SlideShare a Scribd company logo
1 of 34
東京大学 大学院情報理工学系研究科
創造情報学専攻 講師
中山 英樹
 1. Deep Learning (深層学習)とは?
◦ 画像認識におけるブレークスルー
◦ 畳み込みニューラルネットワークのトレンド
 2. 最新の研究動向
◦ マルチモーダル学習
◦ 強化学習との融合
◦ パターン生成
2
3
汎用AI (真の知能?)
弱いAI (ある特定のタスク・機能)
機械学習
(お手本を真似る方法論)
ニューラル
ネットワーク
人工知能のある方法論における一つの道具にすぎない
…
深層学習
 画像認識
◦ トロント大のデモ
http://deeplearning.cs.toronto.edu/
 音声認識
[Krizhevsky et al., 2012]
4
http://research.microsoft.com/en-US/people/deng/icml-
june21-2014-cleanedup-referencesadded.pptx
http://blogs.technet.com/b/inside_microsoft_research/archive/
2013/06/13/dnn-research-improves-bing-voice-search.aspx
 制約をおかない実世界環境の画像を言語で記述
◦ 一般的な物体やシーン、形容詞、印象語
◦ 2000年代以降急速に発展(コンピュータビジョンの人気分野)
◦ 幅広い応用先
デジタルカメラ、ウェアラブルデバイス、画像検索、ロボット、…
 事例の“類似度”をどう定義すべきか?
◦ 例えば、単純なカラーヒストグラム
(色の割合)だと右の二つの画像は
非常に近い値となる
I look my dog contest:
http://www.hemmy.net/2006/
06/25/i-look-like-my-dog-
contest/
 もともと物理的な信号に過ぎない画像と“意味”との間には
大きな隔たりがある
 どういうポイント(特徴)を見ればよいか?
 機械学習(教師付)
7
“cat”
( ){ }Niyii ,...,1,, =x
x y
未知のデータ(学習データに含まれない)を正しく認識させることが目標
大量のラベル付き訓練データ
(x:画像,y:ラベル)
…
cat dog bird
( )xf
8
Figure from
[Ramanan et al, ICCV’09]
2004
カテゴリ数:10^2
サンプル数: 10^3~10^4
9
Figure from
Russakovsky et al.,
ILSVRC’14 slides.
2010
カテゴリ数:10^3~10^4
サンプル数: 10^6~10^7
 ニューラルネットワークを用いた人工知能の
構築技術の総称
◦ 脳(神経細胞)の働きを一部参考にした学習アルゴリズム
 特に、深く大規模な構造を備えていることが特徴
10
cat
cat
dog
horse
 局所領域(受容野)の畳み込みとプーリングを繰り返す
多層ネットワーク
◦ 段階的に解像度を落としながら、局所的な相関パターンを抽出
◦ 要するに、さまざまな解像度でのパターンの共起をみている
◦ 誤差逆伝播法による全体最適化
11
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied
to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, 1998.
最終的に、識別したいクラス数
と同数のニューロンへ
12
Low-level
image feature
Mid-level
image feature “Car”
SIFT, HOG,
SURF, etc.
BoVW, VLAD,
Fisher Vector, etc.
Supervised Classifier:
SVM, Logistic
Regression, etc.
生の画素値から、識別に至る階層構造を直接的に学習
伝統的
方法論
(“Shallow”
learning)
Deep
learning “Car”・・・
人手で設計 人手で設計/教師なし学習
13
Low-level
image feature
Mid-level
image feature “Car”
SIFT, HOG,
SURF, etc.
BoVW, VLAD,
Fisher Vector, etc.
Supervised Classifier:
SVM, Logistic
Regression, etc.
生の画素値から、識別に至る階層構造を直接的に学習
従来の特徴量に相当する構造が中間層に自然に出現
伝統的
方法論
(“Shallow”
learning)
Deep
learning “Car”・・・
人手で設計 人手で設計/教師なし学習
[Zeiler and Fergus, 2013]
 ImageNetのデータの一部を用いたフラッグシップコンペ
ティション (2010年より開催)
◦ ImageNet [Deng et al., 2009]
 クラウドソーシングにより構築中の大規模画像データセット
 1400万枚、2万2千カテゴリ(WordNetに従って構築)
 コンペでのタスク
◦ 1000クラスの物体カテゴリ分類
 学習データ120万枚、検証用データ5万枚、テストデータ10万枚
◦ 200クラスの物体検出
 学習データ45万枚、検証用データ2万枚、テストデータ4万枚
14
Russakovsky et al., “ImageNet Large Scale Visual
Recognition Challenge”, 2014.
 1000クラス識別タスクで、deep learning を用いたシステムが圧勝
◦ トロント大学Hinton先生のチーム (AlexNet)
15
[A. Krizhevsky et al., NIPS’12]
エラー率が一気に10%以上減少!
(※過去数年間での向上は1~2%)
 2012年以降も劇的な向上が続いている
16
2012 AlexNet
(8層)
2014 VGG
(19層)
2014 GoogLeNet
(22層)
2015 MSRA
(152層)
0
5
10
15
20
25
30
2010 2011 2012 2013 2014 Human 2015
(MS)
2015
(Google)
2015
(MS)
2016
(Google)
 エラー率が 16% (2012) → 3.08% (2015)
17
