SlideShare a Scribd company logo
F s( )
s
s
2
ω
2
+
=
1
2
1
s i ω⋅−
1
s i ω⋅+
+




=
s i ω⋅− s+ i ω⋅+
2 s i ω⋅−( )⋅ s i ω⋅+( )
=
2 s⋅
2 s
2
ω
2
+( )⋅
=
s
s
2
ω
2
+
=
1
2
1−
s i ω⋅−
e
s i ω⋅−( )t−
∞
0
⋅
1−
s i ω⋅+
e
s i ω⋅+( )t−
∞
0
⋅+





=
1
2 0
∞
te
s i ω⋅−( )t−⌠

⌡
d
0
∞
te
s i ω⋅+( )t−⌠

⌡
d+








=
F s( )
0
∞
tcos ωt⋅ e
st−
⋅
⌠

⌡
d=
0
∞
t
e
i ωt⋅
e
i− ωt⋅
−
2
e
st−
⌠


⌡
d=f t( ) cos ωt⋅=(c)
F s( )
1
s a+
=
F s( )
0
∞
te
at−
e
st−⌠

⌡
d=
0
∞
te
s a+( )t−⌠

⌡
d=
1−
s a+
e
s a+( )t−
∞
0
⋅=
1
s a+
=
where a is constantf t( ) e
at−
=(b)
F s( )
1
s
2
=
F s( )
t−
s
e
st−
∞
0
⋅
1
s 0
∞
te
st−⌠

⌡
d⋅+= 0 0−
1
s
2
e
st−
∞
0
⋅−=
1
s
2
=
v
1−
s
e
st−
=du dt=
dv e
st−
dt=u t=By parts:F s( )
0
∞
tt e
st−
⋅
⌠

⌡
d=f t( ) t=(a)
F s( )
0
∞
tf t( ) e
st−⌠

⌡
d=
Problem 2-1. Derivation of Laplace transforms from its definition
Smith & Corripio, 3rd. edition
(d) f t( ) e
at−
coss ωt⋅=
F s( )
0
∞
te
at−
cos ωt⋅ e
st−
⋅
⌠

⌡
d=
0
∞
te
at− e
i ωt⋅
e
i− ωt⋅
+
2
⋅ e
st−
⌠


⌡
d=
1
2 0
∞
te
s a+ i ω⋅+( )t−⌠

⌡
d
0
∞
te
s a+ i ω⋅−( )− t⌠

⌡
d+








=
1
2
1−
s a+ i ω⋅+
e
s a+ i ω⋅+( )t−
∞
0
⋅
1−
s a+ i ω⋅−
e
s a+ i ω⋅−( )t−
∞
0
⋅+





=
1
2
1
s a+ i ω⋅+
1
s a+ i ω⋅−
+




=
s a+ i ω⋅− s+ a+ i ω⋅+
2 s a+ i ω⋅+( ) s a+ i ω⋅−( )
=
2 s a+( )
2 s a+( )
2
ω
2
+


⋅
=
s a+
s a+( )
2
ω
2
+
= F s( )
s a+
s a+( )
2
ω
2
+
=
All the results match results in Table 2-1.1
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
1
s
1
s 2+
+ 2
1
s 1+
⋅−=
1
s
1
s 2+
+
2
s 1+
−=
F s( )
1
s
1
s 2+
+
2
s 1+
−=
Used the linearity property.
(d) f t( ) u t( ) e
t−
− t e
t−
⋅+= F s( ) L u t( )( ) L e
t−
( )− L t e
t−
⋅( )+=
1
s
1
s 1+
−
1
s 1+( )
2
+=
F s( )
1
s
1
s 1+
−
1
s 1+( )
2
+=
Used the linearity property.
(e) f t( ) u t 2−( ) 1 e
2− t 2−( )
sin t 2−( )− = Let g t( ) u t( ) 1 e
2− t
sin t⋅−( )= Then f t( ) g t 2−( )=
F s( ) e
2− s
G s( )= e
2− s 1
s
1
s 2+( )
2
1+
−





=
Used the real translation theorem and linearity. F s( ) e
2− s 1
s
1
s 2+( )
2
1+
−





=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Smith & Corripio, 3rd edition
Problem 2-2. Derive Laplace transforms from the properties and Table 2-1.1
(a) f t( ) u t( ) 2 t⋅+ 3 t
2
⋅+= F s( ) L u t( ) 2 t⋅+ 3 t
2
⋅+( )= L u t( )( ) 2 L t( )⋅+ 3 L t
2
( )⋅+=
1
s
2
1
s
2
⋅+ 3
2!
s
3
⋅+= F s( )
1
s
2
s
2
+
6
s
3
+=
Used the linearity property.
(b) f t( ) e
2− t⋅
u t( ) 2 t⋅+ 3 t
2
⋅+( )= F s( ) L u t( ) 2 t⋅+ 3 t
2
⋅+( )
s 2+
⋅=
1
s
2
s
2
+
6
s
3
+



 s 2+
⋅=
1
s 2+
2
s 2+( )
2
+
6
s 2+( )
3
+=
F s( )
1
s 2+
2
s 2+( )
2
+
6
s 2+( )
3
+=
Used the complex translation theorem.
(c) f t( ) u t( ) e
2− t
+ 2e
t−
−= F s( ) L u t( ) e
2− t
+ 2 e
t−
⋅−( )= L u t( )( ) L e
2− t
( )+ 2 L e
t−
( )⋅−=
Must apply L'Hopital's rule:
∞s
1
1
2
2 s 2+( )
+
6
3 s 2+( )
2
+





1=lim
→Final value:
∞t
e
2− t
u t( ) 2 t⋅+ 3t
2
+( ) 0 ∞⋅=lim
→
0s
s
1
s 2+
2
s 2+( )
2
+
6
s 3+( )
2
+





0=lim
→
L'Hopital's rule:
∞t
0
2e
2t
2
2e
2t
+
6t
2e
2t
+




0=lim
→
Check!
(c) f t( ) u t( ) e
2− t
+ 2e
t−
−= F s( )
1
s
1
s 2+
+
2
s 1+
−=
Initial value:
0t
u t( ) e
2− t
+ 2e
t−
−( ) 1 1+ 2−( ) 0+=lim
→ ∞s
s
1
s
1
s 2+
+
2
s 1+
−




∞
∞
=lim
→
L'Hopital's rule:
∞s
1
1
1
+
2
1
−




0=lim
→
Final value:
∞t
u t( ) e
2− t
+ 2e
t−
−( ) 1 0+ 0+= 1=lim
→ 0s
s
1
s
1
s 2+
+
2
s 1+
−




1 0+ 0+= 1=lim
→
Smith & Corripio, 3rd edition
Problem 2-3. Initial and final value check of solutions to Problem 2-2
(a) f t( ) u t( ) 2 t⋅+ 3t
2
+= F s( )
1
s
2
s
2
+
6
s
3
+=
Initial value:
0t
u t( ) 2t+ 3t
2
+( ) 1=lim
→ ∞s
s
1
s
2
s
2
+
6
s
3
+




⋅
∞s
1
2
s
+
6
s
2
+




1=lim
→
=lim
→
Final value:
∞t
u t( ) 2t+ 3t
2
+( ) ∞=lim
→ 0s
1
2
s
+
6
s
2
+




∞=lim
→
Check!
(b) f t( ) e
2− t
u t( ) 2t+ 3t
2
+( )= F s( )
1
s 2+
2
s 2+( )
2
+
6
s 2+( )
3
+=
Initial value:
0t
e
2− t
u t( ) 2t+ 3t
2
+( )lim
→ ∞s
s
1
s 2+
2
s 2+( )
2
+
6
s 2+( )
3
+





∞
∞
=lim
→
1 1 0+ 0+( )= 1=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Check!
0s
s
1
s
1
s 1+( )
2
1+
−





1 0+= 1=lim
→∞t
1 e
2− t
sin t( )⋅−  1=lim
→
Final value:
∞s
s
1
s
1
s 1+( )
2
1+
−





1 0−= 1=lim
→0t
1 e
2− t
sin t⋅−( ) 1=lim
→
Initial value:
The test of the delayed fnction is not useful. Better to test the term in brackets, g(t):
F s( ) e
2− s 1
s
1
s 1+( )
2
1+
−





=f t( ) u t 2−( ) 1 e
2− t 2−( )
sin t 2−( )− =(e)
Check!
∞t
1 0−
1
1 e
t
⋅
+




1=lim
→
L'Hopital's rule:
∞t
u t( ) e
t−
− t e
t−
⋅+( ) 1 0− ∞ 0⋅+=lim
→
0s
1
s
s 1+
−
s
s 1+( )
2
+





1 0− 0+= 1=lim
→
Final value: ∞s
1
1
1
−
1
2 s 1+( )
+





1 1− 0+= 0=lim
→
L'Hopital's rule:
∞s
s
1
s
1
s 1+
−
1
s 1+( )
2
+





∞
∞
=lim
→0t
u t( ) e
t−
− t e
t−
⋅+( ) 1 1− 0 1⋅+= 0=lim
→
Initial value:
F s( )
1
s
1
s 1+
−
1
s 1+( )
2
+=f t( ) u t( ) e
t−
− t e
t−
⋅+=(d)
Smith & Corripio, 3rd edition
Problem 2-4. Laplace transform of a pulse by real translation theorem
f t( ) H u t( )⋅ H u t T−( )⋅−=
F s( ) H
1
s
⋅ H e
sT−
⋅
1
s
⋅−= H
1 e
sT−
−
s
⋅= F s( )
H
s
1 e
sT−
−( )=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
0 2 4
0
2
fd t( )
t
0 2 4
0
2
f t( )
t
f t( ) e
t0
τ
e
t−
τ
⋅:=
fd t( ) u t t0−( ) e
t t0−( )−
τ
⋅:=
u t( ) 0 t 0<if
1 t 0≥if
:=τ 1:=t0 1:=Sketch the functions:
F s( )
τ e
t0− s⋅
⋅
τ s⋅ 1+
=
The result to part (b) agrees with the real translation theorem.
e
t0− s⋅ 1−
s
1
τ
+
⋅ e
s
1
τ
+





− λ⋅
⋅ ∞
0
⋅=
e
t0− s⋅
s
1
τ
+
=
τ e
t0− s⋅
⋅
τ s⋅ 1+
=
F s( )
t0−
∞
λu λ( )e
λ−
τ
e
s λ t0+( )−
⌠



