
  • 107. 3:Data Transmission Slide 107 Advantages of FDMA • Better ISI performance arising from path delay • Longer symbol time • Another advantage of FDMA is that the bandwidth of the TX and RX circuitry is kept to a minimum or narrow, (particularly the bandwidth over which power amplifiers are to be made linear), 重要優點 路徑延遲引起的ISI性能更好 更長的符號時間 FDMA的另一個優點是TX和RX電路的帶寬保 持在最小或者窄(特別是功率放大器線性 化的帶寬),
  • 108. 3:Data Transmission Slide 108 Disadvantage of FDMA • Frequency stability : if the guard-bands are to be kept to a minimum, the need for guard-bands has traditionally been a bigger problem for FDMA use. • Solution : Requiring very costly and high stability oscillators in the modems. • Frequency selective fading : • FDMA has the susceptibility of any individual narrow frequency slot to frequency selective fading which can cause loss of signal. 頻率穩定度:如果要將保護頻帶保持在最低限度,保護頻帶的需求傳統上是FDMA使用中的一個更大的問題。 解決方案:在調製解調器中需要非常昂貴和高穩定性的振盪器。 頻率選擇性衰落: FDMA具有任何單個窄頻隙對頻率選擇性衰落的敏感性,這會導致信號丟失。
  • 109. 3:Data Transmission Slide 109 TDMA • Operation : The user has access to a modem operating at a rate several times. • Channel Capacity : if the data rate on the channel is w bits/second, and each individual user requires only b bits/second, then the system can support w/b simultaneous users.
  • 110. 3:Data Transmission Slide 110 Capacity of TDMA TDMA的容量 • Issue : TDMA is very likely that the channel capacity is being 'wasted‘ because time slots are regularly assigned. • Solution :To maximize the use of a channel resource under these circumstances. • packet based transmission is now common on wired links. (e.g. Ethernet) • user is not given a fixed repeated time slot, but rather allocated a time slot 'on demand' 問題:由於時隙是定期分配的,TDMA很可能是“浪費”了信道 容量。 解決方案:在這種情況下最大限度地使用渠道資源。 基於分組的傳輸現在在有線鏈路上很常見。 (例如以太網) 用戶沒有被賦予固定的重複時隙,而是分配了“按需”的時隙
  • 111. 3:Data Transmission Slide 111 Challenges of TDMA • Challenge : Again, the 'near-far' effect comes into play, with signals from a distant user taking longer to arrive at the base-station than those from a near user. • Solution : Guard-times are required between time slots • Challenge : The near-far problem also gives rise to the same signal strength fluctuations in the base-station. • Result : No problem with adjacent channel interference as no user is operating concurrently with another. 挑戰:再次,“近遠”效應發揮作用,遠方用戶的信號比來自近用戶的信號需要更長的時間才能到達基站。 解決方案:時隙之間需要保護時間 挑戰:近遠端問題也會在基站中產生相同的信號強度波動。 結果:由於沒有用戶與另一個用戶同時操作,所以鄰頻干擾沒有問題。
  • 112. 3:Data Transmission Slide 112 Challenges of TDMA • Challenges : Round-trip delay • If the distance between MS&BS is 30Km, the delay is about 0.2ms. • Solutions : Time Advance • The timing advance(TA) is calculated by the BSS, based on the bursts received from the MS. • automatically advances the start time of its own uplink transmission in order to compensate for the up-link time delay. 挑戰:往返延遲 如果MS和BS之間的距離是30Km,則延遲約為0.2ms。 解決方案:時間提前 時間提前量(TA)由BSS根據從MS接收到的突發來計算。 自動提前其自己的上行鏈路傳輸的開始時間以便補償上行鏈路時間延遲。
  • 113. 3:Data Transmission Slide 113 Advantages of TDMA • Slighter Frequency selective fading: • Variable user data rate : the ease with which users can be given variable data rate services by simply assigning them multiple time slots. 可變的用戶數據速率:通過簡單地為用戶分配多個時隙,用 戶可以輕鬆獲得可變數據速率業務。
  • 114. 3:Data Transmission Slide 114 Advantages of TDMA • Only one PA : There is only one power amplifier required to support multiple users for all time slot users. • Traditionally with FDMA, each user channel at the base-station has required an individual power amplifier, the output of which is combined at high power to feed a single common antenna. • Because the frequency is different. • Saves Power : Each units is only on for part of time for receiver. 只有一個PA:只有一個功率放大器需要支持所有時隙用戶的多個用戶。 傳統上使用FDMA,基站的每個用戶信道都需要一個單獨的功率放大器,其輸出以高功率組合以饋送一個公共天 線。 因為頻率不同。 節省電力:每個單位只有部分時間接收。
  • 115. 3:Data Transmission Slide 115 Disadvantages of TDMA • System Timing Issue : For the same data rate, TDMA is with shorter symbol data period than FDMA. • higher peak power rating for the power amplifier : • Because TDMA use also requires each user terminal to support a much higher data rate than the user information rate 系統時序問題:對於相同的數據速率,TDMA比FDMA具有更短的符號數據周期。 功率放大器的峰值功率額定值更高: 由於TDMA使用也要求每個用戶終端支持比用戶信息速率高得多的數據速率
  • 116. 3:Data Transmission Slide 116 CDMA • Code Division Multiple Access (CDMA) • Advantages : • The interference immunity of CDMA for multi-user communications • It has very good spectral efficiency characteristics. • There are two very distinct types of CDMA system classified as : • direct sequence CDMA • frequency hopping CDMA 碼分多址(CDMA) 優點 : CDMA對多用戶通信的抗干擾性 它具有非常好的頻譜效率特性。 有兩種非常不同的CDMA系統分類為: 直接序列CDMA 跳頻CDMA
