SlideShare a Scribd company logo
Fourier Transform
Content
Introduction
Fourier

Integral
Fourier Transform
Properties of Fourier Transform
Convolution
Parseval’s Theorem
Continuous-Time
Fourier Transform
Introduction
The Topic
Periodic

Discrete
Time

Fourier
Fourier
Series
Series

Discrete
Discrete
Fourier
Fourier
Transform
Transform

Aperiodic

Continuous
Time

Continuous
Continuous
Fourier
Fourier
Transform
Transform

Fourier
Fourier
Transform
Transform
Review of Fourier Series
 Deal

with continuous-time periodic signals.
 Discrete frequency spectra.
A Periodic Signal
A Periodic Signal

f(t)
t
T

2T

3T
Two Forms for Fourier Series
Sinusoidal
a0 ∞
2πnt ∞
2πnt
f (t ) = + ∑ an cos
+ ∑ bn sin
Form
2 n =1
T
T
n =1
2 T /2
a0 = ∫
f (t )dt
−T / 2
T

Complex
Form:

f (t ) =

∞

∑ cn e

n = −∞

jnω0t

2 T /2
an = ∫
f (t ) cos nω0tdt
T −T / 2
2 T /2
bn = ∫
f (t ) sin nω0tdt
T −T / 2

1
cn =
T

∫

T /2

−T / 2

f (t )e − jnω0t dt
How to Deal with Aperiodic Signal?
A Periodic Signal
A Periodic Signal

f(t)
t
T

If T→∞, what happens?
Continuous-Time
Fourier Transform
Fourier Integral
Fourier Integral
fT (t ) =

∞

∑c e

n = −∞

n

jnω0t

1
cn =
T

∫

T /2

−T / 2

fT (t )e − jnω0t dt

∞

 1 T /2

=∑ ∫
fT (τ)e − jnω0 τ dτ e jnω0t
−T / 2

n = −∞  T
1 ∞  T /2
=
fT (τ)e − jnω0 τ dτ ω0 e jnω0t
∑


2π n = −∞  ∫−T / 2
1 ∞  T /2
=
fT (τ)e − jnω0 τ dτ e jnω0t ∆ω
∑


2π n = −∞  ∫−T / 2
1 ∞ ∞
=
fT (τ)e − jωτ dτ e jωt dω



2π ∫−∞  ∫−∞

ω0 =

2π
T

1 ω0
=
T 2π

Let ∆ω = ω0 =

2π
T

T → ∞ ⇒ dω = ∆ω ≈ 0
Fourier Integral
1 ∞ ∞
− jωτ
 e jωt dω
f (t ) =
∫−∞ ∫−∞ f (τ)e dτ

2π 
F(jω )

1 ∞
jω t
f (t ) =
∫−∞ F ( jω)e dω
2π
∞

F ( jω) = ∫ f (t )e
−∞

− jω t

dt

Synthesis
Analysis
Fourier Series vs. Fourier Integral
Fourier
Series:

f (t ) =

cn e jnω0t
∑

Period Function

n = −∞

1
cn =
T

Fourier
Integral:

∞

∫

T /2

−T / 2

Discrete Spectra

fT (t )e − jnω0t dt

1 ∞
f (t ) =
F ( jω)e jωt dω
2π ∫−∞
∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

Non-Period
Function

Continuous Spectra
Continuous-Time
Fourier Transform
Fourier Transform
Fourier Transform Pair
Inverse Fourier Transform:

1 ∞
f (t ) =
F ( jω)e jωt dω
2π ∫−∞

Synthesis

Fourier Transform:
∞

F ( jω) = ∫ f (t )e
−∞

− jωt

dt

Analysis
Existence of the Fourier Transform

Sufficient Condition:
f(t) is absolutely integrable, i.e.,

∫

∞

−∞

| f (t ) |dt < ∞
Continuous Spectra
∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

F ( jω) = FR ( jω) + jFI ( jω)

