NeurIPS2019に参加してきたので参加報告
• Thirty-third Conferenceon Neural Information
Processing Systems
• Vancouver Convention Center, Vancouver CANADA
Schedule
• NeurIPS EXPO DEC 8th
• TUTORIALS DEC 9th
• CONFERENCE & DEMONSTRATIONS DEC 10th - 12th
• WORKSHOPS & COMPETITIONS DEC 13th - 14th
2
NeurIPS2019参加報告
Deep Learning withBayesian
Principles
• Deep Learning+ベイズのチュートリアル.
• ベイジアンと深層学習の研究者の橋渡し
をして,両者の強みを組み合わせることで
より難しい問題を解決するために協力する
意欲を高めることが目的.
19.
Interpretable Comparison of
Distributionsand Models
• モデルおよび分布同士の評価を行うため
の,ノンパラメトリックな手法についての
チュートリアル
• Wasserstein distances
• The Maximum Mean Discrepancy
• 𝜙-divergence
NeurIPS2019
Paper Awards
23
Outstanding PaperAwards
• Distribution-Independent PAC Learning of Halfspaces with
Massart Noise
Outstanding New Directions Paper Awards
• Uniform convergence may be unable to explain
generalization in deep learning
• Fast and Accurate Least-Mean-Squares Solvers
Honorable Mention Outstanding New Directions Paper Award
• Putting An End to End-to-End: Gradient-Isolated Learning of
Representations
• Scene Representation Networks: Continuous 3D-Structure-
Aware Neural Scene Representations
Test of Time Award
• Dual Averaging Method for Regularized Stochastic Learning
and Online Optimization
24.
Categories
24
Data, Challenges, Implementations,and Software
• Data Sets or Data Repositories
• Software Toolkits
• Benchmarks
• Virtual Environments
Applications
• Privacy, Anonymity, and Security
• Computer Vision
Theory
• Learning Theory
• Spaces of Functions and Kernels
Deep Learning
• Optimization for Deep Networks
• Generative Models
Algorithms
• Unsupervised Learning
• Regression
• Adaptive Data Analysis
Deep Generative Video
Compression
SalvatorLombardo, JUN HAN, Christopher Schroers,
Stephan Mandt
33
Abstract
ニューラルネットワークによる生成モデ
ルは画像の圧縮タスクでは高いパフォー
マンスを達成している一方で,動画の圧
縮に関してはまだ改善の余地が大きい.
本研究では,VAEベースの動画圧縮手法
を提案.
Links & References
• 論文
The Cells Outof Sample (COOS) dataset
and benchmarks for measuring out-of-
sample generalization of image
classifiers
Alex Lu, et al.
Abstract
Out-of-samplesに対するモデルの汎化性能
を評価するため,共変量シフトを含むよ
うなデータセットであるCOOS-7(Cells
Out Of Sample 7-Class)を作成した.この
データセットは132,209件のマウスの細胞
データから成り,データの分布が推移す
るような問題設定におけるモデルのロバ
ストネスの評価に使われることを期待す
る.
37
Links & References
• 論文
38.
ObjectNet: A large-scalebias-
controlled dataset for pushing the
limits of object recognition models
Andrei Barbu, et al.
Abstract
背景,角度,撮影視点が完全にランダム
な新しい物体認識用のデータセットであ
るObjectNetを提案.データセットのサイ
ズはImageNetのテストデータと同等の
50,000件で,多くの物体が画像の中央に
位置するImageNetとは異なり意図的に視
点にばらつきを持たせている.
38
Links & References
• 論文
39.
Park: An OpenPlatform for
Learning-Augmented Computer
Systems
Hongzi Mao, et al.
Abstract
強化学習研究者の実験のためのプラット
フォームであるParkを提案.Parkは12の
最適化問題を含み,それらの全てを一つ
の統一的なインターフェースから扱うこ
とができる.加えて,既存の強化学習ア
ルゴリズムによるParkの12の問題に対す
るパフォーマンスを紹介.
39
Links & References
• 論文
• https://github.com/park-project/park
40.
STREETS: A NovelCamera Network
Dataset for Traffic Flow
Corey Snyder, Minh Do
Abstract
交通流の新しいデータセットを提案.シ
カゴに設置してある定点webカメラの映
像を使って構築した. 既存の交通流デー
タセットの多くには,センサー間の関係
を説明する一貫したグラフデータは存在
しない.これに対して,提案データセッ
トではセンサー間の有向グラフを構築し,
有用性を高めた.
40
Links & References
• 論文
Ask not whatAI can do, but
what AI should do: Towards a
framework of task delegability
Brian Lubars · Chenhao Tan
64
Abstract
AIモデルが人間の意思決定に介入できる
ための必要な要素として,動機,難しさ,
リスクおよび信頼性を考察.人間の経験
的好みを分析するために,様々な分野か
ら100のタスクを調べた.傾向として,
全てをAIの決定に委ねてしまうような状
況よりも,人間がリードしてタスクを進
めるようなHuman-In-The-Loopの状況設定
が好まれることがわかった.