  • 117. 3:Data Transmission Slide 117 Frequency hopped CDMA • Frequency Hopping : it involves taking the narrow bandpass signals for individual users and constantly changing their positions in frequency with time. • Benefit : changing frequency is to ensure that any one user's signal will not remain within a fade for any prolonged period of time. • Operation : the carrier frequencies are assigned according to a predetermined sequence or code. 跳頻:它涉及到為個人用戶提供窄帶通信號,並隨著時間不斷地改 變他們的位置。 好處:改變頻率是為了確保任何一個用戶的信號都不會長時間處於 衰落狀態。 運營:運營商 頻率被分配 根據預定 序列或代碼。
  • 118. 3:Data Transmission Slide 118 Frequency hopped CDMA • Speed : Frequency hopping is most effective if a fast hopping rate is used (several thousand times per second) • Problem 1: • Need the design of fast switching synthesizers • Broadband power amplifiers which in practice put an upper limit on the hopping rate • Problem 2: the narrowband channels are susceptible to Doppler shift, local oscillator error. • Advantages : less vulnerable to • discrete narrowband interference • near-far effect problems. 速度:如果使用快速跳躍速率(每秒數千次),跳頻是最有效的 問題1: 需要快速切換合成器的設計 寬帶功率放大器實際上對跳頻速率提出了一個上限 問題2:窄帶信道容易受到多普勒頻移,本地振盪器誤差的影響。 優點:不容易受到 離散的窄帶乾擾 近遠期效應問題。
  • 119. 3:Data Transmission Slide 119 Direct sequence CDMA • The wideband spreading signal is generated using a pseudo-random sequence generator clocked at a very high rate (termed the chipping rate). • De-spreading : • the correct sequence is used at both ends of links. • the two sequences are time aligned 展頻的CDMA 寬帶擴展信號是使用以非常高的速率 (稱為碼片速率)定時的偽隨機序列發 生器產生的。 去擴散: 鏈接兩端都使用正確的順序。 這兩個序列是時間對齊的
  • 120. 3:Data Transmission Slide 120 Direct sequence CDMA • Capacity Limits : If there is some correlation between spreading codes, as is almost always the case, then there will be a small contribution to any individual de-spread user signal from all the other spread users on the channel. 共享經濟 容量限制:如果擴頻碼之間存在某種相 關性,幾乎總是如此,那麼對於來自信 道上的所有其他擴頻用戶的任何單個解 擴用戶信號將有一個小貢獻。
  • 121. 3:Data Transmission Slide 121 Advantages of CDMA • Spread spectrum CDMA overcomes frequency selective fading by ensuring that most of the spread signal energy falls outside the fading 'notches‘. • Flexible user data rate: flexibility to accommodate variable user data capacity • Each user in a spread spectrum CDMA system can increase their modulation rate and local narrowband modulation bandwidth. • Flexible user numbers : • By slightly over-subscribing the number of users and their 'spread energy quota' on a spread spectrum CDMA system 優點 擴頻CDMA通過確保大多數擴頻信號能量落在衰落“陷波”之外來克服頻率選 靈活的用戶數據速率:靈活地適應可變的用戶數據容量 擴頻CDMA系統中的每個用戶可以增加其調製速率和本地窄帶調製帶寬。 靈活的用戶號碼: 通過在擴頻CDMA系統上略微超額訂購用戶數量及其“擴頻能量配額”
  • 122. 3:Data Transmission Slide 122 Disadvantages of CDMA • Penalty : the signal processing overhead involved with such high rate and bandwidth transmission. • Power control : it has also been identified as a critical issue in maximizing the number of users that can be supported on a given common frequency channel. • Contiguous block :CDMA also requires a large amount of bandwidth to be available in a contiguous block • Typically bandwidths of 5 MHz upwards are desirable for best communications performance. • 1.25 MHz for IS-95 訊號處理要 很強 缺點 懲罰:涉及如此高速率和帶寬傳輸的信號處理開銷。 功率控制:在給定的公共頻道上可以支持的用戶數量最大化的過程中, 它也被認為是一個關鍵問題。 連續的塊:CDMA也需要大量的帶寬在連續的塊中可用 為了獲得最佳的通信性能,通常需要5 MHz以上的帶寬。
  • 123. 3:Data Transmission Slide 123 Combination • TDMA / FDMA combination • We have already seen some examples of digital communication systems exploiting combinations of multi-user access techniques. • GSM, although primarily a TDMA system, requires several 200 kHz frequency channels (each carrying eight time slots) in order to provide a practical high capacity cellular system and can thus be viewed as an FDMA system also. TDMA / FDMA組合 我們已經看到一些利用多用戶訪問技術組合的數字通信系 統的例子。 GSM雖然主要是TDMA系統,但為了提供實用的高容量蜂 窩系統,需要幾個200kHz頻率信道(每個信道攜帶8個時 隙),因此也可以被看作FDMA系統。
  • 124. 3:Data Transmission Slide 124 AMPS • Channel Number : 833
  • 125. 3:Data Transmission Slide 125 NADC • North American Digital System • IS-54 when it includes AMPS
  • 126. 3:Data Transmission Slide 126 GSM • Global System for Mobile Communication • TDMA/FDM
  • 127. 3:Data Transmission Slide 127 IS95 • Qualcomm CDMA
  • 128. 3:Data Transmission Slide 128 DECT • Digital European Cordless Telephone