=| F ( jω) | e
Magnitude

jφ ( ω )
Phase

FI(jω)

|
ω)
j
|F(
φ(ω)

FR(jω)
Example
1

-1

f(t)
t

1

1 − jωt
F ( jω) = ∫ f (t )e dt = ∫ e dt =
e
−∞
−1
− jω
j − jω
2 sin ω
jω
= (e − e ) =
ω
ω
∞

− jω t

1

1

− jωt

−1
Example

F(ω
F(ω) )

33
22
11
00

-1

1

-1
f(t)

-10
-10

-5
-5

00

55

33
22

t

|F(ω
|F(ω)|)|

-1

10
10

11 1
00
-10
-10
1
44

− jω t

arg[F(ω
arg[F(ω)])]

1 − jωt
F ( jω) = ∫ f (t )e dt = ∫ e dt =
e
−∞
−1
− jω
22
j − jω
2 sin ω
jω
00
= (e − e ) = -10 -5-5 00 55 10
-10
10
ω
ω
∞

-5
-5

− jωt

00

55

10
10

1

−1
Example
f(t)

e−αt
t
∞

F ( jω) = ∫ f (t )e

− jω t

−∞
∞

=∫ e
0

− ( α + jω ) t

∞

dt = ∫ e −αt e − jωt dt
0

1
dt =
α + jω
Example
f(t)

1
1
|F(jω)|
|F(jω)|

=2
αα =2

0.5
0.5

0
0
2
2

∞

−∞
∞

=∫ e
0

arg[F(jω)]
arg[F(jω)]

F ( jω) = ∫ f (t )e

-10
-10

− jω t

0
0

-2
-2

− ( α + jω ) t

e−αt

-5
-5

0
0

5
5

t 10
10

∞

dt = ∫ e −αt e − jωt dt
0

1
dt =
α + jω
-10
-10

-5
-5

0
0

5
5

10
10
Continuous-Time
Fourier Transform
Properties of
Fourier Transform
Notation
F [ f (t )] = F ( jω)

F [ F ( jω)] = f (t )
-1

f (t ) ←
→ F ( jω)
F
Linearity
a1 f1 (t ) + a2 f 2 (t ) ←
→ a1 F1 ( jω) + a2 F2 ( jω)
F

orrk !!
Wo k
H om e W
!!Home
Time Scaling
1  ω
f (at ) ←
→
F j 
|a|  a
F

orrk !!
Wo k
H om e W
!!Home
Time Reversal
f ( −t ) ←
→ F ( − jω)
F

Pf) F [ f (−t )] = ∞ f (−t )e − jωt dt = t =∞ f (−t )e − jωt dt
∫−∞
∫t =−∞
=∫

− t =∞

−t = −∞

= −∫

=∫
f (t )e jωt d ( −t )
f (t )e d ( −t )
−t = −∞

t = −∞

t =∞

∞

− t =∞

j ωt

f (t )e dt = ∫
j ωt

t =∞

t = −∞

f (t )e jωt dt

= ∫ f (t )e jωt dt = F (− jω)
−∞
Time Shifting
f (t − t0 ) ←
→ F ( jω) e
F

− jωt 0

Pf) F [ f (t − t )] = ∞ f (t − t )e − jωt dt = t =∞ f (t − t )e − jωt dt
0
0
0
∫−∞
∫t =−∞
=∫

t +t0 =∞

=e

− j ωt 0

=e

− j ωt 0

t + t 0 = −∞

f (t )e − jω(t +t0 ) d (t + t0 )