⌡
d= e
t0− s⋅
0
∞
λe
s
1
τ
+





λ−
⌠



⌡
d⋅=
λ t t0−=Let
F s( )
0
∞
tu t t0−( )e
t t0−( )−
τ
e
st−
⌠



⌡
d=f t( ) u t t0−( )e
t t0−( )−
τ
=
(b) Function is delayed and zero from t = 0 to t = t0:
F s( )
τ e
t0
τ
⋅
τ s⋅ 1+
=F s( ) e
t0
τ 1
s
1
τ
+
=
τ e
t0
τ
⋅
τ s⋅ 1+
=f t( ) e
t0
τ
e
t−
τ
=
(from Table 2-1.1)
(a) Function is non-zero for all values of t > 0:
f t( ) e
t t0−( )−
τ
=
Problem 2-5. Delayed versus non-delayed function
Y t( ) 2.5− e
t−
2.5u t( )+= (Table 2-1.1)
(b)
9
d
2
y t( )⋅
dt
2
⋅ 18
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Initial steady state: 4 y 0( )⋅ 8 x 0( ) 4−=
Subtract:
9
d
2
Y t( )⋅
dt
2
⋅ 18
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )=
Y t( ) y t( ) y 0( )−= Y 0( ) 0=
X t( ) x t( ) x 0( )−=
Laplace transform:
9s
2
Y s( ) 18s Y s( )⋅+ 4 Y s( )+ 8 X s( )= 8
1
s
⋅=
Solve for Y(s): Y s( )
8
9s
2
18s+ 4+
1
s
=
r1
18− 18
2
4 9⋅ 4⋅−+
2 9⋅
:= r1 0.255−=
r2
18− 18
2
4 9⋅ 4⋅−−
2 9⋅
:= r2 1.745−=
Expand in partial fractions:
Y s( )
8
9 s 0.255+( ) s 1.745+( )s
=
A1
s 0.255+
A2
s 1.745+
+
A3
s
+=
A1
0.255−s
8
9 s 1.745+( )s
8
9 0.255− 1.745+( )⋅ 0.255−( )⋅
= 2.342−=lim
→
=
Smith & Corripio, 3rd edition
Problem 2-6. Solution of differential equations by Laplace transforms
Input function: X t( ) u t( )= X s( )
1
s
= (Table 2-1.1)
(a)
d y t( )⋅
dt
2 y t( )+ 5 x t( ) 3+=
Initial steady state: 2 y 0( ) 5 x 0( )= 3=
Subtract:
d Y t( )⋅
dt
2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )−= X t( ) x t( ) x 0( )−=
Laplace transform: sY s( ) Y 0( )− 2 Y s( )+ 5 X s( )= 5
1
s
⋅= Y 0( ) y 0( ) y 0( )−= 0=
Solve for Y(s):
Y s( )
5
s 2+
1
s
=
A1
s 2+
A2
s
+=
Partial fractions:
A1
2−s
5
s
2.5−=lim
→
= A2
0s
5
s 2+
2.5=lim
→
=
Y s( )
5−
s 1+
5
s
+= Invert:
Y 0( ) 0=9
d
2
Y t( )⋅
dt
2
⋅ 12
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )=
Subtract initial steady state:
9
d
2
y t( )⋅
dt
2
⋅ 12
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=(d)
Y t( ) 1− 1.134i+( )e
0.5− 0.441i+( )t
1− 1.134i−( )e
0.5− 0.441i−( )t
+ 2 u t( )+=
Invert using
Table 2-1.1:
Y s( )
1− 1.134i+
s 0.5+ 0.441i−
1− 1.134i−
s 0.5+ 0.441i+
+
2
s
+=
A3
0s
8
9s
2
9s+ 4+
2=lim
→
=A2 1− 1.134i−=
8
9 2 0.441i⋅( ) 0.5− 0.441i+( )
1− 1.134i+=A1
0.5− 0.441i+s
8
9 s 0.5+ 0.441i+( ) s
lim
→
=
A1
s 0.5+ 0.441i−
A2
s 0.5+ 0.441i+
+
A3
s
+=
Y s( )
8
9 s 0.5+ 0.441i−( ) s 0.5+ 0.441+( )s
=Solve for Y(s), expand:
A2
1.745−s
8
9 s 0.255+( )s
8
9 1.745− 0.255+( ) 1.745−( )
= 0.342=lim
→
=
A3
0s
8
9 s 0.255+( ) s 1.745+( )
8
9 0.255( ) 1.745( )
= 2.0=lim
→
=
Y s( )
2.342−
s 0.255+
0.342
s 1.745+
+
2
s
+=
Invert with Table 2-1.1:
Y t( ) 2.342− e
0.255− t
0.342e
1.745− t
+ 2 u t( )+=
(c) 9
d
2
y t( )⋅
dt
2
⋅ 9
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state:
9
d
2
Y t( )⋅
dt
2
⋅ 9
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=
Laplace transform:
9s
2
9s+ 4+( )Y s( ) 8 X s( )= 8
1
s
⋅=
r1
9− 9
2
4 9⋅ 4⋅−+
2 9⋅
:= r2
9− 9
2
4 9⋅ 4⋅−−
2 9⋅
:= r1 0.5− 0.441i+=
Find roots:
r2 0.5− 0.441i−=
A2 0.027 0.022i−=
3
2 2 2.598i⋅( ) 1− 2.598i+( ) 1.5− 2.598i+( )
0.027 0.022i+=
A1
1.5− 2.598i+s
3
2 s 1.5+ 2.598i+( ) s 0.5+( )s
0.027 0.022i+=lim
→
=
A1
s 1.5+ 2.598i−
A2
s 1.5+ 2.598i+
+
A3
s 0.5+
+
A4
s
+=
Y s( )
3
2 s 1.5+ 2.598i−( ) s 1.5+ 2.598i+( ) s 0.5+( )s
=Solve for Y(s) and expand:
polyroots
9
21
7
2



















1.5− 2.598i−
1.5− 2.598i+
0.5−






=
Find roots:
2s
3
7s
2
+ 21s+ 9+( )Y s( ) 3 X s( )= 3
1
s
⋅=Laplace transform:
Y 0( ) 0=
2
d
3
Y t( )⋅
dt
3
⋅ 7
d
2
Y t( )⋅
dt
2
⋅+ 21
d Y t( )⋅
dt
⋅+ 9 Y t( )+ 3 X t( )=Subtract initial steady state:
2
d
3
y t( )⋅
dt
3
⋅ 7
d
2
y t( )⋅
dt
2
⋅+ 21
d y t( )⋅
dt
⋅+ 9 y t( )+ 3 x t( )=(e)
Y t( )
4−
3
t 2−




e
0.667− t
2 u t( )+=Invert using Table 2-1.1:
A3
0s
8
9 s 0.667+( )
2
2=lim
→
=
A2
0.667−s
d
ds
8
9s




 0.667−s
8−
9s
2
2−=lim
→
=lim
→
=A1
0.667−s
8
9s
4−
3
=lim
→
=
Y s( )
8
9 s 0.667+( )
2
s
=
A1
s 0.667+( )
2
A2
s 0.667+
+
A3
s
+=Solve for Y(s) and expand:
r2 0.667−=
r1 0.667−=r2
12− 12
2
4 9⋅ 4⋅−−
2 9⋅
:=r1
12− 12
2
4 9⋅ 4⋅−+
2 9⋅
:=
Find roots:
9s
2
12s+ 4+( )Y s( ) 8 X s( )= 8
1
s
⋅=Laplace transform:
A3
0.5−s
3
2 s 1.5+ 2.598i−( ) s 1.5+ 2.598i+( )s
0.387−=lim
→
=
3
2 1 2.598i−( ) 1 2.598i+( ) 0.5−( )
0.387−= A4
0s
3
2s
3
7s
2
+ 21s+ 9+
1
3
=lim
→
=
Y s( )
0.027 0.022i+
s 1.5+ 2.598i−
0.027 0.022i−
s 1.5+ 2.598i+
+
0.387−
s 0.5+
+
1
3
1
s
+=
Invert using Table 2-1.1:
Y t( ) 0.027 0.022i+( )e
1.5− 2.598i+( )t
0.027 0.022i−( )e
1.5− 2.598i−( )t
+ 0.387e
0.5− t
−
1
3
u t( )+=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Y t( ) u t 1−( )
8−
3
t 1−( )⋅ 8−





e
0.667− t 1−( )⋅
⋅ 8 e
0.333− t 1−( )⋅
⋅+





⋅=
Apply the real translation theorem in reverse to this solution:
Y s( )
8−
3
1
s 0.667+( )
2
8
s 0.667+
−
8
s 0.333+
+





e
s−
=
The partial fraction expansion of the undelayed signal is the same:
(Real translation
theorem)
X s( )
e
s−
s
1
3
+
=X t( ) u t 1−( ) e
t 1−( )−
3
=(b) Forcing function:
Y t( )
8−
3
t 8−




e
0.667− t
8e
0.333− t
+=Invert using Table 2-1.1:
Y s( )
8−
3
1
s 0.667+( )
2
8−
s 0.667+
+
8
s 0.333+
+=
A2
0.667−s
d
ds
8
9 s 0.333+( )





 0.667−s
8−
9 s 0.333+( )
2
8−=lim
→
=lim
→
=
A3
0.333−s
8
9 s 0.667+( )
2
8=lim
→
=A1
0.667−s
8
9 s 0.333+( )
8−
3
=lim
→
=
8
9 s 0.667+( )
2
s 0.333+( )
=
A1
s 0.667+( )
2
A2
s 0.667+
+
A3
s 0.333+
+=
Y s( )
8
9s
2
12s+ 4+( ) s
1
3
+




=
X s( )
1
s
1
3
+
=From Table 2-1.1:X t( ) e
t−
3
=(a) Forcing function:
Y 0( ) 0=9
d
2
Y t( )⋅
dt
2
⋅ 12
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )=
Problem 2-7. Solve Problem 2-6(d) with different forcing functions
Smith & Corripio, 3rd edition
(Final value theorem)
(b)
9
d
2
y t( )⋅
dt
2
⋅ 18
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state: 9
d
2
Y t( )⋅
dt
2
⋅ 18
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=
Laplace transform and solve for Y(s): Y s( )
8
9s
2
18s+ 4+
X s( )=
Find roots: r1
18− 18
2
4 9⋅ 4⋅−+
2 9⋅ min
:= r2
18− 18
2
4 9⋅ 4⋅−−
2 9⋅ min
:= r1 0.255− min
1−
=
r2 1.745− min
1−
=
Invert using Table 2-1.1: Y t( ) A1 e
0.255− t
⋅ A2 e
1.745− t
⋅+=
+ terms of X(s)
The response is stable and monotonic. The domnant root is: r1 0.255− min
1−
=
Time for the response to decay to 0.67% of its initial value:
5−
r1
19.6 min=
Final steady-state value for unit step input:
0s
s
8
9s
2
18s+ 4+
⋅
1
s
lim
→
2→
(Final value theorem)
Smith & Corripio, 3rd edition
Problem 2-8. Response characteristics of the equations of Problem 2-6
(a)
d y t( )⋅
dt
2 y t( )+ 5 x t( ) 3+=
Initial steady state: 2 y 0( ) 5 x 0( ) 3+=
Subtract:
d Y t( )⋅
dt
2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )−= X t( ) x t( ) x 0( )−=
Laplace transform: s Y s( )⋅ 2 Y s( )+ 5 X s( )= Y 0( ) y 0( ) y 0( )−= 0=
Solve for Y(s): Y s( )
5
s 2+
X s( )=
A1
s 2+
= + terms of X(s)
Invert using Table 2-1.1: Y t( ) A1 e
2− t
⋅= + terms of X(t)
The response is stable and monotonic.The dominant and only root is r 2− min
1−
:=
Time for response to decay to within 0.67% of its initial value:
5−
r
2.5min=
Final steady-state value for unit step input:
0s
s
5
s 2+
⋅
1
s
lim
→
5
2
→ 2.5=
Time for oscillations to die:
5−
0.5− min
1−
10 min=
Final steady state value for a unit step imput:
0s
s
8
9s
2
9s+ 4+
⋅
1
s
lim
→
2→
(Final value theorem)
(d) 9
d
2
y t( )⋅
dt
2
⋅ 12
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state:
9
d
2
Y t( )⋅
dt
2
⋅ 12
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )=
Y 0( ) 0=
Laplace transform and solve for Y(s): Y s( )
8
9s
2
12s+ 4+
X s( )=
Find roots: r1
12− 12
2
4 9⋅ 4⋅−+
2 9⋅ min
:= r2
12− 12
2
4 9⋅ 4⋅−−
2 9⋅ min
:= r1 0.667− min
1−
=
r2 0.667− min
1−
=
Invert using Table 2-1.1: Y t( ) A1 t⋅ A2+( )e
0.667− t
= + terms of X(t)
(c) 9
d
2
y t( )⋅
dt
2
⋅ 9
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state: 9
d
2
Y t( )⋅
dt
2
⋅ 9
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=
Laplace transform and solve for Y(s): Y s( )
8
9s
2
9s+ 4+
X s( )=
Find the roots: r1
9− 9
2
4 9⋅ 4⋅−+
2 9⋅ min
:= r2
9− 9
2
4 9⋅ 4⋅−−
2 9⋅ min
:= r1 0.5− 0.441i+ min
1−
=
r2 0.5− 0.441i− min
1−
=
Invert using Table 2-3.1: Y t( ) D e
0.5− t
⋅ sin 0.441t θ+( )= + terms of X(t)
The response is stable and oscillatory. The dominant roots are r1 and r2.
Period of the oscillations: T
2π
0.441min
1−
:= T 14.25 min=
Decay ratio: e
0.5− min
1−
T
0.00081=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
(Final value theorem)
0s
s
3
2s
3
7s
2
+ 21s+ 9+
⋅
1
s
lim
→
1
3
→Final steady state value for a unit step input:
5−
r
2
10 min=Time for response to die out:e
1.5− min
1−
T
0.027=
Decay ratio:
T 2.42 min=T
2π
2.598min
1−
:=The period of the oscillations is:
r
2
0.5− min
1−
=The response is stable and oscillatory. The dominant root is
r
1.5− 2.598i−
1.5− 2.598i+
0.5−