Szegedy et al., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning”, arXiv, 2016.
He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification”, arXiv, 2015.
Classificationerror(%)
28%
26%
16%
6.6%
12%
5.1% 4.94% 4.82%
3.08%
3.57%
 できるだけ少ないパラメータで深い非線形性を与える
◦ 一つのレイヤ内(線形変換)の
パラメータを増やすのは効率が悪い
 例)畳み込み層
◦ 7 x 7 の畳み込みは、3 x 3の畳み込み層を3つ積めば意味的に等価
18
≒
活
性
化
関
数
(
非
線
形
)
畳
み
込
み
(
線
形
)
プ
ー
リ
ン
グ
7×7 = 49 3×(3×3) = 27
より少ないパラメータで、
より深い非線形性!
He and Sun, “Convolutional Neural Networks at Constrained
Time Cost“, in Proc. CVPR, 2015.
Simonyan and Zisserman, “Very deep convolutional networks
for large-scale image recognition”, In Proc. ICLR, 2015.
0
2000
4000
6000
8000
10000
12000
14000
16000
0
20
40
60
80
100
120
140
160
2012
(AlexNet)
2013
(Clarifai)
2014
(NIN)
2014
(VGG)
2014
(GoogLeNet)
2015 (MS)
19
パ
ラ
メ
ー
タ
数
(万
)
ネ
ッ
ト
ワ
ー
ク
層
数
16% 12% 9.7% 7.3% 6.6% 3.6%
ILSVRC
識別エラー率
全結合層なし
20
 物体検出
◦ R-CNN [Girshick et al., CVPR’2014]
 物体領域ラベリング
◦ Fully-connected CNN [Long et al., CVPR’15]
 1. Deep Learning (深層学習)とは?
◦ 画像認識におけるブレークスルー
◦ 畳み込みニューラルネットワークのトレンド
 2. 最新の研究動向
◦ マルチモーダル学習
◦ 強化学習との融合
◦ パターン生成
21
 画像説明文生成
◦ CNN (画像側)の出力をRNN(言語側)へ接続
22
O. Vinyals et al., “Show and Tell: A Neural Image Caption Generator”, In Proc. CVPR, 2015.
23
a woman is slicing some vegetables
a cat is trying to eat the food
a dog is swimming in the pool
認識結果
24
 共通の上位レイヤ(潜在空間)へマッピング [Kiros et al., 2014]
◦ 異なるモダリティ間での“演算”が可能
R. Kiros et al., “Unifying Visual-Semantic Embeddings with
Multimodal Neural Language Models”, TACL, 2015.
25
[Kiros et al., 2014]
26
[Kiros et al., 2014]
 LSTMを用いた質問入力と回答の対応関係学習
27
H. Gao et al., “Are You Talking to a Machine? Dataset and Methods for
Multilingual Image Question Answering”, 2015.
 NNを使った機械翻訳モデルの応用
 質問文に加え、CNN対象画像の特徴抽出を行い、
回答文生成のRNNへ入力
28
H. Gao et al., “Are You Talking to a Machine? Dataset and Methods for
Multilingual Image Question Answering”, 2015.
 Deep Q-learning [Mnih et al, NIPS’13, Nature’15]
◦ 強化学習における行動価値関数のモデリングに深層学習を応用
◦ 膨大な回数ゲームプレイを行い、試行錯誤しながら学習
◦ クラッシックゲーム、囲碁等で人間を超える腕前(AlphaGo)
29
Mnih et al., “Human-Level Control Through
Deep Reinforcement Learning”,
Nature, 518(7540):529–533, 2015.
30
http://googleresearch.blogspot.jp/2016/03/deep-learning-for-robots-learning-from.html
 物体の把持戦略を試行錯誤しながら学習
◦ 複数台のロボットで学習経過を共有
 生成モデルの構築にDNNを利用 [Kingma et al., NIPS’14]
31
クエリ 自動生成された画像
Kingma et al., “Semi-supervised Learning with
Deep Generative Models”, In Proc. of NIPS, 2014.
 自然言語文から画像を生成 [Mansimov et al., ICLR’16]
32Mansimov et al., “Genarating Images from Captions with Attention”, In Proc. of ICLR, 2016.
33
Chuan Li and Michael Wand, “Combining Markov Random Fields and
Convolutional Neural Networks for Image Synthesis”, arXiv:1601.04589, 2016.
 画像認識における深層学習コア技術の進化
◦ 畳み込みニューラルネットワークの超多層化
◦ 一層一層はできるだけシンプルにして、層数を増やす
⇒ 少ないパラメータで大きな表現能力
 最新の研究動向
◦ 関連するさまざまな分野と融合が進んでいる
◦ もはや単なるパターン認識の枠組みを超えつつある?
◦ 爆発的な速さで次々に新しい研究が進展している
34