Links & References
• 論文
Contribution & Novelty
AIによる自動化についての人間が感じる好ましさについての分析.AI研究についての今
後の方向性を決める足がかりになることを目的とした研究.
65.
References
• Diakonikolas, Ilias,Themis Gouleakis, and Christos Tzamos. "Distribution-Independent PAC Learning of Halfspaces with Massart
Noise." Advances in Neural Information Processing Systems. 2019.
• Nagarajan, Vaishnavh, and J. Zico Kolter. "Uniform convergence may be unable to explain generalization in deep learning." Advances in
Neural Information Processing Systems. 2019.
• Uppal, Ananya, Shashank Singh, and Barnabas Poczos. "Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM
Losses." Advances in Neural Information Processing Systems. 2019.
• Arpit, Devansh, Víctor Campos, and Yoshua Bengio. "How to initialize your network? robust initialization for weightnorm & resnets."
Advances in Neural Information Processing Systems. 2019.
• Lombardo, Salvator, et al. "Deep Generative Video Compression." Advances in Neural Information Processing Systems. 2019.
• Ravuri, Suman, and Oriol Vinyals. "Classification accuracy score for conditional generative models." Advances in Neural Information
Processing Systems. 2019.
• Yadav, Chhavi, and Léon Bottou. "Cold case: The lost mnist digits." Advances in Neural Information Processing Systems. 2019.
• Lu, Alex, et al. "The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers."
Advances in Neural Information Processing Systems. 2019.
• Barbu, Andrei, et al. "ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models." Advances in
Neural Information Processing Systems. 2019.
• Mao, Hongzi, et al. "Park: An Open Platform for Learning-Augmented Computer Systems." Advances in Neural Information Processing
Systems. 2019.
• Snyder, Corey, and Minh Do. "STREETS: A Novel Camera Network Dataset for Traffic Flow." Advances in Neural Information Processing
Systems. 2019.
• Paszke, Adam, et al. "PyTorch: An imperative style, high-performance deep learning library." Advances in Neural Information Processing
Systems. 2019.
• Laue, Sören, Matthias Mitterreiter, and Joachim Giesen. "GENO--GENeric Optimization for Classical Machine Learning." Advances in Neural
Information Processing Systems. 2019.
• Raff, Edward. "A Step Toward Quantifying Independently Reproducible Machine Learning Research." Advances in Neural Information
Processing Systems. 2019.
65
66.
References
• Löwe, Sindy,Peter O'Connor, and Bastiaan Veeling. "Putting An End to End-to-End: Gradient-Isolated Learning of Representations."
Advances in Neural Information Processing Systems. 2019.
• Gopalan, Parikshit, Vatsal Sharan, and Udi Wieder. "Pidforest: anomaly detection via partial identification." Advances in Neural Information
Processing Systems. 2019.
• Maalouf, Alaa, Ibrahim Jubran, and Dan Feldman. "Fast and accurate least-mean-squares solvers." Advances in Neural Information
Processing Systems. 2019.
• Roelofs, Rebecca, et al. "A Meta-Analysis of Overfitting in Machine Learning." Advances in Neural Information Processing Systems. 2019.
• Ligett, Katrina, and Moshe Shenfeld. "A necessary and sufficient stability notion for adaptive generalization dvances in Neural Information
Processing Systems. 2019.
• Mania, Horia, et al. "Model similarity mitigates test set overuse." Advances in Neural Information Processing Systems. 2019.
• Yun, Se-Young, and Alexandre Proutiere. "Optimal Sampling and Clustering in the Stochastic Block Model." Advances in Neural Information
Processing Systems. 2019.
• Ilyas, Andrew, et al. "Adversarial examples are not bugs, they are features." Advances in Neural Information Processing Systems. 2019.
• Song, Chunjin, et al. "ETNet: Error Transition Network for Arbitrary Style Transfer." Advances in Neural Information Processing Systems.
2019.
• Sitzmann, Vincent, Michael Zollhöfer, and Gordon Wetzstein. "Scene representation networks: Continuous 3D-structure-aware neural
scene representations." Advances in Neural Information Processing Systems. 2019.
• Bucher, Maxime, et al. "Zero-Shot Semantic Segmentation." Advances in Neural Information Processing Systems. 2019.
• Xu, Qiangeng, et al. "Disn: Deep implicit surface network for high-quality single-view 3d reconstruction." Advances in Neural Information
Processing Systems. 2019.
• Jiang, Yangbangyan, et al. "DM2C: Deep Mixed-Modal Clustering." Advances in Neural Information Processing Systems. 2019.
• Dalca, Adrian, et al. "Learning conditional deformable templates with convolutional networks." Advances in neural information processing
systems. 2019.
• Lubars, Brian, and Chenhao Tan. "Ask not what AI can do, but what AI should do: Towards a framework of task delegability." Advances in
Neural Information Processing Systems. 2019.
66