  • 129. 3:Data Transmission Slide 129 Analog Cellular Telephone n/a n/a n/a Channel Bit Rate FM FM FM Modulation NMT-450: 25 kHz NMT-900: 12.5 kHz ETACS: 25 kHz NTACS: 12.5 kHz AMPS: 30 kHz NAMPS: 10 kHz Channel Spacing 1 Users Per Channel NMT-450: 200 NMT-900: 1999 ETACS: 1240 NTACS: 400 AMPS: 832 NAMPS: 2496 Number of Channels FDD FDD FDD Duplex Method FDMA FDMA FDMA Multiple Access Method NMT-450: Rx: 463-468 Tx: 453-458 NMT-900: Rx: 935-960 Tx: 890-915 ETACS: Rx: 916-949 Tx: 871-904 NTACS: Rx: 860-870 Tx: 915-925 Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) NMT Nordic Mobile Telephone TACS Total Access Communication System AMPS/NAMPS Narrow Band Advanced Mobile Phone System Standard Analog Cellular Telephones n/a n/a n/a Channel Bit Rate FM FM FM Modulation NMT-450: 25 kHz NMT-900: 12.5 kHz ETACS: 25 kHz NTACS: 12.5 kHz AMPS: 30 kHz NAMPS: 10 kHz Channel Spacing 1 Users Per Channel NMT-450: 200 NMT-900: 1999 ETACS: 1240 NTACS: 400 AMPS: 832 NAMPS: 2496 Number of Channels FDD FDD FDD Duplex Method FDMA FDMA FDMA Multiple Access Method NMT-450: Rx: 463-468 Tx: 453-458 NMT-900: Rx: 935-960 Tx: 890-915 ETACS: Rx: 916-949 Tx: 871-904 NTACS: Rx: 860-870 Tx: 915-925 Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) NMT Nordic Mobile Telephone TACS Total Access Communication System AMPS/NAMPS Narrow Band Advanced Mobile Phone System Standard Analog Cellular Telephones
  • 130. 3:Data Transmission Slide 130 Digital Cellular Telephone 270.833 kb/s 1.2288 Mb/s 48.6 kb/s Channel Bit Rate GMSK (0.3 Gaussian Filter) GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK p/4 DQPSK Modulation 200 kHz 200 kHz 1250 kHz 30 kHz Channel Spacing 8 15-50 3 Users Per Channels 374 124 20 832 Number of Channels FDD FDD FDD FDD Duplex Method TDMA/FDM TDMA/FDM CDMA/FDM TDMA/FDM Multiple Access Method Rx: 1805-1880 Tx: 1710-1785 Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) DCS 1800/DCS 1900 Digital Communication System GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access TDMA IS-54/IS-136 Time Division Multiple Access Standard Digital Cellular Telephones 270.833 kb/s 1.2288 Mb/s 48.6 kb/s Channel Bit Rate GMSK (0.3 Gaussian Filter) GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK p/4 DQPSK Modulation 200 kHz 200 kHz 1250 kHz 30 kHz Channel Spacing 8 15-50 3 Users Per Channels 374 124 20 832 Number of Channels FDD FDD FDD FDD Duplex Method TDMA/FDM TDMA/FDM CDMA/FDM TDMA/FDM Multiple Access Method Rx: 1805-1880 Tx: 1710-1785 Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) DCS 1800/DCS 1900 Digital Communication System GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access TDMA IS-54/IS-136 Time Division Multiple Access Standard Digital Cellular Telephones
  • 131. 3:Data Transmission Slide 131 Digital Cellular Telephone 270.833 kb/s 1.2288 Mb/s 48.6 kb/s Channel Bit Rate GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK p/4 DQPSK Modulation 200 kHz 1250 kHz 30 kHz Channel Spacing 8 15-50 3 Users Per Channels 124 20 832 Number of Channels FDD FDD FDD Duplex Method TDMA/FDM CDMA/FDM TDMA/FDM Multiple Access Method Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access TDMA IS-54/IS-136 Time Division Multiple Access Standard Digital Cellular Telephones 270.833 kb/s 1.2288 Mb/s 48.6 kb/s Channel Bit Rate GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK p/4 DQPSK Modulation 200 kHz 1250 kHz 30 kHz Channel Spacing 8 15-50 3 Users Per Channels 124 20 832 Number of Channels FDD FDD FDD Duplex Method TDMA/FDM CDMA/FDM TDMA/FDM Multiple Access Method Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access TDMA IS-54/IS-136 Time Division Multiple Access Standard Digital Cellular Telephones 42 kb/s 270.833 kb/s 270.833 kb/s 1.2288 Mb/s p/4 DQPSK GMSK (0.3 Gaussian Filter) GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK 25 kHz 200 kHz 200 kHz 1250 kHz 3 8 15-50 1600 374 124 20 FDD FDD FDD FDD TDMA/FDM TDMA/FDM TDMA/FDM CDMA/FDM Rx: 810-826 Tx: 940-956 Rx: 1429-1453 Tx: 1477-1501 Rx: 1805-1880 Tx: 1710-1785 Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) PDC Personal Digital Cellular DCS 1800/DCS 1900 Digital Communication System GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access cess Digital Cellular Telephones 42 kb/s 270.833 kb/s 270.833 kb/s 1.2288 Mb/s p/4 DQPSK GMSK (0.3 Gaussian Filter) GMSK (0.3 Gaussian Filter) 8-PSK (EDGE only) QPSK/OQPSK 25 kHz 200 kHz 200 kHz 1250 kHz 3 8 15-50 1600 374 124 20 FDD FDD FDD FDD TDMA/FDM TDMA/FDM TDMA/FDM CDMA/FDM Rx: 810-826 Tx: 940-956 Rx: 1429-1453 Tx: 1477-1501 Rx: 1805-1880 Tx: 1710-1785 Rx: 869-894 Tx: 824-849 Rx: 925-960 Tx: 880-915 Rx: 1805-1880 Tx: 1710-1785 Rx: 1930-1990 Tx: 1850-1910 Rx: 869-894 Tx: 824-849 Rx: 1930-1990 Tx: 1850-1910 Rx: 2110-2170 Tx: 1920-1980 (CDMA2000 Asia) PDC Personal Digital Cellular DCS 1800/DCS 1900 Digital Communication System GSM Global System for Mobile Communication CDMA IS-95 Code Division Multiple Access cess Digital Cellular Telephones
