Combinational Logic
Circuit
Yong Heui Cho @ Mokwon University
Some of slides are referred to:
[1] 전재욱, 논리회로 설계실험, 성균관대학교.
[2] Imran Waris, Digital and Logic Design, slideshare, 2014.
2
Basic Computer Design
2. Introduction to Arduino
3. Basic Computer Architecture
4. Combinational Logic Circuit
5. Sequential Logic Circuit
3
Analog & Digital
3
V
T
0
V
T
0
Analog (유사성) Digital (숫자 집합)
- Continuous @ time and amplitude
- Precise representation
- Sensitive to noise
- Old theory
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
- Discrete @ time or amplitude
- Approximate presentation
- Robust to noise
- Modern theory
4
Analog
4
Input Signal
Output Signal
arithmetic sum
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
5
Digital
5
Input Signal
Output Signal
logical sum
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
6
Binary System
○ Binary System
– 0 or 1
– Notation: 10001001(2)
– Bit (binary digit)
– Byte = 8 bits
○ Decimal to Binary Conversion
6
652
32 … 1
16 … 0
08 … 0
04 … 0
02 … 0
01 … 0
2
2
2
2
2
1000001
128 64 32 16 8 4 2 1
0 1 0 0 0 0 0 1Binary :
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
7
Power of 2
7
□ Courtesy to Imran Waris, Digital and Logic Design, slideshare.
8
Decimal & Hexadecimal
8
□ Courtesy to Imran Waris, Digital and Logic Design, slideshare.
9
Boolean Algebra
• Logical Sum : +
► A + B = Y
0 + 0 = 0
0 + 1 = 1
1 + 1 = 1
• Logical Product : •
► A • B = Y
0 • 0 = 0
0 • 1 = 0
1 • 1 = 1
• Logical Not : ~, ‾, n,’
► A ( ~A, nA, A’) = Y
0’ = 1
1’ = 0
9
A B Y
0 0 0
0 1 1
1 0 1
1 1 1
Truth Table
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
10
Venn Diagram
10
XY
XY XY
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
John Venn
11
De Morgan Law
11
A + B = A • B
A • B = A + B
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
Augustus
De Morgan
12
Logic Signals
12
□ Courtesy to Imran Waris, Digital and Logic Design, slideshare.
13
Buffer & NOT Gate
13
NOT Gate Buffer
Input Output
0 1
1 0
Input Output Input Output
Input Output
0 0
1 1
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
14
Analog NOT Gate Circuit
14
Input
Output
B
C
E
B = 0
B = 1
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
A NOT gate is a transistor (TR)!
15
Gate?
• Logic gate
– Physical device implementing a Boolean
function
• “Gate” is the terminal name of a vacuum
tube.
15
16
AND & NAND Gate
16
AND Gate NAND (NOT + AND) Gate
Input A
Input B
Output
Input A
Input B
Output
Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1
Input A Input B Output
0 0 1
0 1 1
1 0 1
1 1 0
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
17
Analog AND Gate Circuit
17
B
C
E
=>
B
C E
Output
Input A Input B
< TR > < Switch >
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
An AND gate is series wire connection!
+5 [V]
18
OR & NOR Gate
18
OR Gate NOR (NOT + OR) Gate
Input A
Input B
Output
Input A
Input B
Output
Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 1
Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 0
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
19
Analog OR Gate Circuit
19
Input A Input B
Output
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
An OR gate is parallel wire connection!
+5 [V]
20
XOR & XNOR Gate
20
XOR (Exclusive OR) Gate XNOR Gate
Input A
Input B
Output
Input A
Input B
Output
Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0
Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 1
A ⊙ B = YA B = Y
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
21
Combinational Logic
21
Input A
Input B
Input C
Input D
Output
(A+B) (CD) = Output
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
22
Classification
22
23
Half Adder
23
Half
Adder
Input A
Input B
Sum
Carry
Input
A
Input B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
0
+0
00
0
+1
01
1
+0
01
1
+1
10
0010011
+1000001
1010010
Half
Adder
Half
Adder
Half
Adder
Half
Adder
Half
Adder
Half
Adder
Half
Adder
Carry ?
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
24
Circuit of Half Adder
24
Input A
Input B
SUM
CARRY
(A B) = SUM
A • B = CARRY
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
25
Full Adder
25
Half
Adder
Half
Adder
Input A
Input B
SUM
CARRY
Input C
Input
A
Input B Input C SUM CARRY
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
Input
A
Input B Input C SUM CARRY
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
26
Circuit of Full Adder
26
Carry
Input A
Input B SUM
Carry
Input
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
27
Combination of Full Adder
27
Full
Adder
Half
Adder
Full
Adder
Full
Adder
Full
Adder
Full
Adder
Full
Adder
Full
Adder
A1 B1A2 B2A3 B3A4 B4A5 B5A6 B6A7 B7A8 B8
SUM1SUM2SUM3SUM4SUM5SUM6SUM7SUM8CARRY
10010011
+10010001
100100100
□ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
28
Encoder & Decoder
28
29
Digital Door Lock
29

Combinational Logic Circuit

  • 1.
    Combinational Logic Circuit Yong HeuiCho @ Mokwon University Some of slides are referred to: [1] 전재욱, 논리회로 설계실험, 성균관대학교. [2] Imran Waris, Digital and Logic Design, slideshare, 2014.