∫

t =∞

∫

∞

t = −∞

−∞

f (t )e − jωt dt

− jω t
f (t )e − jωt dt = F ( jω)e 0
Frequency Shifting (Modulation)
f (t )e
Pf)

jω0t

¬  F [ j (ω − ω0 ) ]
→

F [ f (t )e

F

jω 0 t

∞

] = ∫ f (t )e jω0t e − jωt dt
−∞
∞

= ∫ f (t )e − j ( ω−ω0 )t dt
−∞

= F [ j (ω − ω0 )]
Symmetry Property
F [ F ( jt )] = 2πf (−ω)
Proof

∞

2πf (t ) = ∫ F ( jω)e jωt dω
−∞

∞

2πf (−t ) = ∫ F ( jω)e − jωt dω
−∞

Interchange symbols ω and t
∞

2πf (−ω) = ∫ F ( jt )e − jωt dt = F [ F ( jt )]
−∞
Fourier Transform for
Real Functions
If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω)
F(−jω) = F*(jω)

∞

F ( jω) = ∫ f (t )e

− jωt

−∞
∞

dt

F * ( jω) = ∫ f (t )e dt = F (− jω)
−∞

jωt
Fourier Transform for
Real Functions
If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω)
F(−jω) = F*(jω)
FR(jω) is even, and FI(jω) is odd.
F R jω ) = F R F (− jω ) = − F (jω )
(−
(jω ) I
I
Magnitude spectrum |F(jω)| is even, and
phase spectrum φ(ω) is odd.
Fourier Transform for
Real Functions
If f(t) is real and even
F(jω) is real
Pf)
Even

If f(t) is real and odd

√

f (t ) = f (−t )

F(jω) is pure imaginary
Pf)
Odd

F ( jω) = F (− jω)

Real

F (− jω) = F * ( jω)
F ( jω) = F * ( jω)

√

f (t ) = − f (−t )
F ( jω) = − F (− jω)

Real

F (− jω) = F * ( jω)
F ( jω) = − F * ( jω)
Example:
F [ f (t )] = F ( jω)
Sol)

F [ f (t ) cos ω0t ] = ?

1
f (t ) cos ω0t = f (t )(e jω0t + e − jω0t )
2
1
1
jω 0 t
F [ f (t ) cos ω0t ] = F [ f (t )e ] + F [ f (t )e − jω0t ]
2
2
1
1
= F [ j (ω − ω0 )] + F [ j (ω + ω0 )]
2
2
Example:
1

−d/2

f(t)=wd(t)cosω0t

wd(t)
t

d/2

−d/2

d/2

t

2  ωd 
Wd ( jω) = F [ wd (t )] = ∫ e dt = sin 

−d / 2
ω  2 
d
d
sin (ω − ω0 ) sin (ω + ω0 )
2
2
=
+
F ( jω) = F [ wd (t ) cos ω0t ]
ω − ω0
ω + ω0
d /2

− jωt
1.5
1.5
d=2
d=2
ω0=5ππ
ω =5

1
1

0

F(jω)
F(jω)

Example:

0.5
0.5
0
0

-0.5
-0.5 -60
-60

1

−d/2

-40
-40

-20
-20

0
0

20
20

40
40

ω
ω

60
60

f(t)=wd(t)cosω0t

wd(t)
t

d/2

−d/2

d/2

t

2  ωd 
Wd ( jω) = F [ wd (t )] = ∫ e dt = sin 

−d / 2
ω  2 
d
d
sin (ω − ω0 ) sin (ω + ω0 )
2
2
=
+
F ( jω) = F [ wd (t ) cos ω0t ]
ω − ω0
ω + ω0
d /2

− jωt
1

Example:
sin at
f (t ) =
πt
Sol)

wd(t)
t

−d/2

d/2

F ( jω) = ?