  • 132. 3:Data Transmission Slide 132 Analog Cordless Telephone n/a n/a Channel Bit Rate FM FM Modulation 25 kHz 1.7, 20, 25 or 40 kHz Channel Spacing CT1: 40 CT1+: 80 10, 12, 15, 20 or 25 Number of Channels FDD FDD Duplex Method FDMA FDMA Multiple Access Method CT1: 914/960 CT1+: 885/932 2/48 (U.K.) 26/41 (France) 30/39 (Australia) 31/40 (The Netherlands/Spain) 46/49 (China, S. Korea, Taiwan, U.S.A.) 48/74 (China) Mobile Frequency Range (MHz) CT1/CT1+ Cordless Telephone 1 CT0 Cordless Telephone 0 Standard Analog Cordless Telephones n/a n/a Channel Bit Rate FM FM Modulation 25 kHz 1.7, 20, 25 or 40 kHz Channel Spacing CT1: 40 CT1+: 80 10, 12, 15, 20 or 25 Number of Channels FDD FDD Duplex Method FDMA FDMA Multiple Access Method CT1: 914/960 CT1+: 885/932 2/48 (U.K.) 26/41 (France) 30/39 (Australia) 31/40 (The Netherlands/Spain) 46/49 (China, S. Korea, Taiwan, U.S.A.) 48/74 (China) Mobile Frequency Range (MHz) CT1/CT1+ Cordless Telephone 1 CT0 Cordless Telephone 0 Standard Analog Cordless Telephones
  • 133. 3:Data Transmission Slide 133 Digital Cordless Telephone 384 kb/s 1.152 Mb/s 72 kb/s Channel Bit Rate p/4 DQPSK GFSK (0.5 Gaussian Filter) GFSK (0.5 Gaussian Filter) Modulation 300 kHz 1.728 MHz 100 kHz Channel Spacing 4 12 1 Users Per Channel 300 10 40 Number of Channels TDD TDD TDD Duplex Method TDMA/FDM TDMA/FDM TDMA/FDM Multiple Access Method 1895-1918 1880-1900 CT2: 864/868 CT2+: 944/948 Mobile Frequency Range (MHz) PHS Personal Handy Phone System DECT Digital Enhanced Cordless Telephone CT2/CT2+ Cordless Telephone 2 Standard Digital Cordless Telephones 384 kb/s 1.152 Mb/s 72 kb/s Channel Bit Rate p/4 DQPSK GFSK (0.5 Gaussian Filter) GFSK (0.5 Gaussian Filter) Modulation 300 kHz 1.728 MHz 100 kHz Channel Spacing 4 12 1 Users Per Channel 300 10 40 Number of Channels TDD TDD TDD Duplex Method TDMA/FDM TDMA/FDM TDMA/FDM Multiple Access Method 1895-1918 1880-1900 CT2: 864/868 CT2+: 944/948 Mobile Frequency Range (MHz) PHS Personal Handy Phone System DECT Digital Enhanced Cordless Telephone CT2/CT2+ Cordless Telephone 2 Standard Digital Cordless Telephones 歐洲電話
  • 134. 3:Data Transmission Slide 134 Wireless Data 25 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Channel Bit Rate (0.5 G OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) Modulation OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz Channel Spacing 127 127 8 active 7 active, 200 inactive 1 Users Per Channel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 Number of Channels TDD TDD TDD TDD FDD Duplex Method CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA Multiple Access Method 24 100 (N. 24 100 ( 10 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) IEEE IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) Standard Wireless Data (see telephone specs for data over cell phone) 25 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Channel Bit Rate (0.5 G OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) Modulation OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz Channel Spacing 127 127 8 active 7 active, 200 inactive 1 Users Per Channel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 Number of Channels TDD TDD TDD TDD FDD Duplex Method CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA Multiple Access Method 24 100 (N. 24 100 ( 10 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) IEEE IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) Standard Wireless Data (see telephone specs for data over cell phone)