More Related Content

What's hot

Improving neural networks by preventing co adaptation of feature detectors
Improving neural networks by preventing co adaptation of feature detectorsImproving neural networks by preventing co adaptation of feature detectors
Improving neural networks by preventing co adaptation of feature detectorsJunya Saito
 
NVIDIA Seminar ディープラーニングによる画像認識と応用事例
NVIDIA Seminar ディープラーニングによる画像認識と応用事例NVIDIA Seminar ディープラーニングによる画像認識と応用事例
NVIDIA Seminar ディープラーニングによる画像認識と応用事例Takayoshi Yamashita
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Taiga Nomi
 
[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像Rei Takami
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺n_hidekey
 
画像認識のための深層学習
画像認識のための深層学習画像認識のための深層学習
画像認識のための深層学習Saya Katafuchi
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Hirokatsu Kataoka
 
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御Ryosuke Okuta
 
最近のSingle Shot系の物体検出のアーキテクチャまとめ
最近のSingle Shot系の物体検出のアーキテクチャまとめ最近のSingle Shot系の物体検出のアーキテクチャまとめ
最近のSingle Shot系の物体検出のアーキテクチャまとめYusuke Uchida
 
SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2nlab_utokyo
 
勉強会用スライド
勉強会用スライド勉強会用スライド
勉強会用スライドharmonylab
 
画像認識における幾何学的不変性の扱い
画像認識における幾何学的不変性の扱い画像認識における幾何学的不変性の扱い
画像認識における幾何学的不変性の扱いSeiji Hotta
 
深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術孝昌 田中
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)Yutaka Matsuo
 

What's hot (20)

20150930
2015093020150930
20150930
 
Improving neural networks by preventing co adaptation of feature detectors
Improving neural networks by preventing co adaptation of feature detectorsImproving neural networks by preventing co adaptation of feature detectors
Improving neural networks by preventing co adaptation of feature detectors
 
NVIDIA Seminar ディープラーニングによる画像認識と応用事例
NVIDIA Seminar ディープラーニングによる画像認識と応用事例NVIDIA Seminar ディープラーニングによる画像認識と応用事例
NVIDIA Seminar ディープラーニングによる画像認識と応用事例
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
 
DeepLearningDay2016Spring
DeepLearningDay2016SpringDeepLearningDay2016Spring
DeepLearningDay2016Spring
 
[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
 
画像認識のための深層学習
画像認識のための深層学習画像認識のための深層学習
画像認識のための深層学習
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)Deep Residual Learning (ILSVRC2015 winner)
Deep Residual Learning (ILSVRC2015 winner)
 
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
 
最近のSingle Shot系の物体検出のアーキテクチャまとめ
最近のSingle Shot系の物体検出のアーキテクチャまとめ最近のSingle Shot系の物体検出のアーキテクチャまとめ
最近のSingle Shot系の物体検出のアーキテクチャまとめ
 
SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2
 
勉強会用スライド
勉強会用スライド勉強会用スライド
勉強会用スライド
 
MIRU2018 tutorial
MIRU2018 tutorialMIRU2018 tutorial
MIRU2018 tutorial
 
画像認識における幾何学的不変性の扱い
画像認識における幾何学的不変性の扱い画像認識における幾何学的不変性の扱い
画像認識における幾何学的不変性の扱い
 
MIRU2014 tutorial deeplearning
MIRU2014 tutorial deeplearningMIRU2014 tutorial deeplearning
MIRU2014 tutorial deeplearning
 
深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術
 
Ibis2016okanohara
Ibis2016okanoharaIbis2016okanohara
Ibis2016okanohara
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)
 

Viewers also liked

ニューラルネットワークについて
ニューラルネットワークについてニューラルネットワークについて
ニューラルネットワークについてAnna Nakatsuji
 
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~NVIDIA Japan
 
Machine Translation Introduction
Machine Translation IntroductionMachine Translation Introduction
Machine Translation Introductionnlab_utokyo
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient DescentDeep Learning JP
 