2  ωd 
Answer is
Wd ( jω) = sin 

just
ω  2 
opposite to
as expected
 2  td  
F [Wd ( jt )] = F  sin    = 2πwd (−ω)
 2 
t
0 ω <| a |
 sin at 
F [ f (t )] = F 
 = w2 a (−ω) = 1 ω >| a |
 πt 

Fourier Transform of f’(t)
f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ' (t ) ←F jωF ( jω)
→
Pf) F [ f ' (t )] = ∞ f ' (t )e − jωt dt
∫−∞
= f (t )e

− j ωt ∞
−∞

= jωF ( jω)

∞

+ jω∫ f (t )e − jωt dt
−∞
Fourier Transform of f (t)
(n)

f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ( n ) (t ) ←F ( jω) n F ( jω)
→

orrk !!
Wo k
H om e W
!!Home
Fourier Transform of f (t)
(n)

f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ( n ) (t ) ←F ( jω) n F ( jω)
→

orrk !!
Wo k
H om e W
!!Home
Fourier Transform of Integral
f (t ) ←
→ F ( jω) and
F

∫

∞

−∞

f (t )dt = F ( 0 ) = 0

 t f ( x)dx  = 1 F ( jω)
F ∫
 −∞
 jω


Let φ(t ) =

∫

t

−∞

f ( x)dx

lim φ(t ) = 0
t →∞

F [φ' (t )] = F [ f (t )] = F ( jω) = jωΦ ( jω)
1
Φ ( jω) =
F ( jω)
jω
The Derivative of Fourier Transform
dF ( jω)
F [− jtf (t )] ←
→
dω
F

Pf)

∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

∞
dF ( jω) d ∞
∂ − j ωt
− j ωt
=
∫−∞ f (t )e dt = ∫−∞ f (t ) ∂ω e dt
dω
dω
∞

= ∫ [− jtf (t )]e − jωt dt = F [− jtf (t )]
−∞
You!!
nk You
!!Tha nk
Tha

More Related Content

What's hot

Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformation
Wasim Shah
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
kalung0313
 
Fourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islamFourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islam
Md Nazmul Islam
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
Iffat Anjum
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
Abhishek Choksi
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
 
Z Transform
Z TransformZ Transform
Z Transform
Darshan Bhatt
 
the fourier series
the fourier seriesthe fourier series
the fourier seriessafi al amu
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformationzertux
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
SimmiRockzz
 
Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
Abhishek Verma
 
Fourier series
Fourier seriesFourier series
Fourier series
kishor pokar
 
Fourier series
Fourier series Fourier series
Fourier series
Pinky Chaudhari
 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
Adhana Hary Wibowo
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
taha25
 
aem : Fourier series of Even and Odd Function
aem :  Fourier series of Even and Odd Functionaem :  Fourier series of Even and Odd Function
aem : Fourier series of Even and Odd Function
Sukhvinder Singh
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
Krishna Jangid
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier Transform
Attaporn Ninsuwan
 

What's hot (20)

Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformation
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islamFourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islam
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Z Transform
Z TransformZ Transform
Z Transform
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformation
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
 
Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Fourier series
Fourier series Fourier series
Fourier series
 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
 
aem : Fourier series of Even and Odd Function
aem :  Fourier series of Even and Odd Functionaem :  Fourier series of Even and Odd Function
aem : Fourier series of Even and Odd Function
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier Transform
 

Similar to fourier transforms

Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering Mathematics
PrasenjitRathore
 
4. cft
4. cft4. cft
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed
 
DEMO-TF-escalon.pdf
DEMO-TF-escalon.pdfDEMO-TF-escalon.pdf
DEMO-TF-escalon.pdf
AngelSb3
 
Tables
TablesTables
Fourier transform
Fourier transformFourier transform
Fourier transform
auttaponsripradit
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
Hoopeer Hoopeer
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
Alessandro Palmeri
 
Laplace1
Laplace1Laplace1
Laplace1
Ana Torres
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
Edhole.com
 
corripio
corripio corripio
corripio
Sabrina Amaral
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
omardavid01
 
Laplace
LaplaceLaplace
Laplace
mishradiya
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
Aditi523129
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
Edhole.com
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
VjekoslavKovac1
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdf
Neema85
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
martha-judith
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdf
ShreyaLathiya
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
 

Similar to fourier transforms (20)

Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering Mathematics
 
4. cft
4. cft4. cft
4. cft
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
DEMO-TF-escalon.pdf
DEMO-TF-escalon.pdfDEMO-TF-escalon.pdf
DEMO-TF-escalon.pdf
 
Tables
TablesTables
Tables
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
Laplace1
Laplace1Laplace1
Laplace1
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
 
corripio
corripio corripio
corripio
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
Laplace
LaplaceLaplace
Laplace
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdf
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdf
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 

More from Umang Gupta

23 network security threats pkg
23 network security threats pkg23 network security threats pkg
23 network security threats pkgUmang Gupta
 
Chapter8 27 nov_2010
Chapter8 27 nov_2010Chapter8 27 nov_2010
Chapter8 27 nov_2010Umang Gupta
 
Lecture43 network security
Lecture43 network securityLecture43 network security
Lecture43 network securityUmang Gupta
 
11. transaction sql
11. transaction sql11. transaction sql
11. transaction sqlUmang Gupta
 
Advanced data structures and implementation
Advanced data structures and implementationAdvanced data structures and implementation
Advanced data structures and implementationUmang Gupta
 
Graph theory narsingh deo
Graph theory narsingh deoGraph theory narsingh deo
Graph theory narsingh deoUmang Gupta
 
Computer organiztion6
Computer organiztion6Computer organiztion6
Computer organiztion6Umang Gupta
 
Computer organiztion4
Computer organiztion4Computer organiztion4
Computer organiztion4Umang Gupta
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3Umang Gupta
 
Computer organiztion2
Computer organiztion2Computer organiztion2
Computer organiztion2Umang Gupta
 
Computer organiztion1
Computer organiztion1Computer organiztion1
Computer organiztion1Umang Gupta
 
Computer organiztion5
Computer organiztion5Computer organiztion5
Computer organiztion5Umang Gupta
 
Angle modulation
Angle modulationAngle modulation
Angle modulationUmang Gupta
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier seriesUmang Gupta
 
Communication systems
Communication systemsCommunication systems
Communication systemsUmang Gupta
 

More from Umang Gupta (17)

23 network security threats pkg
23 network security threats pkg23 network security threats pkg
23 network security threats pkg
 
Lect13 security
Lect13   securityLect13   security
Lect13 security
 
Chapter8 27 nov_2010
Chapter8 27 nov_2010Chapter8 27 nov_2010
Chapter8 27 nov_2010
 
Lecture43 network security
Lecture43 network securityLecture43 network security
Lecture43 network security
 
11. transaction sql
11. transaction sql11. transaction sql
11. transaction sql
 
Advanced data structures and implementation
Advanced data structures and implementationAdvanced data structures and implementation
Advanced data structures and implementation
 
Graph theory narsingh deo
Graph theory narsingh deoGraph theory narsingh deo
Graph theory narsingh deo
 
Computer organiztion6
Computer organiztion6Computer organiztion6
Computer organiztion6
 
Computer organiztion4
Computer organiztion4Computer organiztion4
Computer organiztion4
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3
 
Computer organiztion2
Computer organiztion2Computer organiztion2
Computer organiztion2
 
Computer organiztion1
Computer organiztion1Computer organiztion1
Computer organiztion1
 
Computer organiztion5
Computer organiztion5Computer organiztion5
Computer organiztion5
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
 
Basic antenas
Basic antenasBasic antenas
Basic antenas
 
Communication systems
Communication systemsCommunication systems
Communication systems
 

Recently uploaded

Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 

Recently uploaded (20)

Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 

fourier transforms

  • 2. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval’s Theorem
  • 5. Review of Fourier Series  Deal with continuous-time periodic signals.  Discrete frequency spectra. A Periodic Signal A Periodic Signal f(t) t T 2T 3T
  • 6. Two Forms for Fourier Series Sinusoidal a0 ∞ 2πnt ∞ 2πnt f (t ) = + ∑ an cos + ∑ bn sin Form 2 n =1 T T n =1 2 T /2 a0 = ∫ f (t )dt −T / 2 T Complex Form: f (t ) = ∞ ∑ cn e n = −∞ jnω0t 2 T /2 an = ∫ f (t ) cos nω0tdt T −T / 2 2 T /2 bn = ∫ f (t ) sin nω0tdt T −T / 2 1 cn = T ∫ T /2 −T / 2 f (t )e − jnω0t dt
  • 7. How to Deal with Aperiodic Signal? A Periodic Signal A Periodic Signal f(t) t T If T→∞, what happens?
  • 9. Fourier Integral fT (t ) = ∞ ∑c e n = −∞ n jnω0t 1 cn = T ∫ T /2 −T / 2 fT (t )e − jnω0t dt ∞  1 T /2  =∑ ∫ fT (τ)e − jnω0 τ dτ e jnω0t −T / 2  n = −∞  T 1 ∞  T /2 = fT (τ)e − jnω0 τ dτ ω0 e jnω0t ∑   2π n = −∞  ∫−T / 2 1 ∞  T /2 = fT (τ)e − jnω0 τ dτ e jnω0t ∆ω ∑   2π n = −∞  ∫−T / 2 1 ∞ ∞ = fT (τ)e − jωτ dτ e jωt dω    2π ∫−∞  ∫−∞ ω0 = 2π T 1 ω0 = T 2π Let ∆ω = ω0 = 2π T T → ∞ ⇒ dω = ∆ω ≈ 0
  • 10. Fourier Integral 1 ∞ ∞ − jωτ  e jωt dω f (t ) = ∫−∞ ∫−∞ f (τ)e dτ  2π  F(jω ) 1 ∞ jω t f (t ) = ∫−∞ F ( jω)e dω 2π ∞ F ( jω) = ∫ f (t )e −∞ − jω t dt Synthesis Analysis
  • 11. Fourier Series vs. Fourier Integral Fourier Series: f (t ) = cn e jnω0t ∑ Period Function n = −∞ 1 cn = T Fourier Integral: ∞ ∫ T /2 −T / 2 Discrete Spectra fT (t )e − jnω0t dt 1 ∞ f (t ) = F ( jω)e jωt dω 2π ∫−∞ ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ Non-Period Function Continuous Spectra
  • 13. Fourier Transform Pair Inverse Fourier Transform: 1 ∞ f (t ) = F ( jω)e jωt dω 2π ∫−∞ Synthesis Fourier Transform: ∞ F ( jω) = ∫ f (t )e −∞ − jωt dt Analysis
  • 14. Existence of the Fourier Transform Sufficient Condition: f(t) is absolutely integrable, i.e., ∫ ∞ −∞ | f (t ) |dt < ∞
  • 15. Continuous Spectra ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ F ( jω) = FR ( jω) + jFI ( jω) =| F ( jω) | e Magnitude jφ ( ω ) Phase FI(jω) | ω) j |F( φ(ω) FR(jω)
  • 16. Example 1 -1 f(t) t 1 1 − jωt F ( jω) = ∫ f (t )e dt = ∫ e dt = e −∞ −1 − jω j − jω 2 sin ω jω = (e − e ) = ω ω ∞ − jω t 1 1 − jωt −1
