More Related Content
PDF
ç¹çŸ€æ·±å±€åŠç¿ Meta-study PPTX
[DL茪èªäŒ]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir... PPTX
PDF
Deep Learningã«ããè¶
è§£åã®é²æ© PDF
ãã¡ã¿ãµãŒãã€ãæ°åŒããªãã³æåž«ããåŠç¿ PDF
Attentionã®åºç€ããTransformerã®å
¥éãŸã§ PPTX
[DL茪èªäŒ]Neural Ordinary Differential Equations PDF
ã¢ããã«ã¢ãŒããã¯ãã£èгç¹ããã®Deep Neural Networké«éå What's hot
PDF
åäœèªèã®æåç·ïŒææ³ïŒã¿ã¹ã¯ïŒããŒã¿ã»ãã PPTX
è¿å¹Žã®Hierarchical Vision Transformer PDF
Skip Connection ãŸãšãïŒNeural NetworkïŒ PPTX
PDF
[DL茪èªäŒ]ICLR2020ã®ååžå€æ€ç¥éå ± PDF
PDF
深局åŠç¿ã®äžç¢ºå®æ§ - Uncertainty in Deep Neural Networks - PDF
Anomaly detection ç³»ã®è«æãäžèšã§ãŸãšãã PDF
SSII2021 [SS1] Transformer x Computer Visionã® å®æŽ»çšå¯èœæ§ãšå±æ ã Transformerã®Compute... PDF
ç»åçæã»çæã¢ãã« ã¡ã¿ãµãŒã〠PPTX
ãè«æçŽ¹ä»ãHow Powerful are Graph Neural Networks? PDF
SSII2022 [SS1] ãã¥ãŒã©ã«3D衚çŸã®ææ°ååã ãã¥ãŒã©ã«ãããã§ãªãã§ã衚ããïŒïŒ ãâ PPTX
SfM Learnerç³»åçŒæ·±åºŠæšå®ææ³ã«ã€ã㊠PDF
Domain Adaptation çºå±ãšååãŸãšãïŒãµãŒãã€è³æïŒ PPTX
[DL茪èªäŒ]ãã¡ã€ã³è»¢ç§»ãšäžå€è¡šçŸã«é¢ãããµãŒã〠PDF
Deep Learningã«ããç»åèªèé©åœããŒæŽå²ã»ææ°çè«ããå®è·µå¿çšãŸã§ãŒ PDF
ãã¡ã€ã³é©å¿ã®åçãšå¿çš PPTX
You Only Look One-level Featureã®è§£èª¬ãšèŠããããç©äœæ€åºã®ããããŸè©± PDF
ãã¡ã¿ãµãŒãã€ãNeural Fields PDF
Network weight saving_20190123 Viewers also liked
PDF
Deep Residual Learning (ILSVRC2015 winner) PDF
AIå匷äŒçšã¹ã©ã€ã PPTX
PPTX
PDF
Deep Forest: Towards An Alternative to Deep Neural Networks PPTX
PPTX
Globally and Locally Consistent Image Completion PPTX
PDF
Deeply-Recursive Convolutional Network for Image Super-Resolution PPTX
PPTX
PPTX
Colorful image colorization PPTX
PPTX
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Network PPTX
A simple neural network mnodule for relation reasoning PDF
Generating Videos with Scene Dynamics PDF
20160601ç»åé»ååŠäŒ PDF
ã2016.01ã(1/3)cvpaper.challenge2016 PPTX
PPTX
Similar to Densely Connected Convolutional Networks
PDF
R-CNNã®åçãšããæ°å¹Žã®æµã PDF
ïŒ2022幎3æçïŒæ·±å±€åŠç¿ã«ããImage Classificaitonã®çºå± PPTX
[DL茪èªäŒ]Dense Captioningåéã®ãŸãšã PDF
ïŒå€åCNN on FPGAã§GPUãšã¬ãã³ã³ããã«ïŒå
¬éçïŒ PDF
ïŒ2021幎8æçïŒæ·±å±€åŠç¿ã«ããImage Classificaitonã®çºå± PDF
Deep residual learning for image recognition PPTX
CVPR2018 pix2pixHDè«æçŽ¹ä» (CVå匷äŒ@颿±) PDF
[Dl茪èªäŒ]dl hacksèŒªèª PDF
瀟å
è«æèªã¿äŒè³æ Image-to-Image Retrieval by Learning Similarity between Scene Graphs PPTX
PRML 5.5.6-5.6 ç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒCNNïŒã»ãœããéã¿å
±æã»æ··åå¯åºŠãããã¯ãŒã¯ PPTX
Image net classificationãwith Deep Convolutional Neural Networks PDF
Tutorial-DeepLearning-PCSJ-IMPS2016 PDF
PDF
DeepLearningDay2016Summer PDF
深局åŠç¿ - ç»åèªèã®ããã®æ·±å±€åŠç¿ â PDF
PDF
DIGITSã«ãããã£ãŒãã©ãŒãã³ã°ç»ååé¡ PDF
ç»åèªèã¢ãã«ãèªåçã«äœãã1æ¥ä»¥å
ã«ã~Simple And Efficient Architecture Search for Convolutio... PPTX
è«æçŽ¹ä»ïŒãEnd-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRFã PPTX
More from harmonylab
PDF