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networksharmonylab
 
マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例nlab_utokyo
 

Viewers also liked (7)

ニューラルネットワークについて
ニューラルネットワークについてニューラルネットワークについて
ニューラルネットワークについて
 
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~
エヌビディアが加速するディープラーニング ~進化するニューラルネットワークとその開発方法について~
 
ISM2014
ISM2014ISM2014
ISM2014
 
Machine Translation Introduction
Machine Translation IntroductionMachine Translation Introduction
Machine Translation Introduction
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
 
マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例
 

Similar to 20160601画像電子学会

Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~nlab_utokyo
 
Rethinking and Beyond ImageNet
Rethinking and Beyond ImageNetRethinking and Beyond ImageNet
Rethinking and Beyond ImageNetcvpaper. challenge
 
先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめDigital Nature Group
 
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法Eli Kaminuma
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用Kazuki Fujikawa
 
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation Takumi Ohkuma
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDeep Learning JP
 
20150803.山口大学講演
20150803.山口大学講演20150803.山口大学講演
20150803.山口大学講演Hayaru SHOUNO
 
人工知能を用いた医用画像処理技術
人工知能を用いた医用画像処理技術人工知能を用いた医用画像処理技術
人工知能を用いた医用画像処理技術Yutaka KATAYAMA
 
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知るKazuki Nakajima
 
Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用taichi nishimura
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...cvpaper. challenge
 
生活支援ロボットにおける 大規模データ収集に向けて
生活支援ロボットにおける大規模データ収集に向けて生活支援ロボットにおける大規模データ収集に向けて
生活支援ロボットにおける 大規模データ収集に向けてKomei Sugiura
 
可視光で撮影された静脈画像の鮮明化
可視光で撮影された静脈画像の鮮明化可視光で撮影された静脈画像の鮮明化
可視光で撮影された静脈画像の鮮明化hasegawamakoto
 
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimationharmonylab
 

Similar to 20160601画像電子学会 (20)

Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
 
Rethinking and Beyond ImageNet
Rethinking and Beyond ImageNetRethinking and Beyond ImageNet
Rethinking and Beyond ImageNet
 
先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ
 
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法
[2019-03-14] JSPP19 深層学習による植物注釈タスクとPublic Cloud活用法
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用
 
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
20150803.山口大学講演
20150803.山口大学講演20150803.山口大学講演
20150803.山口大学講演
 
人工知能を用いた医用画像処理技術
人工知能を用いた医用画像処理技術人工知能を用いた医用画像処理技術
人工知能を用いた医用画像処理技術
 
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
 
CNTK deep dive
CNTK deep diveCNTK deep dive
CNTK deep dive
 
Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
 
ICCV2019 report
ICCV2019 reportICCV2019 report
ICCV2019 report
 
生活支援ロボットにおける 大規模データ収集に向けて
生活支援ロボットにおける大規模データ収集に向けて生活支援ロボットにおける大規模データ収集に向けて
生活支援ロボットにおける 大規模データ収集に向けて
 
cnnstudy
cnnstudycnnstudy
cnnstudy
 
20201010 personreid
20201010 personreid20201010 personreid
20201010 personreid
 
SBRA2018講演資料
SBRA2018講演資料SBRA2018講演資料
SBRA2018講演資料
 
可視光で撮影された静脈画像の鮮明化
可視光で撮影された静脈画像の鮮明化可視光で撮影された静脈画像の鮮明化
可視光で撮影された静脈画像の鮮明化
 
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 

More from nlab_utokyo

画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向nlab_utokyo
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPTnlab_utokyo
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generationnlab_utokyo
 
2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介nlab_utokyo
 
Lab introduction 2014
Lab introduction 2014Lab introduction 2014
Lab introduction 2014nlab_utokyo
 

More from nlab_utokyo (9)

画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPT
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generation
 
2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介
 
RecSysTV2014
RecSysTV2014RecSysTV2014
RecSysTV2014
 
MIRU2014 SLAC
MIRU2014 SLACMIRU2014 SLAC
MIRU2014 SLAC
 
Lab introduction 2014
Lab introduction 2014Lab introduction 2014
Lab introduction 2014
 
ICME 2013
ICME 2013ICME 2013
ICME 2013
 
Seminar
SeminarSeminar
Seminar
 

Recently uploaded

PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000Shota Ito
 
Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Danieldanielhu54
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略Ryo Sasaki
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directoryosamut
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムsugiuralab
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
UPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdfUPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdffurutsuka
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxAtomu Hidaka
 

Recently uploaded (9)

PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000
 
Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Daniel
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
 
UPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdfUPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdf
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
 

20160601画像電子学会