  • 2.
    2 Basic Computer Design 2.Introduction to Arduino 3. Basic Computer Architecture 4. Combinational Logic Circuit 5. Sequential Logic Circuit
  • 3.
    3 Analog & Digital 3 V T 0 V T 0 Analog(유사성) Digital (숫자 집합) - Continuous @ time and amplitude - Precise representation - Sensitive to noise - Old theory □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. - Discrete @ time or amplitude - Approximate presentation - Robust to noise - Modern theory
  • 4.
    4 Analog 4 Input Signal Output Signal arithmeticsum □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 5.
    5 Digital 5 Input Signal Output Signal logicalsum □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 6.
    6 Binary System ○ BinarySystem – 0 or 1 – Notation: 10001001(2) – Bit (binary digit) – Byte = 8 bits ○ Decimal to Binary Conversion 6 652 32 … 1 16 … 0 08 … 0 04 … 0 02 … 0 01 … 0 2 2 2 2 2 1000001 128 64 32 16 8 4 2 1 0 1 0 0 0 0 0 1Binary : □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 7.
    7 Power of 2 7 □Courtesy to Imran Waris, Digital and Logic Design, slideshare.
  • 8.
    8 Decimal & Hexadecimal 8 □Courtesy to Imran Waris, Digital and Logic Design, slideshare.
  • 9.
    9 Boolean Algebra • LogicalSum : + ► A + B = Y 0 + 0 = 0 0 + 1 = 1 1 + 1 = 1 • Logical Product : • ► A • B = Y 0 • 0 = 0 0 • 1 = 0 1 • 1 = 1 • Logical Not : ~, ‾, n,’ ► A ( ~A, nA, A’) = Y 0’ = 1 1’ = 0 9 A B Y 0 0 0 0 1 1 1 0 1 1 1 1 Truth Table □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 10.
    10 Venn Diagram 10 XY XY XY □Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. John Venn
  • 11.
    11 De Morgan Law 11 A+ B = A • B A • B = A + B □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. Augustus De Morgan
  • 12.
    12 Logic Signals 12 □ Courtesyto Imran Waris, Digital and Logic Design, slideshare.
  • 13.
    13 Buffer & NOTGate 13 NOT Gate Buffer Input Output 0 1 1 0 Input Output Input Output Input Output 0 0 1 1 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 14.
    14 Analog NOT GateCircuit 14 Input Output B C E B = 0 B = 1 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. A NOT gate is a transistor (TR)!
  • 15.
    15 Gate? • Logic gate –Physical device implementing a Boolean function • “Gate” is the terminal name of a vacuum tube. 15
  • 16.
    16 AND & NANDGate 16 AND Gate NAND (NOT + AND) Gate Input A Input B Output Input A Input B Output Input A Input B Output 0 0 0 0 1 0 1 0 0 1 1 1 Input A Input B Output 0 0 1 0 1 1 1 0 1 1 1 0 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 17.
    17 Analog AND GateCircuit 17 B C E => B C E Output Input A Input B < TR > < Switch > □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. An AND gate is series wire connection! +5 [V]
  • 18.
    18 OR & NORGate 18 OR Gate NOR (NOT + OR) Gate Input A Input B Output Input A Input B Output Input A Input B Output 0 0 0 0 1 1 1 0 1 1 1 1 Input A Input B Output 0 0 1 0 1 0 1 0 0 1 1 0 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 19.
    19 Analog OR GateCircuit 19 Input A Input B Output □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교. An OR gate is parallel wire connection! +5 [V]
  • 20.
    20 XOR & XNORGate 20 XOR (Exclusive OR) Gate XNOR Gate Input A Input B Output Input A Input B Output Input A Input B Output 0 0 0 0 1 1 1 0 1 1 1 0 Input A Input B Output 0 0 1 0 1 0 1 0 0 1 1 1 A ⊙ B = YA B = Y □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 21.
    21 Combinational Logic 21 Input A InputB Input C Input D Output (A+B) (CD) = Output □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 22.
  • 23.
    23 Half Adder 23 Half Adder Input A InputB Sum Carry Input A Input B Sum Carry 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 +0 00 0 +1 01 1 +0 01 1 +1 10 0010011 +1000001 1010010 Half Adder Half Adder Half Adder Half Adder Half Adder Half Adder Half Adder Carry ? □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 24.
    24 Circuit of HalfAdder 24 Input A Input B SUM CARRY (A B) = SUM A • B = CARRY □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 25.
    25 Full Adder 25 Half Adder Half Adder Input A InputB SUM CARRY Input C Input A Input B Input C SUM CARRY 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 Input A Input B Input C SUM CARRY 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 26.
    26 Circuit of FullAdder 26 Carry Input A Input B SUM Carry Input □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 27.
    27 Combination of FullAdder 27 Full Adder Half Adder Full Adder Full Adder Full Adder Full Adder Full Adder Full Adder A1 B1A2 B2A3 B3A4 B4A5 B5A6 B6A7 B7A8 B8 SUM1SUM2SUM3SUM4SUM5SUM6SUM7SUM8CARRY 10010011 +10010001 100100100 □ Courtesy to 전재욱, 논리회로 설계실험, 성균관대학교.
  • 28.
  • 29.