Mixture-of-Personas Language Models for Population Simulation PDF
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Lea... PDF
Data Scaling Laws for End-to-End Autonomous Driving PDF
TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Pass... PDF
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving PDF
Mixture-of-Personas Language Models for Population Simulation PDF
Efficient anomaly detection in tabular cybersecurity data using large languag... PDF
ãåæ¥è«æãLLMãçšããMulti-Agent-Debateã«ãããåè«ã®å¹æã«é¢ããç ç©¶ PDF
AECR: Automatic attack technique intelligence extraction based on fine-tuned ... PDF
Can Large Language Models perform Relation-based Argument Mining? PDF
CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Us... PDF
Multiple Object Tracking as ID Prediction PDF
Encoding and Controlling Global Semantics for Long-form Video Question Answering PDF
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models throu... PDF
QuASAR: A Question-Driven Structure-Aware Approach for Table-to-Text Generation PDF
APT-LLM Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threat... PDF
Towards Scalable Human-aligned Benchmark for Text-guided Image Editing PDF
Large Language Model based Multi-Agents: A Survey of Progress and Challenges PDF
Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? PDF
Collaborative Document Simplification Using Multi-Agent Systems Recently uploaded
PDF
èªè»¢è»ãŠãŒã¶åå åè·¯é¢ç»åã»ã³ã·ã³ã°ã«ããç¹åãããã¯æ€åºã«ãããæ§èœåäžæ¹æ³ã®æš¡çŽ¢ (20260123 SeMIç ) PDF
第21å Gen AI å匷äŒãNotebookLMã§60ããŒãžè¶
ã® ã¹ã©ã€ããäœæããŠã¿ãã PDF
Starlink Direct-to-Cell (D2C) æè¡ã®æŠèŠãšå°æ¥ã®å±æ PDF
ST2024_PM1_2_Case_study_of_local_newspaper_company.pdf PDF
Team Topology Adaptive Organizational Design for Rapid Delivery of Valuable S... PDF
2025â2026å®çãã幎ãã幎ã¬ããŒã_100瀟ãè¶
ããäŒæ¥ã¢ã³ã±ãŒãç·ãŸãšãïŒïŒ_äŒæ¥ãŸãšã_1229_3ç PDF
100幎åŸã®ç¥è²¡æ¥çïŒçæAIã¹ã©ã€ãã¢ããªããã¬ãŒã³ãã€ãŒããã³ãYouTubeé
ä¿¡ PDF
PMBOK 7th Edition Project Management Process Scrum PDF
PMBOK 7th Edition_Project Management Context Diagram PDF
Reiwa 7 IT Strategist Afternoon I Question-1 Ansoff's Growth Vector PDF
Reiwa 7 IT Strategist Afternoon I Question-1 3C Analysis PDF
FY2025 IT Strategist Afternoon I Question-1 Balanced Scorecard PDF
PMBOK 7th Edition_Project Management Process_WF Type Development Densely Connected Convolutional Networks
- 1.
- 2.
1
è«ææ
å ±
⢠ã¿ã€ãã«
⢠DenselyConnected Convolutional Networks
⢠æçš¿æ¥
⢠2016/8/25(ver1)
⢠2016/11/29(ver2)
⢠2016/12/3(ver3)
⢠2017/8/27(ver4)
⢠çºè¡šåŠäŒ
⢠CVPR2017
⢠Best Paper Awards
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
11
⢠Bottleneckã®å°å
¥
⢠Denseblockã®ð»ðãBN-ReLU-Conv(1Ã1)-BN-ReLU-
Conv(3Ã3)ã«å€æŽ
⢠Compression
⢠Transition layerã§ç¹åŸŽéãããã®æ°ãæžãã
⢠Transition layerå
ã®convolutionå±€ã§åºåããããµã€ãºã
ðåã«ãã(0 < ð †1)
⢠ä»åã®å®éšã§ã¯ð = 0.5ãšãã
å¹çåææ³
ããããå°å
¥ãããã®ãš
å°å
¥ããŠããªããã®ã®äž¡æ¹ã«ã€ããŠå®éš
åºå
ž: https://liuzhuang13.github.io/posters/DenseNet.pdf
- 13.