  • 135. 3:Data Transmission Slide 135 Wireless Data 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Channel Bit Rate (0 OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) Modulation OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz Channel Spacing 127 127 8 active 7 active, 200 inactive 1 Users Per Channel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 Number of Channels TDD TDD TDD TDD FDD Duplex Method CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA Multiple Access Method 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) Standard Wireless Data (see telephone specs for data over cell phone) 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Channel Bit Rate (0 OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) Modulation OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz Channel Spacing 127 127 8 active 7 active, 200 inactive 1 Users Per Channel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 Number of Channels TDD TDD TDD TDD FDD Duplex Method CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA Multiple Access Method 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 Mobile Frequency Range (MHz) IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) Standard Wireless Data (see telephone specs for data over cell phone) 250/28 kb/s 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Rate GFSK (0.5 Gaussian Filter) OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) n 4 MHz OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz cing 255 127 127 8 active 7 active, 200 inactive 1 annel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 annels FDD TDD TDD TDD TDD FDD hod TDMA CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA ess 2402-2480 1000 mW/MHz (N. America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 ency Hz) IEEE 802.15.4 ZigBee IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) d Wireless Data (see telephone specs for data over cell phone) 250/28 kb/s 12 Mb/s symbol rate 5.5-54 Mb/s 1, 2 or 11 MB/s 1 Mb/s symbol rate 1.6, 10 Mbps 1 Mb/s symbol rate 721 kb/s raw data 56 kb/s return 19.2 kb/s Rate GFSK (0.5 Gaussian Filter) OFDM: QPSK, QAM (0.5 Gaussian filter) OFDM: BPSK (5.5 Mb/s) OFDM: 16QAM (24, 26 Mb/s) OFDM: 64QAM (54 Mb/s) FHSS: GFSK (0.5 Gaussian Filter) DSSS: DBPSK (1/MB/s) DQPSK (2 MB/s) CCK: QPSK (11 Mb/s) FHSS (0.5 Gaussian Filter) Shaped Binary FM (0.5 Gaussian Filter) GMSK (0.5 Gaussian Filter) n 4 MHz OFDM: 20 MHz FHSS: 1 MHz DSSS: 25 MHz 1 MHz, 3.5 MHz 1 MHz 30 kHz cing 255 127 127 8 active 7 active, 200 inactive 1 annel FHSS: 79 DSSS: 11 79 (23 in Japan, Spain, France) 832 annels FDD TDD TDD TDD TDD FDD hod TDMA CSMA/CA CSMA/CA Frequency hopping Frequency hopping FDMA ess 2402-2480 1000 mW/MHz (N. America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 5150-5250 (USA lower band) 5250-5350 (USA middle band) 5725-5825 (USA upper band) 2401-2462 1000 mW/MHz (North America) 2412-2472 100 mW/MHz (Europe) 2483 10 mW/MHz (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) 2402-2480 (North America & Europe) 2447-2473 (Spain) 2448-2482 (France) 2473-2495 (Japan) Rx: 869-894 Tx: 824-849 ency Hz) IEEE 802.15.4 ZigBee IEEE 802.11a IEEE 802.11b HomeRF Bluetooth CDPD Cellular Digital Packet Data (WAN) d Wireless Data (see telephone specs for data over cell phone)
  • 136. 3:Data Transmission Slide 136 Personal Communication Systems •PACS (based on PHS cordless) •DCT-U (based on DECT cordless) •Composite CDMA/TDMA •PCS TDMA (based on IS-136 cellular) •PCS CDMA (based on IS-95 cellular) •PCS 1900 (based on GSM cellular) Wideband CDMA Multiple Access Method Rx: 1930-1990 Tx: 1850-1910 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) Low Tier Standards High Tier Standards Standard Personal Communication Systems •PACS (based on PHS cordless) •DCT-U (based on DECT cordless) •Composite CDMA/TDMA •PCS TDMA (based on IS-136 cellular) •PCS CDMA (based on IS-95 cellular) •PCS 1900 (based on GSM cellular) Wideband CDMA Multiple Access Method Rx: 1930-1990 Tx: 1850-1910 Rx: 1930-1990 Tx: 1850-1910 Mobile Frequency Range (MHz) Low Tier Standards High Tier Standards Standard Personal Communication Systems
  • 137. 4: Transceiver Architecture Slide 137 Outline • Receiver : • Linearity -> IP3, P1dB • Noise -> SNR • Sensitivity & Dynamic Range • Channel filtering • Transmitter
  • 138. 4: Transceiver Architecture Slide 138 1-dB compression point • The input level that causes the small-signal gain to drop by 1dB. • Because of : Nonlinearity • Around -25~-20dBm(63.2m ~ 35.6mV in 50Ω system) 非線性系統- 增益會掉
  • 139. 4: Transceiver Architecture Slide 139 Desensitization and Blocking • Cause : A small signal is received and accompanied with a strong interference. • If 3 is negative, then gain is reduced. • RF receiver must withstand 60~70dB signal difference.