min
1−
=r polyroots
9
21
7
2



















min
1−
:=
Find roots:
Y s( )
3
2s
3
7s
2
+ 21s+ 9+
X s( )=Laplace transform and solve for Y(s):
2
d
3
Y t( )⋅
dt
3
⋅ 7
d
2
Y t( )⋅
dt
2
⋅+ 21
d Y t( )⋅
dt
⋅+ 9 Y t( )+ 3 X t( )=Subtract initial steady state:
2
d
3
y t( )⋅
dt
3
⋅ 7
d
2
y t( )⋅
dt
2
⋅+ 21
d y t( )⋅
dt
⋅+ 9 y t( )+ 3 x t( )=(e)
(Final value theorem)
0s
s
8
9s
2
12s+ 4+
⋅
1
s
lim
→
2→Final steady state value for a unit step input:
5−
r1
7.5min=Time required for the response to decay within 0.67% of its initial value:
r1 0.667− min
1−
=The response is stable and monotonic. The dominant root is
Value of k: k
M− g⋅
y0
:= k 1.816
N
m
=
Laplace transform:
M s
2
⋅ Y s( ) k Y s( )⋅+ F s( )=
Solve for Y(s): Y s( )
1
M s
2
⋅ k+
F s( )=
A1
s i
k
M
⋅−
A2
s i
k
M
⋅+
+=
+ terms of F(s)
θ 0:=
D 1:=
Invert using Table 2-3.1: Y t( ) D sin
k
M
t s⋅ θ+





⋅:= + terms of f(t)
The mobile will oscillate forever with a period of T 2π
M
k
⋅:= T 1.043 s=
Smith & Corripio, 3rd edition
Problem 2-9. Second-Order Response: Bird Mobile
-Mg
f(t)
y(t)
-ky(t)
y = 0
Problem data: M 50gm:= y0 27− cm:=
Solution:
Force balance:
M
d v t( )⋅
dt
⋅ M− g⋅ k y t( )⋅− f t( )+=
Velocity:
d y t( )⋅
dt
v t( )=
Initial steady state: 0 M− g⋅ k y0⋅−=
Subtract and substitute:
M
d
2
Y t( )⋅
dt
2
⋅ k− Y t( )⋅ f t( )+=
Y 0( ) 0=
0 2 4
1
0
1
Y t( )
t
To more accurately reflect the motion of the bird mobile, we must add the resistance of the air. If we
assume it to be a force proportional to the velocity:
M
d
2
Y t( )⋅
dt
2
⋅ k− Y t( )⋅ b
d Y t( )⋅
dt
⋅− f t( )+=
With this added term the roots will have a negative real part, causing the oscillations to decay, as
they do in practice:
Y s( )
1
M s
2
⋅ b s⋅+ k+
F s( )= r1
b− b
2
4M k⋅−+
2M
=
b−
2M
i
k
M
b
2
4M
2
−⋅+=
Invert:
b
2
4M k⋅<
Y t( ) D e
b−
2M
t⋅
⋅ sin
k
M
b
2
4M
2
− t θ+






= + terms of f(t)
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
H 1:=T 1:=τ 1:=KH 1:=Invert using Table 2-1.1, and the real translation theorem:
Y s( ) K H
1
s
1
s
1
τ
+
−





⋅ 1 e
sT−
−( )=
A2
0s
K H⋅
τ s⋅ 1+
K H⋅=lim
→
=A1
1−
τ
s
K H⋅
τ s⋅
K− H⋅=lim
→
=
Y s( )
K
τ s⋅ 1+
H⋅
1 e
sT−
−
s
⋅=
A1
s
1
τ
+
A2
s
+






1 e
sT−
−( )=Substitute:
X s( ) H
1 e
sT−
−
s
⋅=
From Example 2-1.1b:
(b) Pulse of Fig. 2-1.1b
0 2 4
0
0.5
1
Y t( )
t
Y t( )
K
τ
e
t−
τ
:=
Invert using Table 2-1.1:
Y s( )
K
τ s⋅ 1+
=
X s( ) 1=From Table 2-1.1:X t( ) δ t( )=(a) Unit impulse:
Y s( )
K
τ s⋅ 1+
X s( )=Laplace transform and solve for Y(s):
Y 0( ) 0=τ
d Y t( )⋅
dt
⋅ Y t( )+ K X t( )⋅=
Problem 2-10. Responses of general first-order differential equation
Smith & Corripio, 3rd edition
Y t( ) KH u t( ) e
t−
τ
− u t T−( ) 1 e
t T−( )−
τ
−





⋅−





⋅:=
X t( ) H u t( ) u t T−( )−( )⋅:=
0 2 4
0
0.5
1
Y t( )
X t( )
t
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
The tank is an integrating process because its ouput, the level, is the time integral of its input, the
inlet flow.
0 5 10
0
5
10
h t( )
t
f(t)
h(t)
A 1:=
h t( )
1
A
t:=Invert using Table 2-1.1:H s( )
1
A
1
s
2
=Substitute:
(Table 2-1.1)F s( )
1
s
=f t( ) u t( )=Response to a unit step in flow:
H s( )
F s( )
1
A s⋅
=Transfer function of the tank:
H s( )
1
A s⋅
F s( )=Laplace transform and solve for H(s):
h 0( ) 0=A
d h t( )⋅
dt
⋅ f t( )=
Problem 2-11. Response of an integrating process
Smith & Corripio, 3rd edition
r2 1.745− min
1−
=
τe2
1−
r2
:=
τe2 0.573 min=
5 τe1⋅ 19.64 min=
Time for response to decay within 0.67% of its initial value:
(b) 9
d
2
y t( )⋅
dt
2
⋅ 9
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state
and divide by the Y(t) coefficient:
9
4
d
2
Y t( )⋅
dt
2
⋅
9
4
d Y t( )⋅
dt
⋅+ Y t( )+ 2 X t( )= Y 0( ) 0=
Compare coefficients to standard form: τ
9
4
min:= τ 1.5min= ζ
9min
4 2⋅ τ⋅
:= ζ 0.75=
K 2:=
Underdamped.
Find roots: r1
9− 9
2
4 9⋅ 4⋅−+
2 9⋅ min
:= r1 0.5− 0.441i+ min
1−
=
Frequency of oscillations: ω 0.441
rad
min
:= Period of oscillations: T
2π
ω
:= T 14.25 min=
Smith & Corripio, 3rd edition
Problem 2-12. Second-order differeential equations of Problem 2-6.
Standard form of the second-order equation: τ
2 d
2
Y t( )⋅
dt
2
⋅ 2 ζ⋅ τ⋅
d Y t( )⋅
dt
⋅+ Y t( )+ K X t( )⋅=
(b) 9
d
2
y t( )⋅
dt
2
⋅ 18
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract the initial steady state:
9
d
2
Y t( )⋅
dt
2
⋅ 18
d Y t( )⋅
dt
⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=
Divide by Y(t) coefficient:
9
4
d
2
Y t( )⋅
dt
2
⋅
18
4
d Y t( )⋅
dt
⋅+ Y t( )+ 2 X t( )=
Match coeffients to standard form:
τ
9
4
min:= τ 1.5min= ζ
18min
4 2⋅ τ⋅
:= ζ 1.5=
Equivalent time constants:
K 2:= Overdamped.
Find roots: r1
18− 18
2
4 9⋅ 4⋅−+
2 9⋅ min
:=
r1 0.255− min
1−
= τe1
1−
r1
:= τe1 3.927 min=
r2
18− 18
2
4 9⋅ 4⋅−−
2 9⋅ min
:=
ζ 1=
K 2:= Critically damped.
Equivalent time constants:
Find roots: r1
12− 12
2
4 9⋅ 4⋅−+
2 9⋅ min
:= r1 0.667− min
1−
= τe1
1−
r1
:= τe1 1.5min=
r2
12− 12
2
4 9⋅ 4⋅−−
2 9⋅ min
:=
r2 0.667− min
1−
= τe2
1−
r2
:= τe2 1.5min=
Time for response to decay to within 0.67% of its initial value: 5 τe1⋅ 7.5min=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Decay ratio: e
0.5− min
1−
T
0.00081= Percent overshoot:
e
0.5− min
1− T
2
2.8%=
Rise time:
T
4
3.56 min= Settling time:
5−
0.5− min
1−
10 min=
(c) 9
d
2
y t( )⋅
dt
2
⋅ 12
d y t( )⋅
dt
⋅+ 4 y t( )+ 8 x t( ) 4−=
Subtract initial steady state and
divide by the coefficient of Y(t):
9
4
d
2
Y t( )⋅
dt
2
⋅ 3
d Y t( )⋅
dt
⋅+ Y t( )+ 2 X t( )=
Y 0( ) 0=
Compare coefficients to standard form:
τ
9
4
min:= τ 1.5min= ζ
3min
2 τ⋅
:=
Y s( ) K ∆x
1−
τ
1
s
1
τ
+




2
1
s
1
τ
+






−
1
s
+







⋅=
A2
1−
τ
s
d
ds
K ∆x⋅
τ
2
s




 1−
τ
s
K− ∆x⋅
τ
2
s
2
K− ∆x⋅=lim
→
=lim
→
=
A3
0s
K ∆x⋅
τ s⋅ 1+( )2
K ∆x⋅=lim
→
=A1
1−
τ
s
K ∆x⋅
τ
2
s
K− ∆x⋅
τ
=lim
→
=
Y s( )
K
τ s⋅ 1+( )2
∆x
s
=
A1
s
1
τ
+




2
A2
s
1
τ
+
+
A3
s
+=
Step response for the critically damped case:
Y t( ) K ∆x u t( )
τe1
τe1 τe2−
e
t−
τe1
−
τe2
τe2 τe1−
e
t−
τe2
−