12
⢠CIFAR, SVHNçš
â¢ããŒã·ãã¯ãªdense net (ð¿ = 40)
å®éšã§çšãããããã¯ãŒã¯
Layers detail
Initial Convolution [3Ã3 conv (output channel=16)]
Dense Block(1) [3Ã3 conv]Ã12
Transition(1) [1Ã1 conv]
[2Ã2 average pool stride=2]
Dense Block(2) [3Ã3 conv]Ã12
Transition(2) [1Ã1 conv]
[2Ã2 average pool stride=2]
Dense Block(3) [3Ã3 conv]Ã12
Classification [global average pool]
[softmax]
3Ã3Convå±€ã§ã¯
ãŒãããã£ã³ã°
ð¿ã¯3ð + 4ã§ãªããã°ãªããªã
ï 3ÃDense block + Initial conv + 2Ãtransition + classification
- 14.
13
⢠å®éšã§ã¯growth rateð = 12, 24 ð¿ = 40,100ã®ãã®ã§å®éš
⢠{ð¿ = 40, ð = 12}, {ð¿ = 100, ð = 12}, {ð¿ = 100, ð = 24}
⢠Bottleneck layerãæ¡çšãããã®ã«å¯ŸããŠã¯ä»¥äžã®ãããª
èšå®ã§å®éš
⢠{ð¿ = 100, ð = 12}, {ð¿ = 250, ð = 24}, {ð¿ = 190, ð = 40}
å®éšã§çšãããããã¯ãŒã¯
- 15.
14
⢠ImageNetçš
⢠DenseNetwith bottleneck and compressionã䜿çš
⢠Dense blockã®æ°ã¯4
⢠åŸè¿°ã®ResNetãšã®æ¯èŒã®ãããæåã®convå±€ãšæ
åŸã®å€å¥å±€ã®åœ¢ãåãããŠãã
å®éšã§çšãããããã¯ãŒã¯
- 16.
- 17.
- 18.
17
⢠æé©åææ³: SGD
â¢Mini-batchãµã€ãº64
⢠ãšããã¯æ° CIFAR: 300, SVHN:40
⢠åŠç¿çã¯åŠç¿ã®é²ã¿å
·åã§å€åããã
⢠åæ0.1, 50%åŠç¿åŸ0.01, 75%åŠç¿åŸ0.001
⢠éã¿æžè¡°10â4
⢠Nesterov momentum 0.9
⢠ããŒã¿ã®æ¡åŒµãè¡ã£ãŠããªãããŒã¿ã»ããã«å¯ŸããŠã¯
åconvå±€ã®åŸã«0.2ã®ããããã¢ãŠãå±€ã远å
èšç·Žè©³çް
- 19.
- 20.
19
⢠Accuracy
⢠CIFAR
â¢ResNetããã®ä»ã®ãããã¯ãŒã¯ãããäœããš
ã©ãŒçãéæ
⢠SVHN
⢠L=100, k=24ã®DenseNetã§ResNetãããäœããš
ã©ãŒç
⢠DenseNet-BCã§ã¯ããŸãæ§èœãè¯ããªã£ãŠããª
ãããããã¯SVHNãç°¡åãªåé¡ã®ããoverfitã
ããããšããçç±ãèãããã
çµæã«ã€ããŠ
- 21.
20
⢠Capacity
â¢ åºæ¬çã«ð¿,ðã倧ãããªãã°ãªãã»ã©æ§èœãè¯ã
ãªã£ãŠãã
⢠DenseNetã§ã¯å€§ããæ·±ãã¢ãã«ã®è¡šçŸåãå©çšã§
ããŠãã
⢠ã€ãŸãoverfitting, æé©åã®å°é£ãçºçãã«ãã
çµæã«ã€ããŠ
- 22.
- 23.
- 24.
23
⢠Train: 1.2millionvalidation: 50000
⢠ããŒã¿æ¡åŒµããããªã
⢠Validation setã«å¯Ÿãããšã©ãŒçã調æ»
⢠èšç·Ž
⢠ããããµã€ãº256, 90ãšããã¯
⢠åŠç¿çã¯åæ0.1,30ãšããã¯åŸ0.01, 60ãšããã¯åŸ
0.001
⢠GPUã¡ã¢ãªã®å¶çŽã«ããDenseNet-161ã§ã¯ããã
ãµã€ãºã128, ãšããã¯æ°ã100ã«
⢠90ãšããã¯åŸã«åŠç¿çã0.0001ã«ãã
å®éš2 ImageNet
- 25.
- 26.
- 27.
- 28.
- 29.