  • 140. 4: Transceiver Architecture Slide 140 Intermodulation(I) • Harmonics distortion is not very useful to characterize nonliearity. • ∵ For examples, a low pass filter reduce the hamonics.
  • 141. 4: Transceiver Architecture Slide 141 Intermodulation(II) • Perform “two-tone” test. • If • Then main part • and harmonics Third order intermodulation Second order intermodulation
  • 142. 4: Transceiver Architecture Slide 142 Intermodulation(III) • We call the components at and the 21±2 and 22±1 third-order intermodulation products • Note the 21- 2 and 22- 1 tone. It comes closest to the main tone due to nonlinearity effect. • Ex : A1=A2, if 1A=1V and 3A3/4=10mV then we say IM componet is -40dBc, where c means with respect to the carrier.
  • 143. 4: Transceiver Architecture Slide 143 Intermodulation(IV) • IM is a troublesome effect in RF system. • IM causes a weak signal is corrupted by two strong interference. • While operating by AM, it still degrades the PM. Because zero- crossing points are still affected. • The effect can not be observed from Harmonic distortions.
  • 144. 4: Transceiver Architecture Slide 144 Intermodulation(V) • IP3 : Third intercept point • It is very useful to characterize the linearity IM3 component increases with A3. • IIP3 is the input IP3 and OIP3 is at output. • Figures (a) in linear scale and (b) in log scale. RF評估非線性的方法
  • 145. 4: Transceiver Architecture Slide 145 Intermodulation(VI) • How to calculate IP3 • Let • Suppose • then
  • 146. 4: Transceiver Architecture Slide 146 Intermodulation(VII) • How to measure IIP3 with a single measurement • While • then IIP3越大越好(表示越線性)
  • 147. 4: Transceiver Architecture Slide 147 IIP3 & P1dB • The theoretically relationship is
  • 148. 4: Transceiver Architecture Slide 148 Cascade Nonlinear Stages • If • then
  • 149. 4: Transceiver Architecture Slide 149 Cascade Nonlinear Stages • Practical usage : • Approximation: • More cascade stages 第一級的增 益 **後級的線性度會被前一級的增益搞砸 sol:前級增益不能太大,越後級線性度越重要(後級幾乎決定 線性度)
  • 150. 4: Transceiver Architecture Slide 150 General Considerations • Receiver : • Linearity -> IP3, P1dB • Noise -> NF • Sensitivity & Dynamic Range • Channel filtering 越前級越重要
  • 151. 4: Transceiver Architecture Slide 151 Thermal Noise • In the MOSFET • Short channel: g > 2 ( process dependent ) • Long channel: g =2/3 電晶體的輸出級用電流來看雜訊
  • 152. 4: Transceiver Architecture Slide 152 Flicker noise • Flicker noise • It arise from random trapping of charge at the oxide-silicon interface of MOSFETs. • K is a constant and process dependant.
  • 153. 4: Transceiver Architecture Slide 153 Shot noise • If carriers cross a potential barrier, then the overall current actually consists of a large number of random current pulses. • Usually exists in the BJT • The random component of the current is called “shot noise” . • It is
  • 154. 4: Transceiver Architecture Slide 154 Input Referred Noise • The overall noise of a circuit can be represented by only two sources placed at the input: • Ex. • Note: The two sources are correlated here because they represent the same mechanism.
  • 155. 4: Transceiver Architecture Slide 155 Noise Figure • NF is a measure of how much the SNR degrades as the signal passes through system. • Definition : • Usually in dB unit ( 10log10) • NF > 1 • If no input noise, NF -> ∞. (not meaningful)
  • 156. 4: Transceiver Architecture Slide 156 Noise Figure Calculation (for measurement)
  • 157. 4: Transceiver Architecture Slide 157 Noise Figure Calculation • Ex. : In 50ohm system What is the NF?