⋅=
(2-5.10)Invert using Table 2-1.1:
Y s( ) K ∆x
τe1−
τe1 τe2−
1
s
1
τe1
+
τe2
τe2 τe1−
1
s
1
τe2
+
−
1
s
+








⋅=
A3
0s
K ∆x⋅
τe1 s⋅ 1+( ) τe2 s⋅ 1+( )
K ∆x⋅=lim
→
=
A2
K− ∆x⋅ τe2⋅
τe2 τe1−
=A1
1−
τe1
s
K ∆x⋅
τe1 τe2⋅ s
1
τe2
+




⋅ s
K− ∆x⋅ τe1⋅
τe1 τe2−
=lim
→
=
Y s( )
K
τe1 s⋅ 1+( ) τe2 s⋅ 1+( )
∆x
s
=
A1
s
1
τe1
+
A2
s
1
τe2
+
+
A3
s
+=
X s( )
∆x
s
=Step response, over-damped second-order differential equation:
Problem 2-13. Partial fraction expansion coefficients for Eqs. 2-5.10 to 2-5.13
Smith & Corripio, 3rd edition
Y s( )
K
τ s⋅ 1+( )2
r
s
2
=
A1
s
1
τ
+




2
A2
s
1
τ
+
+
A3
s
2
+
A4
s
+=
Ramp response for critically damped case:
Y t( ) K r
τe1
2
τe1 τe2−
e
t−
τe1
τe2
2
τe2 τe1−
e
t−
τe2
+ t+ τe1 τe2+( )−










⋅=
(2-5.12)
Invert using Table 2-1.1:
Y s( ) K r
τe1
2
τe1 τe2−
1
s
1
τe1
+
τe2
2
τe2 τe1−
1
s
1
τe2
+
+
1
s
2
+
τe1 τe2+
s
−








⋅=
K r τe1− τe2−( )⋅=
A4
0s
d
ds
K r⋅
τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅






⋅
0s
K r⋅
τe1− τe2 s⋅ 1+( )⋅ τe2 τe1 s⋅ 1+( )⋅−
τe1 s⋅ 1+( )
2
τe2 s⋅ 1+( )
2
⋅lim
→
=lim
→
=
A3
0s
K r⋅
τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅
K r⋅=lim
→
=
A2
K r⋅ τe2
2
⋅
τe2 τe1−
=A1
1−
τe1
s
K r⋅
τe1 τe2⋅ s
1
τe2
+




⋅ s
2
⋅
K r⋅ τe1
2
⋅
τe1 τe2−
=lim
→
=
Y s( )
K
τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅
r
s
2
=
A1
s
1
τe1
+
A2
s
1
τe2
+
+
A3
s
2
+
A4
s
+=
X s( )
r
s
2
=Ramp response for the over-damped case:
Y t( ) K ∆x u t( )
t
τ
1+




e
t−
τ
−








⋅=
(2-5.11)
Invert using Table 2-1.1:
A1
1−
τ
s
K r⋅
τ
2
s
2
K r⋅=lim
→
= A3
0s
K r⋅
τ s⋅ 1+( )2
K r⋅=lim
→
=
A2
1−
τ
s
d
ds
K r⋅
τ
2
s
2




 1−
τ
s
2−
K r⋅
τ
2
s
3
⋅ 2 K⋅ r⋅ τ⋅=lim
→
=lim
→
=
A4
0s
d
ds
K r⋅
τ s⋅ 1+( )2





 0s
2−
K r⋅ τ⋅
τ s⋅ 1+( )3
⋅ 2− K⋅ r⋅ τ⋅=lim
→
=lim
→
=
Y s( ) K r
1
s
1
τ
+




2
2 τ⋅
s
1
τ
+
+
1
s
2
+
2 τ⋅
s
−










⋅=
Invert using Table 2-1.1:
Y t( ) K r⋅ t 2 τ⋅+( )e
t−
τ
t+ 2 τ⋅−





⋅= (2-5.13)
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Smith & Corripio, 3rd edition
X s( )
∆x
s
=
Problem 2-14. Derive step reponse of n lags in series
Y s( )
K
1
n
k
τk s⋅ 1+( )∏
=
∆x
s
=
A0
s
1
n
k
Ak
s
1
τk
+
∑
=
+=
A0
0s
K ∆x⋅
1
n
k
τk s⋅ 1+( )∏
=
K ∆x⋅=lim
→
=
Invert using Table 2-1.1:
Y t( ) K ∆x⋅ u t( )⋅
1
n
k
Ak e
t−
τk
⋅
∑
=
+=
Ak
1−
τk
s
K ∆x⋅
s
1 j k≠( )⋅
n
j
s
1
τj
+




∏
=
⋅
1
n
j
τj∏
=
⋅
K ∆x⋅
1−
τk 1 j k≠( )
n
j
1−
τk
1
τj
+



 1
n
j
τj∏
=
⋅
∏
=
⋅
=lim
→
=
K− ∆x⋅
1
τk
1
τk
n 1−
⋅ τk⋅
1 j k≠( )⋅
n
j
τk τj−( )∏
=
⋅
=
K− ∆x⋅ τk
n 1−
⋅
1 j k≠( )
n
j
τk τj−( )∏
=
=
Substitute:
Y t( ) K ∆x u t( )
1
n
k
τk
n 1−
1 j k≠( )
n
j
τk τj−( )∏
=
e
t−
τk
∑
=
−














⋅= (2-5.23)
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
r1
τ1 τ2+( )− τ1 τ2+( )
2
4τ1 τ2 1 k2−( )⋅−+
2 τ1⋅ τ2⋅
=
(b) The response is stable if both roots are negative if 0 < k2 < 1.
This term is positive as long as τ1, τ2, and k2 are positive, so the response is overdamped.
τ1 τ2−( )
2
4τ1 τ2⋅ k2⋅+=
τ1
2
2τ1 τ2⋅− τ2
2
+ 4τ1 τ2⋅ k2⋅+=
τ1 τ2+( )
2
4τ1 τ2⋅ 1 k2−( )⋅− τ1
2
2τ1 τ2⋅+ τ2
2
+ 4τ1 τ2⋅− 4τ1 τ2⋅ k2⋅+=
(a) The response is overdamped if the term in the radical is positive:
r1
τ1 τ2+( )− τ1 τ2+( )
2
4τ1 τ2 1 k2−( )⋅−+
2 τ1⋅ τ2⋅
=
τ1 τ2⋅ s
2
⋅ τ1 τ2+( )s+ 1+ k2− 0=
Find the roots of the denominator:
ζ
τ1 τ2+
2 τ⋅ 1 k2−( )⋅
=
τ1 τ2+
2 τ1 τ2⋅ 1 k2−( )⋅⋅
=Damping ratio:
τ
τ1 τ2⋅
1 k2−
=Time constant:K
k1
1 k2−
=Gain:Comparing coefficients:
Y s( )
k1
1 k2−
τ1 τ2⋅
1 k2−





s
2
τ1 τ2+
1 k2−
s+ 1+
X s( )=
Rerrange interacting equation:
Y s( )
K
τ
2
s
2
2ζ τ⋅ s⋅+ 1+
X s( )=
Standard form of the second-order differential equaton, Eq. 2-5.4:
Y s( )
k1
τ1 s⋅ 1+( ) τ2 s⋅ 1+( )⋅ k2−
X s( )=
k1
τ1 τ2⋅ s
2
⋅ τ1 τ2+( )s+ 1+ k2−
X s( )=
Problem 2-15. Transfer function of second-order interacting systems.
Smith & Corripio, 3rd edition
If τ1, τ2, and k2 are positive, and if k2 < 1, then the positive term in the numerator is always less in
magnitude than the negative term, and the root is negative. The other root has to be negative
because both terms in the numerator are negative. So, the response is stable.
(c) Effective time constants
As the response is overdamped, we can derive the formulas for the two effective time constants.
These are the negative reciprocals of the two real roots:
τe1
2 τ1⋅ τ2⋅
τ1 τ2+ τ1 τ2−( )
2
4τ1 τ2⋅ k2⋅+−
= τe1
2 τ1⋅ τ2⋅
τ1 τ2+ τ1 τ2−( )
2
4τ1 τ2⋅ k2⋅++
=
The first of these is the dominant time constant.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
The response canot be unstable for positive Kc. The time constant and damping ratio are always
real and positive for positive gain.
Cannot be undamped for finite Kc.
ζ 0=(iii) Undamped:
ζ cannot be negative for positive Kc
1
3
Kc< ∞<0 ζ< 1<(ii) Underdamped:
Kc
1
3
<
4
3
1 Kc+>
2
3 1 Kc+( )
1>ζ 1>(i) Overdamped:
Ranges of the controller gain for which the response is:
ζ
4
2 τ⋅ 1 Kc+( )⋅
=
2
3 1 Kc+( )⋅
=Damping ratio:
τ
3
1 Kc+
=Time constant:K
Kc
1 Kc+
=Gain:
C s( )
Kc
1 Kc+
3
1 Kc+
s
2 4
1 Kc+
s+ 1+
R s( )=
Rearrange feedback loop transfer function and compare coefficients:
C s( )
K
τ
2
2ζ τ⋅ s⋅+ 1+
R s( )=Standard second-order transfer function, Eq. 2-5.4:
This is a second-order process with a proportional controller.
C s( )
Kc
3s 1+( ) s 1+( )⋅ Kc+
R s( )=
Kc
3s
2
4s+ 1+ Kc+
=
Problem 2-16. Transfer function of a second-order feedback control loop
Smith & Corripio, 3rd edition
Y X t( )( )
α
1 α 1−( )xb+ 
2
X t( )=
Y X t( )( ) y x t( )( ) y xb( )−=X t( ) x t( ) xb−=Let
y x t( ) y xb( )
1 α 1−( ) xb⋅+  α⋅ α xb⋅ α 1−( )⋅−
1 α 1−( )xb+ 
2
x t( ) xb−( )+=
y x t( )( )
α x t( )⋅
1 α 1−( )x t( )+
=
(c) Eqilibrium mole fraction by relative volatility, Eq. 2-6.3:
P
o
Γ t( )( )
B p
o
⋅ Tb( )
Tb C+( )2
Γ t( )=
P
o
Γ t( )( ) p
o
T t( )( ) p
o
Tb( )−=Γ t( ) T t( ) Tb−=Let
p
o
T t( )( ) p
o
Tb( )
B
Tb C+( )2
e
A
B
Tb C+
−
T t( ) Tb−( )+=
p
o
T t( )( ) e
A
B
T t( ) C+
−
=
(b) Antoine equation for vapor pressure, Eq. 2-6.2:
Hd Γ t( )( ) a1 2a2 Tb⋅+ 3a3 Tb
2
⋅+ 4a4 Tb
3
⋅+


Γ t( )=
Hd Γ t( )( ) H T t( )( ) H Tb( )−=Γ t( ) T t( ) Tb−=Let
H T t( )( ) H Tb( ) a1 2a2 Tb⋅+ 3a3 Tb
2
⋅+ 4a4 Tb
3
⋅+