  • 17. Example F(ω F(ω) ) 33 22 11 00 -1 1 -1 f(t) -10 -10 -5 -5 00 55 33 22 t |F(ω |F(ω)|)| -1 10 10 11 1 00 -10 -10 1 44 − jω t arg[F(ω arg[F(ω)])] 1 − jωt F ( jω) = ∫ f (t )e dt = ∫ e dt = e −∞ −1 − jω 22 j − jω 2 sin ω jω 00 = (e − e ) = -10 -5-5 00 55 10 -10 10 ω ω ∞ -5 -5 − jωt 00 55 10 10 1 −1
  • 18. Example f(t) e−αt t ∞ F ( jω) = ∫ f (t )e − jω t −∞ ∞ =∫ e 0 − ( α + jω ) t ∞ dt = ∫ e −αt e − jωt dt 0 1 dt = α + jω
  • 19. Example f(t) 1 1 |F(jω)| |F(jω)| =2 αα =2 0.5 0.5 0 0 2 2 ∞ −∞ ∞ =∫ e 0 arg[F(jω)] arg[F(jω)] F ( jω) = ∫ f (t )e -10 -10 − jω t 0 0 -2 -2 − ( α + jω ) t e−αt -5 -5 0 0 5 5 t 10 10 ∞ dt = ∫ e −αt e − jωt dt 0 1 dt = α + jω -10 -10 -5 -5 0 0 5 5 10 10
  • 21. Notation F [ f (t )] = F ( jω) F [ F ( jω)] = f (t ) -1 f (t ) ← → F ( jω) F
  • 22. Linearity a1 f1 (t ) + a2 f 2 (t ) ← → a1 F1 ( jω) + a2 F2 ( jω) F orrk !! Wo k H om e W !!Home
  • 23. Time Scaling 1  ω f (at ) ← → F j  |a|  a F orrk !! Wo k H om e W !!Home
  • 24. Time Reversal f ( −t ) ← → F ( − jω) F Pf) F [ f (−t )] = ∞ f (−t )e − jωt dt = t =∞ f (−t )e − jωt dt ∫−∞ ∫t =−∞ =∫ − t =∞ −t = −∞ = −∫ =∫ f (t )e jωt d ( −t ) f (t )e d ( −t ) −t = −∞ t = −∞ t =∞ ∞ − t =∞ j ωt f (t )e dt = ∫ j ωt t =∞ t = −∞ f (t )e jωt dt = ∫ f (t )e jωt dt = F (− jω) −∞
  • 25. Time Shifting f (t − t0 ) ← → F ( jω) e F − jωt 0 Pf) F [ f (t − t )] = ∞ f (t − t )e − jωt dt = t =∞ f (t − t )e − jωt dt 0 0 0 ∫−∞ ∫t =−∞ =∫ t +t0 =∞ =e − j ωt 0 =e − j ωt 0 t + t 0 = −∞ f (t )e − jω(t +t0 ) d (t + t0 ) ∫ t =∞ ∫ ∞ t = −∞ −∞ f (t )e − jωt dt − jω t f (t )e − jωt dt = F ( jω)e 0
  • 26. Frequency Shifting (Modulation) f (t )e Pf) jω0t ¬  F [ j (ω − ω0 ) ] → F [ f (t )e F jω 0 t ∞ ] = ∫ f (t )e jω0t e − jωt dt −∞ ∞ = ∫ f (t )e − j ( ω−ω0 )t dt −∞ = F [ j (ω − ω0 )]
  • 27. Symmetry Property F [ F ( jt )] = 2πf (−ω) Proof ∞ 2πf (t ) = ∫ F ( jω)e jωt dω −∞ ∞ 2πf (−t ) = ∫ F ( jω)e − jωt dω −∞ Interchange symbols ω and t ∞ 2πf (−ω) = ∫ F ( jt )e − jωt dt = F [ F ( jt )] −∞
  • 28. Fourier Transform for Real Functions If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω) F(−jω) = F*(jω) ∞ F ( jω) = ∫ f (t )e − jωt −∞ ∞ dt F * ( jω) = ∫ f (t )e dt = F (− jω) −∞ jωt
  • 29. Fourier Transform for Real Functions If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω) F(−jω) = F*(jω) FR(jω) is even, and FI(jω) is odd. F R jω ) = F R F (− jω ) = − F (jω ) (− (jω ) I I Magnitude spectrum |F(jω)| is even, and phase spectrum φ(ω) is odd.