  • 158. 4: Transceiver Architecture Slide 158 Noise Figure of Cascaded Stages • NF calculation
  • 159. 4: Transceiver Architecture Slide 159 Noise Figure of Cascaded Stages • For a special case : 第一級佔非常多的noise
  • 160. 4: Transceiver Architecture Slide 160 General Considerations • Receiver : • Linearity -> IP3, P1dB • Noise -> NF • Sensitivity & Dynamic Range • Channel filtering
  • 161. 4: Transceiver Architecture Slide 161 Sensitivity • From NF : • We get : • Because the RF is 50ohm system : • Then : ,where B is bandwidth
  • 162. 4: Transceiver Architecture Slide 162 Sensitivity Calculation • Ex.:For GSM,SNRmin ~ 12dB, B = 200kHz • If NF of the receiver path is 9dB, Then : Sensitivity is -174+9+53+12 = -100 dBm • If we have a specification with sensitivity of -105dBm, Then : NF should be : -105+174-53-12 = 4dB
  • 163. 4: Transceiver Architecture Slide 163 SFDR • The upper end of DR (actually “spurious-free” dynamic range,(SFDR) is defined as the max. • IM <= the noise floor: • where Noise floor=-174 dBm+NF+10log B • Then :
  • 164. 4: Transceiver Architecture Slide 164 SFDR • Example: GSM,SNRmin ~ 12dB, B = 200kHz, NF is 9, suppose IIP3 =-15 dBm. • Then, SFDR=2/3(-15-(-112))-12=52.7 dB • SFDR indicates how much interference the system can tolerate while providing an acceptable signal quality.
  • 165. 4: Transceiver Architecture Slide 165 General Considerations • Receiver : • SNR • Linearity -> IP3 • Sensitivity & Dynamic Range • Channel filtering -> Receiver Architecture
  • 166. 4: Transceiver Architecture Slide 166 Channel filtering • Receiver : • Interference Rejection • High Q filter • Ex : 900MHz receiver with 60db ANT of 90kHz => Q:~1E7
  • 167. 4: Transceiver Architecture Slide 167 Channel filtering • Receiver : • Bandpass filter selection • Tradeoff : In-band Loss & Out-band Rejection • In-band Loss => High Noise (NF) & Low SNR
  • 168. 4: Transceiver Architecture Slide 168 Channel filtering • Receiver : • Band Selection • Channel Selection • Reject image • Relax linearity requirement
  • 169. 4: Transceiver Architecture Slide 169 Heterodyne Receiver • Heterodyne : the signal band is translated to much lower frequencies (IF) so as to relax the Q required of the channel-select filter. • IF : intermediate frequency. • It filters out some strong interference to relax the linearity requirement for the following stages. 2次降頻完成
  • 170. 4: Transceiver Architecture Slide 170 Problem of image • Both desirable and undesirable frequency band are all mixed down to IF • Solution : We need proper “image rejection” 雖然訊號從1.8 降到0.1但是如 果1.6有訊也會 被一起降到0.1
  • 171. 4: Transceiver ArchitectureSlide 171 Image rejection • Trade-off for IF frequency selection • High IF: good image rejection, poor channel selection • Low IF : good channel selection, image rejection 較好
  • 172. 4: Transceiver Architecture Slide 172 Image rejection • High side injection : if LO > in, then image is higher than LO. • Low side injection : if LO < in, then image is lower than LO. • High side injection needs high VCO frequency operation. • Another consideration depends on the distribution of image band noise.
  • 173. 4: Transceiver Architecture Slide 173 Half IF • If an interference is at , the signal is down-converted to half IF . • If the following stage suffers from nonlinearity effect, the second order distortion of the half IF will fall down the wanted IF band.
  • 174. 4: Transceiver Architecture Slide 174 Heterodyne Receiver • To enhance the sensitivity and selectivity, heterodyne receiver downconverts signal two times. 沒有這段就是 Homedyne (1次降到0Hz)
  • 175. 4: Transceiver Architecture Slide 175 Homedyne Receiver • It converts the RF signal once to the baseband. • Called Homedyne , direct-conversion, zero-IF architecture. • In Fig.(a), it operates properly on with double –side band AM signal because it overlaps + and - input spectrum. • FM & QPSK has the different spectrum in the upper and lower band. Hence , quadrature modulation is necessary. • Fig.(b) operated for the quadrature modulation.
  • 176. 4: Transceiver Architecture Slide 176 Homedyne Receiver • Advantages: • No image • Need no image rejection filter • Monolithic integration • LNA need no 50ohm output matching • Disadvantage : • DC offset • IQ mismatch • Flicker noise_mos在0HZ時有一個低平的雜訊 • LO leakage 缺點:要把這些全部解決才可以 (皆是低頻的問題)
  • 177. 4: Transceiver Architecture Slide 177 DC offset • DC offset is very important issue for zero-IF. • It corrupts the signal. • It saturates the following stages. • It arise from : • Device mismatch • Signal reflection • Tx leaks to RX self-mixing(源頭)
  • 178. 4: Transceiver Architecture Slide 178 DC offset • (a) Self-mixing of LO signal • (b) Strong interferer from input
  • 179. 4: Transceiver Architecture Slide 179 DC offset Cancellation • Solution 1: High pass filter can cancel DC offset • Issue 1: Around dc signal also loses engery. • Issue 2: A larger capacitor fail to track fast variation in the offset voltage. • Solutions 2 : DC free coding • A modulation or coding method carries little signal around the DC • Suitable for wideband signal • Solution 3 : Stores the dc offset • In the TDMA system, the dc offset value can be stored in the C1 with a switch S1.