 T t( ) Tb−( )+=
H T t( )( ) H0 a1 T t( )⋅+ a2 T
2
⋅ t( )⋅+ a3 T
3
⋅ t( )+ a4 T
4
⋅ t( )+=
(use subscript b for base value)(a) Enthalpy as a function of temperature, Eq. 2-6.1:
Problem 2-17. Linearization of common process model functions.
Smith & Corripio, 3rd edition
(d) Flow as a function of pressure drop, Eq. 2-6.4:
f ∆p t( )( ) k ∆p t( )⋅=
f ∆p t( )( ) f ∆pb( )
k
2 ∆pb⋅
∆p t( ) ∆pb−( )+=
Let ∆P t( ) ∆p t( ) ∆pb−= F ∆P t( )( ) f ∆p t( )( ) f ∆pb( )−=
F ∆P t( )( ) k
2 ∆pb⋅
∆P t( )=
(e) Radiation heat transfer rate as a function of temperature, Eq. 2-6.5:
q T t( )( ) ε σ⋅ A⋅ T
4
⋅ t( )=
q T t( )( ) q Tb( ) 4 ε⋅ σ⋅ A⋅ Tb
3
⋅ T t( ) Tb−( )+=
Let Γ t( ) T t( ) Tb−= Q Γ t( )( ) q T t( )( ) q Tb( )−=
Q Γ t( )( ) 4 ε⋅ σ⋅ A⋅ Tb
3
⋅ Γ t( )⋅=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Tmax 610 K= Tmin 590 K=
Temperature range for which the heat transfer rate is within 5% of the linear
approximation:
error ε σ⋅ A⋅ T
4
⋅ ε σ⋅ A⋅ Tb
4
⋅ 4ε σ⋅ A⋅ Tb
3
⋅ T Tb−( )+


−= 0.05 ε σ⋅ A T
4
⋅⋅( )=
Simplify and rearrange: T
4
4 Tb
3
⋅ T⋅− 3Tb
4
+ 0.05T
4
=
As the error is always positive, the absolute value brackets can be dropped. Rearrange into a
polynomial and find its roots:
0.95
T
Tb





4
4
T
Tb
− 3+ 0=
polyroots
3
4−
0
0
0.95
























1.014− 1.438i−
1.014− 1.438i+
0.921
1.108










=
Ignore the complex roots. The other two roots are the lower and upper limits of the range:
0.921
T
Tb
≤ 1.108≤
For Tb 400K:= Tmin 0.921 Tb⋅:= Tmax 1.108Tb:= Tmin 368 K= Tmax 443 K=
Smith & Corripio, 3rd edition
Problem 2-18. Linearization of radiation heat transfer--range of accuracy.
q T( ) 4ε σ⋅ A⋅ T
4
⋅= Use subscript "b" for base value for linearization.
From the solution to Problem 2-17(e), the slope is:
d q T( )⋅
dT
4 ε⋅ σ⋅ A⋅ T
3
⋅=
Temperature range for which the slope is within 5% of the slope at the base value
K 1.8R:=
error 4 ε⋅ σ⋅ A⋅ T
3
⋅ 4 ε⋅ σ⋅ A⋅ Tb
3
⋅−= 0.05 4 ε⋅ σ⋅ A⋅ Tb
3
⋅


⋅=
Tmax
3
1.05 Tb= 1.0164Tb=T
Tb





3
1− 0.05=
Simplify and rearrange:
Tmin
3
0.95 Tb= 0.983Tb=
For Tb 400K:= Tmax
3
1.05 Tb:= Tmin
3
0.95 Tb:= Tmax 407 K= Tmin 393 K=
Tb 600K:= Tmax
3
1.05 Tb:= Tmin
3
0.95 Tb:=
Tb 600K:= Tmin 0.921 Tb⋅:= Tmax 1.108Tb:= Tmin 553 K= Tmax 665 K=
So the range for which the linear approximation is within 5% of the heat rate is much wider than the
range for which the value of the slope is within 5% of the actual slope. We must keep in mind that
the parameters of the dynamic model are a function of the slope, not the heat rate.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
0 x≤ 0.362≤
(b) xmin 1.1 0.9,( ) 0.637= xmax 1.1 0.9,( ) 1.183= (one) 0.637 x≤ 1≤
(c) xmin 5 0.1,( ) 0.092= xmax 5 0.1,( ) 0.109= 0.092 x≤ 0.109≤
(d) xmin 5 0.9,( ) 0.872= xmax 5 0.9,( ) 0.93= 0.872 x≤ 0.93≤
The range of accuracy is narrower the higher α and the higher xb.
For the vapor composition: y x( )
α x⋅
1 α 1−( )x+
=
error
α x⋅
1 α 1−( )x+
α xb⋅
1 α 1−( )xb+
α
1 α 1−( )xb+ 
2
x xb−( )+
1−= 0.05=
α x⋅
1 α 1−( )x+
1 α 1−( )xb+ 
2
α xb 1 α 1−( )xb+ ⋅ α x⋅+ α xb⋅−
1− 0.05=
The error is always negative, so we can change signs and drop the absolute value bars:
Smith & Corripio, 3rd edition
Problem 2-19. Equilibrium vapor composition--range of accuracy
y x( )
α x⋅
1 α 1−( )x+
= Use subscript "b" for base value for linearization.
From the solution to Problem 2-17(c):
d y x( )⋅
dx
α
1 α 1−( )x+ 
2
=
For the slope:
error
α
1 α 1−( )x+ 
2
α
1 α 1−( )xb+ 
2
−= 0.05
α
1 α 1−( )xb+ 
2
=
Simplify and rearrange: 1 α 1−( )xb+
1 α 1−( )x+






2
1− 0.05=
Lower limit:
1 α 1−( )xb+
1 α 1−( )xmin+
1.05= xmin α xb,( )
1 α 1−( )xb+ 1.05−
1.05 α 1−( )
:=
Upper limit: 1 α 1−( )xb+
1 α 1−( )xmax+
0.95=
xmax α xb,( )
1 α 1−( )xb+ 0.95−
0.95 α 1−( )
:=
(a) xmin 1.1 0.1,( ) 0.143−= (zero) xmax 1.1 0.1,( ) 0.362=
0.40 x≤ 1≤
(c) α 5:= xb 0.1:=
polyroots
0.95 α 1−( )⋅
0.05− α 1−( )2
xb
0.05
xb
− 2 α 1−( )−
0.95 α 1−( )
























0.605
1.653





=
xmin 0.605xb:= xmax 1.653xb:= xmin 0.061= xmax 0.165= 0.061 x≤ 0.165≤
(d) α 5:= xb 0.9:=
polyroots
0.95 α 1−( )⋅
0.05− α 1−( )2
xb
0.05
xb
− 2 α 1−( )−
0.95 α 1−( )
























0.577
1.732





=
xmin 0.577xb:= xmax 1.732xb:= xmin 0.519= xmax 1.559= 0.519 x≤ 1≤
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
1 α 1−( )xb+ 
2
α x⋅ 0.95 1 α 1−( )x+  α α 1−( )xb
2
α x⋅+


=
0.95 α 1−( )⋅ x
2
⋅ 0.95 α 1−( )2
⋅ xb
2
⋅ 0.95+ 1− 2 α 1−( )⋅ xb⋅− α 1−( )2
xb
2
⋅−


 x⋅+ 0.95 α 1−( )⋅ xb⋅+
0.95 α 1−( ) x
xb





2
0.05− α 1−( )2
⋅ xb
0.05
xb
− 2 α 1−( )−





x
xb
⋅+ 0.95 α 1−( )+ 0=
Find the roots, one is the lower limit and the other one the upper limit:
(a) α 1.1:= xb 0.1:=
polyroots
0.95 α 1−( )⋅
0.05− α 1−( )2
xb
0.05
xb
− 2 α 1−( )−
0.95 α 1−( )
























0.138
7.231





=
xmin 0.138xb:= xmax 7.231xb:= xmin 0.014= xmax 0.723= 0.014 x≤ 0.723≤
(b) α 1.1:= xb 0.9:=
polyroots
0.95 α 1−( )⋅
0.05− α 1−( )2
xb
0.05
xb
− 2 α 1−( )−
0.95 α 1−( )
























0.444
2.25





=
xmin 0.444xb:= xmax 2.25xb:= xmin 0.4= xmax 2.025=
2 k⋅ cAb⋅ cBb⋅ 2 hr
1−
= k cAb
2
⋅ 2 hr
1−
=
R CA t( ) CB t( ),( ) 2hr
1−
CA t( ) 2hr
1−
CB t( )+=
For cA 3
kmole
m
3
:= 2 k⋅ cA⋅ cBb⋅ 2 k⋅ cAb⋅ cBb⋅− 1 hr
1−
=
(off by 50%)
k cA
2
⋅ k cAb
2
⋅− 2.5hr
1−
= (off by 125%)
For cB 2
kmole
m
3
:= 2 k⋅ cAb⋅ cB⋅ 2 k⋅ cAb⋅ cBb⋅− 2 hr
1−
=
(off by 100%)
k cAb
2
⋅ k cAb
2
⋅− 0 hr
1−
= (same as the base value)
These errors on the parameters of the linear approximation are significant, meaning that it is only
valid for very small deviations of the reactant concentrations from their base values.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Smith & Corripio, 3rd edition
Problem 2-20. Linearization of chemical reaction rate. kmole 1000mole:=
r cA t( ) cB t( ),( ) k cA t( )
2
⋅ cB t( )=
Use subscript "b" for base value for linearization.
Problem parameters: k 0.5
m
6
kmole
2
hr
:= cAb 2
kmole
m
3
:= cBb 1
kmole
m
3
:=
Linearize: r cA t( ) cB t( ),( ) r cAb cBb,( ) 2k cAb⋅ cBb cA t( ) cAb−( )⋅+ k cAb
2
⋅ cB t( ) cBb−( )+=
Let R CA t( ) CB t( ),( ) r cA t( ) cB t( ),( ) r cAb cBb,( )−= CAb t( ) cA t( ) cAb−=
CB t( ) cB t( ) cBb−=
R CA t( ) CB t( ),( ) 2k cAb⋅ cBb⋅ CA t( )⋅ k cAb
2
⋅ CB t( )⋅+=
At the given base conditions:
degC K:= mmHg
atm
760
:= mole% %:=
Numerical values for benzene at: pb 760mmHg:= Tb 95degC:= xb 50mole%:=
A 15.9008:= B 2788.51degC:= C 220.80degC:=
Let pob p
o
Tb( )=
pob e
A
B
Tb C+
−
mmHg:= pob 1177 mmHg=
xb B⋅ pob⋅
pb Tb C+( )2
⋅
0.022
1
degC
=
pob
pb
1.549=
pob xb⋅
pb
2
0.00102
1
mmHg
=
Smith & Corripio, 3rd edition
Problem 2-21. Linearization of Raoult's Law for equilibrium vapor
composition.
Raoult's Law: y T t( ) p t( ), x t( ),( )
p
o
T t( )( )
p t( )
x t( )=
p
o
T t( )( ) e
A
B
T t( ) C+
−
=
Linearize: Use subscript "b" for base value for linearization.
y T t( ) p t( ), x t( ),( ) y Tb pb, xb,( )
xb
pb
δ
δT
⋅ p
o
T t( )( )⋅ ⋅ T t( ) Tb−( )⋅+
p
o
Tb( )
pb
x t( ) xb−( )+=
p
o
− Tb( )xb
pb
2
p t( ) pb−( )+
δ
δT
e
A
B
T t( ) C+
−