  • 30. Fourier Transform for Real Functions If f(t) is real and even F(jω) is real Pf) Even If f(t) is real and odd √ f (t ) = f (−t ) F(jω) is pure imaginary Pf) Odd F ( jω) = F (− jω) Real F (− jω) = F * ( jω) F ( jω) = F * ( jω) √ f (t ) = − f (−t ) F ( jω) = − F (− jω) Real F (− jω) = F * ( jω) F ( jω) = − F * ( jω)
  • 31. Example: F [ f (t )] = F ( jω) Sol) F [ f (t ) cos ω0t ] = ? 1 f (t ) cos ω0t = f (t )(e jω0t + e − jω0t ) 2 1 1 jω 0 t F [ f (t ) cos ω0t ] = F [ f (t )e ] + F [ f (t )e − jω0t ] 2 2 1 1 = F [ j (ω − ω0 )] + F [ j (ω + ω0 )] 2 2
  • 32. Example: 1 −d/2 f(t)=wd(t)cosω0t wd(t) t d/2 −d/2 d/2 t 2  ωd  Wd ( jω) = F [ wd (t )] = ∫ e dt = sin   −d / 2 ω  2  d d sin (ω − ω0 ) sin (ω + ω0 ) 2 2 = + F ( jω) = F [ wd (t ) cos ω0t ] ω − ω0 ω + ω0 d /2 − jωt
  • 33. 1.5 1.5 d=2 d=2 ω0=5ππ ω =5 1 1 0 F(jω) F(jω) Example: 0.5 0.5 0 0 -0.5 -0.5 -60 -60 1 −d/2 -40 -40 -20 -20 0 0 20 20 40 40 ω ω 60 60 f(t)=wd(t)cosω0t wd(t) t d/2 −d/2 d/2 t 2  ωd  Wd ( jω) = F [ wd (t )] = ∫ e dt = sin   −d / 2 ω  2  d d sin (ω − ω0 ) sin (ω + ω0 ) 2 2 = + F ( jω) = F [ wd (t ) cos ω0t ] ω − ω0 ω + ω0 d /2 − jωt
  • 34. 1 Example: sin at f (t ) = πt Sol) wd(t) t −d/2 d/2 F ( jω) = ? 2  ωd  Answer is Wd ( jω) = sin   just ω  2  opposite to as expected  2  td   F [Wd ( jt )] = F  sin    = 2πwd (−ω)  2  t 0 ω <| a |  sin at  F [ f (t )] = F   = w2 a (−ω) = 1 ω >| a |  πt  
  • 35. Fourier Transform of f’(t) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ' (t ) ←F jωF ( jω) → Pf) F [ f ' (t )] = ∞ f ' (t )e − jωt dt ∫−∞ = f (t )e − j ωt ∞ −∞ = jωF ( jω) ∞ + jω∫ f (t )e − jωt dt −∞
  • 36. Fourier Transform of f (t) (n) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ( n ) (t ) ←F ( jω) n F ( jω) → orrk !! Wo k H om e W !!Home
  • 37. Fourier Transform of f (t) (n) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ( n ) (t ) ←F ( jω) n F ( jω) → orrk !! Wo k H om e W !!Home
  • 38. Fourier Transform of Integral f (t ) ← → F ( jω) and F ∫ ∞ −∞ f (t )dt = F ( 0 ) = 0  t f ( x)dx  = 1 F ( jω) F ∫  −∞  jω   Let φ(t ) = ∫ t −∞ f ( x)dx lim φ(t ) = 0 t →∞ F [φ' (t )] = F [ f (t )] = F ( jω) = jωΦ ( jω) 1 Φ ( jω) = F ( jω) jω
  • 39. The Derivative of Fourier Transform dF ( jω) F [− jtf (t )] ← → dω F Pf) ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ ∞ dF ( jω) d ∞ ∂ − j ωt − j ωt = ∫−∞ f (t )e dt = ∫−∞ f (t ) ∂ω e dt dω dω ∞ = ∫ [− jtf (t )]e − jωt dt = F [− jtf (t )] −∞