  • 180. 4: Transceiver Architecture Slide 180 DC offset Cancellation • Issue 3: • Mandating large C1 due to thermal noise kT/C. • Offset due to VCO can be detected and stored. • However, interferer signal randomly appears. • Hence, averaged dc offset value is necessary. stored cancelled C1先記電壓值,開始工作後再抵銷DC offset
  • 181. 4: Transceiver Architecture Slide 181 I/Q mismatch • A homodyne incorporates Quadrate mixing for the frequency and phase modulation scheme. • Scheme (b) is preferred due to not interfering the main signal path. 通常使用(b) (a)RF經過90度可 能會有loss,也就 是雜訊
  • 182. 4: Transceiver Architecture Slide 182 Even Order Distortion • IP2 : It is used to characterize even order distortion • Solutions : Differential circuits • Issue 1 : The front end antenna and duplexer are usually single ended. • Hence : Transformer is necessary for single to differential but its loss causes higher NF. • Issue 2 : Differential circuits consume more power. 降共模雜訊
  • 183. 4: Transceiver Architecture Slide 183 Flicker Noise • Flicker noise : • Its noise power is proportional to 1/f. • It corrupts input signal significantly around DC frequency. • In the homedyne receiver the down-converted signal is only amplified LNA & Mixer (~30dB). Hence signal is still very small and prone to corrupted by the flicker noise. • Solution : incorporate large device size to minimize the magnitude of flicker noise. 閃爍噪音: 其噪聲功率與1 / f成正比。 它顯著地損壞了直流頻率的輸入信號。 在homedyne接收機中,下變頻信號僅被放大LNA和混頻器(〜 30dB)。 因此,信號仍然非常小,易受到閃爍噪聲的干擾。 解決方案:採用大尺寸的器件來減小閃爍噪聲的大小。
  • 184. 4: Transceiver Architecture Slide 184 Channel permutation • (a) Allowing A for nonlinearity and high gain for ADC • However, the first filter suffers from noise and linearity issue. • (b) Relax filter noise requirement • However, requires linear Amp • (c) Easy to implement filter in digital circuits • However, require linear and low thermal and quantization noise ADC 越前面線性度要越高 也表示越前面越難做 a和b比選b會比 較好一點,因為 filter比較不好做
  • 185. 4: Transceiver Architecture Slide 185 Digital IF architecture • Digital IF : Second down-conversion is performed in the digital circuits. • Advantages : • Alleviate DC offset and flicker noise issue • No IQ phase and gain mismatch issue • Difficulty : Need high dynamic and high bandwidth ADC. 主流架構
  • 186. 4: Transceiver Architecture Slide 186 Sampling IF architecture • Sample and hold action in the ADC also perform the down-conversion. • Sampling frequency could be a little lower than IF frequency. • Still needs high performance ADC with high speed and high linearity. 讓訊號再降頻一次
  • 187. 4: Transceiver Architecture Slide 187 Subsampling Receiver • Sampling in the time domain causes periodically repeated spectrum in the frequency domain. • Signal then can be down-converted by very low frequency sampling rate.
  • 188. 4: Transceiver Architecture Slide 188 Subsampling Receiver • Drawback : Subsampling by a factor of m multiplies the downconverted noise power of the sampling circuit by a factor of m.
  • 189. 4: Transceiver Architecture Slide 189 Direct Conversion Transmitter • Direct conversion : the transmitted frequency is equal to the LO frequency. • Matching network : • It is to provide a maximum power transferring to the antenna. • It also filters out the out-of-band component that results from the nonlinearity of PA. 可以順便濾波
  • 190. 4: Transceiver Architecture Slide 190 Transmitter Architecture • Baseband / RF interface • Quadrature modulation :
  • 191. 4: Transceiver Architecture Slide 191 Transmitter Architecture • Baseband pulse shaping
  • 192. 4: Transceiver Architecture Slide 192 Two-step transmitter • Advantages: • Avoid the pulling effect from PA • Better I/Q matching due to lower frequency operation. • Difficulty : Second BPF must reject out-of-band signal at (1-2) up to 50 ~ 60 dB.
  • 193. 4: Transceiver Architecture Slide 193 Philips Pager Rx • Philips Pager Rx 可降虛部
  • 194. 4: Transceiver Architecture Slide 194 Lucent GSM Transceiver • Lucent GSM Transceiver 降2次就需要 怕和前面的71一樣 被干擾到,所以用 284/4來做71