⋅
B
Tb C+( )2
e
A
B
Tb C+
−
⋅=
B p
o
⋅ Tb( )⋅
Tb C+( )2
=
Let Y Γ t( ) P t( ), X t( ),( ) y T t( ) p t( ), x t( ),( ) y Tb pb, xb,( )−= Γ t( ) T t( ) Tb−= P t( ) p t( ) pb−=
X t( ) x t( ) xb−=
Y Γ t( ) P t( ), X t( ),( )
xb B⋅ p
o
⋅ Tb( )⋅
pb Tb C+( )2
⋅
Γ t( )
p
o
Tb( )
pb
X t( )+
p
o
Tb( ) xb⋅
pb
2
P t( )−=
Y Γ t( ) P t( ), X t( ),( ) 0.022
degC
Γ t( ) 1.549 X t( )+
0.00102
mmHg
P t( )−=
pob xb⋅
pb
77.441 %= y Tb pb, xb,( ) 77.44mole%=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
From the initial steady state: 0 fb cA.b cAb−( )⋅ k Tb( ) V⋅ cAb⋅−=
cAb
fb cAib⋅
fb kb V⋅+
:= cAb 9.231 10
5−
×
kmole
m
3
=
Calculate parameters: τ
V
fb kb V⋅+
:= K1
cAib cAb−
fb V kb⋅+
:= K2
fb
fb V kb⋅+
:= τ 0.01 s=
K1 0.046
s kmole⋅
m
6
=
K3
V− kb⋅ E⋅ cAb⋅
1.987
kcal
kmole K⋅
Tb
2
⋅ fb V kb⋅+( )⋅
:=
K2 7.692 10
6−
×=
fb V kb⋅+ 260.002
m
3
s
=
K3 3.113− 10
6−
×
kmol
m
3
K
=
Linearized equation:
0.01 sec⋅
d CA t( )⋅
dt
⋅ CA t( )+ 0.046
kmole
m
3
s
m
3
F t( ) 7.692 10
6−
⋅ CAi t( )+ 3.113
kmole
m
3
K
Γ t( )−=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Smith & Corripio, 3rd edition
Problem 2-22. Linearization of reactor of Examples 2-6.4 and 2-6.1.
From the results of Example 2-6.4: τ
d CA t( )⋅
dt
⋅ CA t( )+ K1 F t( )⋅ K2 CAi t( )⋅+ K3 Γ t( )⋅+=
Use subscript "b" for base value for linearization.
τ
V
fb V k Tb( )⋅+
=
K1
cAib cAb−
fb V k Tb( )⋅+
= K2
fb
fb V k Tb( )⋅+
= K3
V− k Tb( )⋅ E cAb⋅
R Tb
2
⋅ fb V k Tb( )⋅+( )
=
Problem parameters: V 2.6m
3
:= fb 0.002
m
3
s
:= cAib 12
kmole
m
3
:=
Let kb k Tb( )=
Tb 573K:= kb 100s
1−
:= E 22000
kcal
kmole
:=
p t( ) ρ t( )
v
2
t( )
2
⋅ po+= v t( ) 2
p t( ) po−( )
ρ t( )
⋅=
Flow through the orifice caused by the bullet: wo t( ) ρ t( ) Ao⋅ v t( )⋅= Ao 2 ρ t( )⋅ p t( ) po−( )⋅⋅=
Ideal gas law: ρ t( )
M p t( )⋅
Rg T 273K+( )⋅
=
Substitute into mass balance:
V M⋅
Rg T 273 K⋅+( )⋅
d p t( )⋅
dt
⋅ wi t( ) Ao
2 M⋅
Rg T 273K+( )⋅
p t( ) p t( ) po−( )⋅−=
Solve for the derivative:
d p t( )⋅
dt
g wi t( ) p t( ),( )=
Rg T 273K+( )⋅
V M⋅
wi t( ) Ao
2 M⋅
Rg T 273K+( )⋅
p t( ) p t( ) po−( )⋅⋅−






=
Linearize:
d p t( )⋅
dt
δ g⋅
δ wi⋅
b
⋅ wi t( ) wb−( )
δ g⋅
δ p⋅
b
⋅ p t( ) pb−( )+=
Let P t( ) p t( ) pb−= Wi t( ) wi t( ) wb−=
a1
δ g⋅
δ wi⋅
b
⋅= a1
Rg T 273K+( )⋅
V M⋅
:= a1 65.56
kPa
kg
=
Smith & Corripio, 3rd edition
Problem 2-23. Pressure in a compressed air tank when punctured.
V
p(t)
wi(t)
wo(t)
po
Assumptions:
Air obeys ideal gas law•
Constant temperature•
Design conditions: kPa 1000Pa:=
pb 500 101.3+( )kPa:= M 29
kg
kmole
:=
Ao 0.785cm
2
:= T 70degC:=
V 1.5m
3
:=
Rg 8.314
kPa m
3
⋅
kmole K⋅
⋅:= po 101.3kPa:=
Use subscript "b" for base value for linearization.
Solution:
Mass balance on the tank: V
d ρ t( )⋅
dt
⋅ wi t( ) wo t( )−=
Bernoulli's equation:
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
K 1.8R:=
If the compressor shuts down it will take approximately 5(42.8) = 214 sec (3.5 min) for the
pressure transient to die out, according to the linear approximation. (See the results of the
simulation, Problem 13-3, to see how long it actually takes.)
P s( )
Wi s( )
K
τ s⋅ 1+
=Transfer function:
K 2.8 10
3
×
kPa sec⋅
kg
=τ 42.9 sec=
K
a1
a2−
:=τ
1
a2−
:=Then
τ
d P t( )⋅
dt
⋅ P t( )+ K Wi t( )⋅=Compare to standard form of first-order equation:
P 0( ) 0=
1
a2−
d P t( )⋅
dt
⋅ P t( )+
a1
a2−
Wi t( )=
d P t( )⋅
dt
a1 Wi t( )⋅ a2 P t( )⋅+=Substitute:
a2 0.023− sec
1−
=a2
Ao−
2 V⋅
2 Rg⋅ T 273 K⋅+( )⋅
M pb⋅ pb po−( )⋅
kPa
1000Pa
⋅
2 pb⋅ po−( )1000Pa
kPa
⋅
m
100cm





2
:=
a2
δ g⋅
δ p⋅
b
⋅=
Ao−
V
2 Rg⋅ T 273K+( )⋅
M
⋅
1
2
pb pb p0−( ) 
1−
2
⋅ 2pb po−( )=
Γ t( ) T t( ) Tb−=
Substitute:
d Γ t( )⋅
dt
a1 Γs t( )⋅ a2 Γ t( )⋅+= Γ 0( ) 0= (base is initial steady state)
Standard form of the first-order differential equation: τ
d Γ t( )⋅
dt
⋅ Γ t( )+ K Γs t( )⋅=
Divide by -a2 and rearrange: 1
a2−
d Γ t( )⋅
dt
⋅ Γ t( )+
a1
a2−
Γs t( )=
M cv⋅
4 ε⋅ σ⋅ A⋅ Tb
3
⋅
d Γ t( )⋅
dt
⋅ Γ t( )+
Tsb
Tb





3
Γs t( )=
Compare coefficients: τ
M cv⋅
4 ε⋅ σ⋅ A⋅ Tb
3
⋅
= K
Tsb
Tb





3
=
Laplace transform:
Γ s( )
Γs s( )
K
τ s⋅ 1+
=
The input variable is the temperature of the oven wall. See problem 13-4 for the simulation.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.
Smith & Corripio, 3rd edition
Problem 2-24. Temperature of a turkey in an oven.
T(t)
Ts(t)
M
Assumptions
Uniform turkey temperature•
Negligible heat of cooking•
Radiation heat transfer only•
Energy balance on the turkey:
M cv⋅
d T t( )⋅
dt
⋅ ε σ⋅ A⋅ Ts
4
t( ) T
4
t( )−


⋅=
Use subscript "b" for linearization base values.
Solve for the derivative:
d T t( )⋅
dt
g Ts t( ) T t( ),( )=
ε σ⋅ A⋅
M cv⋅
Ts
4
t( ) T
4
t( )−


=
Linearize:
d T t( )⋅
dt
a1 Ts t( ) Tsb−( )⋅ a2 T t( ) Tb−( )⋅+=
where a1
δ g⋅
δTs b
⋅=
4 ε⋅ σ⋅ A⋅
M cv⋅
Tsb
3
= a2
δ g⋅
δT
b
⋅=
4− ε⋅ σ⋅ A⋅
M cv⋅
Tb
3
=
Let Γs t( ) Ts t( ) Tsb−=
Q t( ) q t( ) qb−= a1
δ g⋅
δq
b
⋅= a2
δ g⋅
δT
b
⋅=
a1
1
C
:= a2
4− α⋅ Tb
3
⋅
C
:= a1 5.556 10
3−
×
R
BTU
= a2 0.381− hr
1−
=
Substitute:
d Γ t( )⋅
dt
a1 Q t( )⋅ a2 Γ t( )⋅+= Γ 0( ) 0= (base is initial value)
Standard form of first-order differential equation: τ
d Γ t( )⋅
dt
⋅ Γ t( )+ K Q t( )⋅=
Divide by -a2 and rearrange:
1
a2−
d Γ t( )⋅
dt
⋅ Γ t( )+
a1
a2−
Q t( )=
C
4 α⋅ Tb
3
⋅
d Γ t( )⋅
dt
⋅ Γ t( )+
1
4α Tb
3
⋅
Q t( )=
Compare coefficients: τ
C
4α Tb
3
⋅
:= K
1
4α Tb
3
⋅
:= τ 2.62 hr= K 0.01458
R hr⋅
BTU
=
Smith & Corripio, 3rd edition
Problem 2-25. Slab heated by an electric heater by radiation.
T(t)
Ts
q(t)
Assumptions:
Uniform temperature of the slab•
Heat transfer by radiation only•
Energy balance on the slab:
M cv⋅
d T t( )⋅
dt
⋅ q t( ) ε σ⋅ A⋅ T
4
t( ) Ts
4
−


⋅−=
Let C M cv⋅= α ε σ⋅ A⋅=
Substitute C
d T t( )⋅
dt
⋅ q t( ) α T
4
t( ) Ts
4
−


−=
Problem parameters: Use subscript "b" to denote linearization base value.
C 180
BTU
R
:= α 5 10
8−
⋅
BTU
hr R
4
⋅
:= Ts 540R:= Tb 700R:=
Solve for the derivative:
d T t( )⋅
dt
g q t( ) T t( ),( )=
1
C
q t( )
α
C
T
4
t( ) Ts
4
−


−=
Linearize:
d T t( )⋅
dt
a1 q t( ) qb−( )⋅ a2 T t( ) Tb−( )⋅+=
Let Γ t( ) T t( ) Tb−=
Transfer function:
Γ s( )
Q s( )
K
τ s⋅ 1+
=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes
only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work
beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful.

More Related Content

What's hot

Exercícios resolvidos. funções trigonométricas e as suas inversas
Exercícios resolvidos. funções trigonométricas e as suas inversasExercícios resolvidos. funções trigonométricas e as suas inversas
Exercícios resolvidos. funções trigonométricas e as suas inversaszeramento contabil
 
metodos numericos
 metodos numericos metodos numericos
metodos numericos
Victor Hugo Analco
 
Dicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
Dicas e Macetes #6 - Probabilidade - Distribuição F de SnedecorDicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
Dicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
Anselmo Alves de Sousa
 
Transformada fourier
Transformada fourierTransformada fourier
Transformada fourier
Jesus Omar Hilario Cercado
 
Tabela De Pares De Transformadas De Laplace
Tabela De Pares De Transformadas De LaplaceTabela De Pares De Transformadas De Laplace
Tabela De Pares De Transformadas De Laplace
Iury Zamecki Chemin
 
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
Andy Juan Sarango Veliz
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
Vishnu V
 
B la funzione di trasferimento
B  la funzione di trasferimentoB  la funzione di trasferimento
B la funzione di trasferimentoAlessandro Bolo
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Awais Chaudhary
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencial
Leandro ___
 
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
Akul Bansal
 
Exercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométricaExercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométrica
Diego Oliveira
 
Integración numérica Parte 2
Integración numérica Parte 2Integración numérica Parte 2
Integración numérica Parte 2Kike Prieto
 
Tabela completa de derivadas e integrais
Tabela completa de derivadas e integraisTabela completa de derivadas e integrais
Tabela completa de derivadas e integrais
Diego Rodrigues Vaz
 
Gráficas polares - Matemática II
Gráficas polares - Matemática II Gráficas polares - Matemática II
Gráficas polares - Matemática II
Joe Arroyo Suárez
 
Tareaswmmae 2 14-soluc
Tareaswmmae 2 14-solucTareaswmmae 2 14-soluc
Tareaswmmae 2 14-soluc
Joserosales140
 
Tabla de transformadas de laplace
Tabla de transformadas de laplaceTabla de transformadas de laplace
Tabla de transformadas de laplace
Mauricio Espinoza Fajardo
 
10 transformada fourier
10 transformada fourier10 transformada fourier
10 transformada fourier
Hugo Guadalupe Alamilla Mayorga
 
B la funzione di trasferimento
B  la funzione di trasferimentoB  la funzione di trasferimento
B la funzione di trasferimentoAlessandro Bolo
 

What's hot (20)

Exercícios resolvidos. funções trigonométricas e as suas inversas
Exercícios resolvidos. funções trigonométricas e as suas inversasExercícios resolvidos. funções trigonométricas e as suas inversas
Exercícios resolvidos. funções trigonométricas e as suas inversas
 
metodos numericos
 metodos numericos metodos numericos
metodos numericos
 
Dicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
Dicas e Macetes #6 - Probabilidade - Distribuição F de SnedecorDicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
Dicas e Macetes #6 - Probabilidade - Distribuição F de Snedecor
 
Transformada fourier
Transformada fourierTransformada fourier
Transformada fourier
 
Tabela De Pares De Transformadas De Laplace
Tabela De Pares De Transformadas De LaplaceTabela De Pares De Transformadas De Laplace
Tabela De Pares De Transformadas De Laplace
 
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
Matemática V - Facultad de Ingeniería Eléctrica y Electrónica de la Universid...
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
B la funzione di trasferimento
B  la funzione di trasferimentoB  la funzione di trasferimento
B la funzione di trasferimento
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencial
 
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
91277687 solution-manual-for-mathematical-modelling-with-case-studies-taylor-...
 
Exercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométricaExercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométrica
 
Integración numérica Parte 2
Integración numérica Parte 2Integración numérica Parte 2
Integración numérica Parte 2
 
Tabela completa de derivadas e integrais
Tabela completa de derivadas e integraisTabela completa de derivadas e integrais
Tabela completa de derivadas e integrais
 
Gráficas polares - Matemática II
Gráficas polares - Matemática II Gráficas polares - Matemática II
Gráficas polares - Matemática II
 
Tareaswmmae 2 14-soluc
Tareaswmmae 2 14-solucTareaswmmae 2 14-soluc
Tareaswmmae 2 14-soluc
 
Tabla de transformadas de laplace
Tabla de transformadas de laplaceTabla de transformadas de laplace
Tabla de transformadas de laplace
 
Funciones
FuncionesFunciones
Funciones
 
10 transformada fourier
10 transformada fourier10 transformada fourier
10 transformada fourier
 
B la funzione di trasferimento
B  la funzione di trasferimentoB  la funzione di trasferimento
B la funzione di trasferimento
 

Viewers also liked

Process dynamics and control
Process dynamics and controlProcess dynamics and control
Process dynamics and controlumutca
 
Revista Fundación Carlos Sanz
Revista Fundación Carlos SanzRevista Fundación Carlos Sanz
Revista Fundación Carlos Sanz
Ilex Abogados
 
Straffe madammen lunch januari 2015
Straffe madammen lunch januari 2015Straffe madammen lunch januari 2015
Straffe madammen lunch januari 2015
Elke Jeurissen
 
Hapa Japan Festival 2013 Flyer
Hapa Japan Festival 2013 FlyerHapa Japan Festival 2013 Flyer
Hapa Japan Festival 2013 FlyerJayme Kiko
 
The 4 Knights of Content Marketing
The 4 Knights of Content MarketingThe 4 Knights of Content Marketing
The 4 Knights of Content Marketing
Ethos3
 
Some thoughts about the gaps across languages and domains through the experi...
Some thoughts about the gaps across languages and domains through the experi...Some thoughts about the gaps across languages and domains through the experi...
Some thoughts about the gaps across languages and domains through the experi...
National Institute of Informatics (NII)
 
Gestão atuarial compilado
Gestão atuarial   compiladoGestão atuarial   compilado
Gestão atuarial compilado
Universidade Federal Fluminense
 
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
Amrita Prasad
 
Sigmund freud obras completas - lopez ballesteros
Sigmund freud   obras completas - lopez ballesterosSigmund freud   obras completas - lopez ballesteros
Sigmund freud obras completas - lopez ballesteros
Gabinete de Psicología Profesional
 
Augmenter la satisfaction de l'utilisateur
Augmenter la satisfaction de l'utilisateurAugmenter la satisfaction de l'utilisateur
Augmenter la satisfaction de l'utilisateur
Digicomp Academy Suisse Romande SA
 
Marketing na Internet
Marketing na InternetMarketing na Internet
Marketing na Internet
renatofrigo
 
Resumen de criterios sobre convergencia y divergencia de series infinitas
Resumen de criterios sobre convergencia y divergencia de series infinitasResumen de criterios sobre convergencia y divergencia de series infinitas
Resumen de criterios sobre convergencia y divergencia de series infinitasMayling210
 
Mitos y errores en las relaciones de pareja
Mitos y errores en las relaciones de parejaMitos y errores en las relaciones de pareja
Mitos y errores en las relaciones de parejaAdmingac
 
Roteiro de estudo de caso simulação do processo de compras
Roteiro de estudo de caso simulação do processo de comprasRoteiro de estudo de caso simulação do processo de compras
Roteiro de estudo de caso simulação do processo de compras
Antonio Marcos Montai Messias
 

Viewers also liked (18)

Solucionario 3
Solucionario 3Solucionario 3
Solucionario 3
 
Process dynamics and control
Process dynamics and controlProcess dynamics and control
Process dynamics and control
 
Revista Fundación Carlos Sanz
Revista Fundación Carlos SanzRevista Fundación Carlos Sanz
Revista Fundación Carlos Sanz
 
Straffe madammen lunch januari 2015
Straffe madammen lunch januari 2015Straffe madammen lunch januari 2015
Straffe madammen lunch januari 2015
 
Hapa Japan Festival 2013 Flyer
Hapa Japan Festival 2013 FlyerHapa Japan Festival 2013 Flyer
Hapa Japan Festival 2013 Flyer
 
The 4 Knights of Content Marketing
The 4 Knights of Content MarketingThe 4 Knights of Content Marketing
The 4 Knights of Content Marketing
 
Some thoughts about the gaps across languages and domains through the experi...
Some thoughts about the gaps across languages and domains through the experi...Some thoughts about the gaps across languages and domains through the experi...
Some thoughts about the gaps across languages and domains through the experi...
 
Youtube marketing jokes
Youtube marketing jokesYoutube marketing jokes
Youtube marketing jokes
 
Gestão atuarial compilado
Gestão atuarial   compiladoGestão atuarial   compilado
Gestão atuarial compilado
 
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
Puzzle ITC Talk @Docker CH meetup CI CD_with_Openshift_0.2
 
Sigmund freud obras completas - lopez ballesteros
Sigmund freud   obras completas - lopez ballesterosSigmund freud   obras completas - lopez ballesteros
Sigmund freud obras completas - lopez ballesteros
 
Manual dqp
Manual dqpManual dqp
Manual dqp
 
Augmenter la satisfaction de l'utilisateur
Augmenter la satisfaction de l'utilisateurAugmenter la satisfaction de l'utilisateur
Augmenter la satisfaction de l'utilisateur
 
Estrategia nal. obesidad 1
Estrategia nal. obesidad 1Estrategia nal. obesidad 1
Estrategia nal. obesidad 1
 
Marketing na Internet
Marketing na InternetMarketing na Internet
Marketing na Internet
 
Resumen de criterios sobre convergencia y divergencia de series infinitas
Resumen de criterios sobre convergencia y divergencia de series infinitasResumen de criterios sobre convergencia y divergencia de series infinitas
Resumen de criterios sobre convergencia y divergencia de series infinitas
 
Mitos y errores en las relaciones de pareja
Mitos y errores en las relaciones de parejaMitos y errores en las relaciones de pareja
Mitos y errores en las relaciones de pareja
 
Roteiro de estudo de caso simulação do processo de compras
Roteiro de estudo de caso simulação do processo de comprasRoteiro de estudo de caso simulação do processo de compras
Roteiro de estudo de caso simulação do processo de compras
 

Similar to corripio

Laplace1
Laplace1Laplace1
Laplace1
Ana Torres
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
martha-judith
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
System dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSystem dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manual
SextonMales
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
Saravana Selvan
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Karnav Rana
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
Pamela Paz
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
Hoopeer Hoopeer
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
Larson612
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
Reece1334
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455Rungroj Ssan
 
11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)Nigel Simmons
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltosbellidomates
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
Edhole.com
 

Similar to corripio (20)

Laplace1
Laplace1Laplace1
Laplace1
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Sub1567
Sub1567Sub1567
Sub1567
 
System dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSystem dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manual
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
 
11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)11 x1 t09 03 rules for differentiation (2013)
11 x1 t09 03 rules for differentiation (2013)
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
 

Recently uploaded

5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
Fifth Gear Automotive Argyle
 
What Could Cause The Headlights On Your Porsche 911 To Stop Working
What Could Cause The Headlights On Your Porsche 911 To Stop WorkingWhat Could Cause The Headlights On Your Porsche 911 To Stop Working
What Could Cause The Headlights On Your Porsche 911 To Stop Working
Lancer Service
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
European Service Center
 
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
bouvoy
 
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
Import Motorworks
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
ahmedendrise81
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Precious Mvulane CA (SA),RA
 
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.docBài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
daothibichhang1
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
coc7987515756
 
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
mymwpc
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
Antique Plastic Traders
 
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
Autohaus Service and Sales
 
One compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdfOne compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdf
RehanRustam2
 
Renal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffffRenal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffff
RehanRustam2
 
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
Fifth Gear Automotive Cross Roads
 
Skoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda PerthSkoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda Perth
Perth City Skoda
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Masters European & Gapanese Auto Repair
 
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) RaipurAadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects
 
Things to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your carThings to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your car
jennifermiller8137
 
Regeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in AutomobileRegeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in Automobile
AtanuGhosh62
 

Recently uploaded (20)

5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
 
What Could Cause The Headlights On Your Porsche 911 To Stop Working
What Could Cause The Headlights On Your Porsche 911 To Stop WorkingWhat Could Cause The Headlights On Your Porsche 911 To Stop Working
What Could Cause The Headlights On Your Porsche 911 To Stop Working
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
 
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
一比一原版(UNITEC毕业证)UNITEC理工学院毕业证成绩单如何办理
 
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
What Are The Immediate Steps To Take When The VW Temperature Light Starts Fla...
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
 
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.docBài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
Bài tập - Tiếng anh 11 Global Success UNIT 1 - Bản HS.doc
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
 
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
一比一原版(OP毕业证)奥塔哥理工学院毕业证成绩单如何办理
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
 
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
What Does the PARKTRONIC Inoperative, See Owner's Manual Message Mean for You...
 
One compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdfOne compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdf
 
Renal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffffRenal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffff
 
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
 
Skoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda PerthSkoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda Perth
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
 
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) RaipurAadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) Raipur
 
Things to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your carThings to remember while upgrading the brakes of your car
Things to remember while upgrading the brakes of your car
 
Regeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in AutomobileRegeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in Automobile
 

corripio

  • 1. F s( ) s s 2 ω 2 + = 1 2 1 s i ω⋅− 1 s i ω⋅+ +     = s i ω⋅− s+ i ω⋅+ 2 s i ω⋅−( )⋅ s i ω⋅+( ) = 2 s⋅ 2 s 2 ω 2 +( )⋅ = s s 2 ω 2 + = 1 2 1− s i ω⋅− e s i ω⋅−( )t− ∞ 0 ⋅ 1− s i ω⋅+ e s i ω⋅+( )t− ∞ 0 ⋅+      = 1 2 0 ∞ te s i ω⋅−( )t−⌠  ⌡ d 0 ∞ te s i ω⋅+( )t−⌠  ⌡ d+         = F s( ) 0 ∞ tcos ωt⋅ e st− ⋅ ⌠  ⌡ d= 0 ∞ t e i ωt⋅ e i− ωt⋅ − 2 e st− ⌠   ⌡ d=f t( ) cos ωt⋅=(c) F s( ) 1 s a+ = F s( ) 0 ∞ te at− e st−⌠  ⌡ d= 0 ∞ te s a+( )t−⌠  ⌡ d= 1− s a+ e s a+( )t− ∞ 0 ⋅= 1 s a+ = where a is constantf t( ) e at− =(b) F s( ) 1 s 2 = F s( ) t− s e st− ∞ 0 ⋅ 1 s 0 ∞ te st−⌠  ⌡ d⋅+= 0 0− 1 s 2 e st− ∞ 0 ⋅−= 1 s 2 = v 1− s e st− =du dt= dv e st− dt=u t=By parts:F s( ) 0 ∞ tt e st− ⋅ ⌠  ⌡ d=f t( ) t=(a) F s( ) 0 ∞ tf t( ) e st−⌠  ⌡ d= Problem 2-1. Derivation of Laplace transforms from its definition Smith & Corripio, 3rd. edition
  • 2. (d) f t( ) e at− coss ωt⋅= F s( ) 0 ∞ te at− cos ωt⋅ e st− ⋅ ⌠  ⌡ d= 0 ∞ te at− e i ωt⋅ e i− ωt⋅ + 2 ⋅ e st− ⌠   ⌡ d= 1 2 0 ∞ te s a+ i ω⋅+( )t−⌠  ⌡ d 0 ∞ te s a+ i ω⋅−( )− t⌠  ⌡ d+         = 1 2 1− s a+ i ω⋅+ e s a+ i ω⋅+( )t− ∞ 0 ⋅ 1− s a+ i ω⋅− e s a+ i ω⋅−( )t− ∞ 0 ⋅+      = 1 2 1 s a+ i ω⋅+ 1 s a+ i ω⋅− +     = s a+ i ω⋅− s+ a+ i ω⋅+ 2 s a+ i ω⋅+( ) s a+ i ω⋅−( ) = 2 s a+( ) 2 s a+( ) 2 ω 2 +   ⋅ = s a+ s a+( ) 2 ω 2 + = F s( ) s a+ s a+( ) 2 ω 2 + = All the results match results in Table 2-1.1 Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 3. 1 s 1 s 2+ + 2 1 s 1+ ⋅−= 1 s 1 s 2+ + 2 s 1+ −= F s( ) 1 s 1 s 2+ + 2 s 1+ −= Used the linearity property. (d) f t( ) u t( ) e t− − t e t− ⋅+= F s( ) L u t( )( ) L e t− ( )− L t e t− ⋅( )+= 1 s 1 s 1+ − 1 s 1+( ) 2 += F s( ) 1 s 1 s 1+ − 1 s 1+( ) 2 += Used the linearity property. (e) f t( ) u t 2−( ) 1 e 2− t 2−( ) sin t 2−( )− = Let g t( ) u t( ) 1 e 2− t sin t⋅−( )= Then f t( ) g t 2−( )= F s( ) e 2− s G s( )= e 2− s 1 s 1 s 2+( ) 2 1+ −      = Used the real translation theorem and linearity. F s( ) e 2− s 1 s 1 s 2+( ) 2 1+ −      = Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Smith & Corripio, 3rd edition Problem 2-2. Derive Laplace transforms from the properties and Table 2-1.1 (a) f t( ) u t( ) 2 t⋅+ 3 t 2 ⋅+= F s( ) L u t( ) 2 t⋅+ 3 t 2 ⋅+( )= L u t( )( ) 2 L t( )⋅+ 3 L t 2 ( )⋅+= 1 s 2 1 s 2 ⋅+ 3 2! s 3 ⋅+= F s( ) 1 s 2 s 2 + 6 s 3 += Used the linearity property. (b) f t( ) e 2− t⋅ u t( ) 2 t⋅+ 3 t 2 ⋅+( )= F s( ) L u t( ) 2 t⋅+ 3 t 2 ⋅+( ) s 2+ ⋅= 1 s 2 s 2 + 6 s 3 +     s 2+ ⋅= 1 s 2+ 2 s 2+( ) 2 + 6 s 2+( ) 3 += F s( ) 1 s 2+ 2 s 2+( ) 2 + 6 s 2+( ) 3 += Used the complex translation theorem. (c) f t( ) u t( ) e 2− t + 2e t− −= F s( ) L u t( ) e 2− t + 2 e t− ⋅−( )= L u t( )( ) L e 2− t ( )+ 2 L e t− ( )⋅−=
  • 4. Must apply L'Hopital's rule: ∞s 1 1 2 2 s 2+( ) + 6 3 s 2+( ) 2 +      1=lim →Final value: ∞t e 2− t u t( ) 2 t⋅+ 3t 2 +( ) 0 ∞⋅=lim → 0s s 1 s 2+ 2 s 2+( ) 2 + 6 s 3+( ) 2 +      0=lim → L'Hopital's rule: ∞t 0 2e 2t 2 2e 2t + 6t 2e 2t +     0=lim → Check! (c) f t( ) u t( ) e 2− t + 2e t− −= F s( ) 1 s 1 s 2+ + 2 s 1+ −= Initial value: 0t u t( ) e 2− t + 2e t− −( ) 1 1+ 2−( ) 0+=lim → ∞s s 1 s 1 s 2+ + 2 s 1+ −     ∞ ∞ =lim → L'Hopital's rule: ∞s 1 1 1 + 2 1 −     0=lim → Final value: ∞t u t( ) e 2− t + 2e t− −( ) 1 0+ 0+= 1=lim → 0s s 1 s 1 s 2+ + 2 s 1+ −     1 0+ 0+= 1=lim → Smith & Corripio, 3rd edition Problem 2-3. Initial and final value check of solutions to Problem 2-2 (a) f t( ) u t( ) 2 t⋅+ 3t 2 += F s( ) 1 s 2 s 2 + 6 s 3 += Initial value: 0t u t( ) 2t+ 3t 2 +( ) 1=lim → ∞s s 1 s 2 s 2 + 6 s 3 +     ⋅ ∞s 1 2 s + 6 s 2 +     1=lim → =lim → Final value: ∞t u t( ) 2t+ 3t 2 +( ) ∞=lim → 0s 1 2 s + 6 s 2 +     ∞=lim → Check! (b) f t( ) e 2− t u t( ) 2t+ 3t 2 +( )= F s( ) 1 s 2+ 2 s 2+( ) 2 + 6 s 2+( ) 3 += Initial value: 0t e 2− t u t( ) 2t+ 3t 2 +( )lim → ∞s s 1 s 2+ 2 s 2+( ) 2 + 6 s 2+( ) 3 +      ∞ ∞ =lim → 1 1 0+ 0+( )= 1=
  • 5. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Check! 0s s 1 s 1 s 1+( ) 2 1+ −      1 0+= 1=lim →∞t 1 e 2− t sin t( )⋅−  1=lim → Final value: ∞s s 1 s 1 s 1+( ) 2 1+ −      1 0−= 1=lim →0t 1 e 2− t sin t⋅−( ) 1=lim → Initial value: The test of the delayed fnction is not useful. Better to test the term in brackets, g(t): F s( ) e 2− s 1 s 1 s 1+( ) 2 1+ −      =f t( ) u t 2−( ) 1 e 2− t 2−( ) sin t 2−( )− =(e) Check! ∞t 1 0− 1 1 e t ⋅ +     1=lim → L'Hopital's rule: ∞t u t( ) e t− − t e t− ⋅+( ) 1 0− ∞ 0⋅+=lim → 0s 1 s s 1+ − s s 1+( ) 2 +      1 0− 0+= 1=lim → Final value: ∞s 1 1 1 − 1 2 s 1+( ) +      1 1− 0+= 0=lim → L'Hopital's rule: ∞s s 1 s 1 s 1+ − 1 s 1+( ) 2 +      ∞ ∞ =lim →0t u t( ) e t− − t e t− ⋅+( ) 1 1− 0 1⋅+= 0=lim → Initial value: F s( ) 1 s 1 s 1+ − 1 s 1+( ) 2 +=f t( ) u t( ) e t− − t e t− ⋅+=(d)
  • 6. Smith & Corripio, 3rd edition Problem 2-4. Laplace transform of a pulse by real translation theorem f t( ) H u t( )⋅ H u t T−( )⋅−= F s( ) H 1 s ⋅ H e sT− ⋅ 1 s ⋅−= H 1 e sT− − s ⋅= F s( ) H s 1 e sT− −( )=
  • 7. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 0 2 4 0 2 fd t( ) t 0 2 4 0 2 f t( ) t f t( ) e t0 τ e t− τ ⋅:= fd t( ) u t t0−( ) e t t0−( )− τ ⋅:= u t( ) 0 t 0<if 1 t 0≥if :=τ 1:=t0 1:=Sketch the functions: F s( ) τ e t0− s⋅ ⋅ τ s⋅ 1+ = The result to part (b) agrees with the real translation theorem. e t0− s⋅ 1− s 1 τ + ⋅ e s 1 τ +      − λ⋅ ⋅ ∞ 0 ⋅= e t0− s⋅ s 1 τ + = τ e t0− s⋅ ⋅ τ s⋅ 1+ = F s( ) t0− ∞ λu λ( )e λ− τ e s λ t0+( )− ⌠    ⌡ d= e t0− s⋅ 0 ∞ λe s 1 τ +      λ− ⌠    ⌡ d⋅= λ t t0−=Let F s( ) 0 ∞ tu t t0−( )e t t0−( )− τ e st− ⌠    ⌡ d=f t( ) u t t0−( )e t t0−( )− τ = (b) Function is delayed and zero from t = 0 to t = t0: F s( ) τ e t0 τ ⋅ τ s⋅ 1+ =F s( ) e t0 τ 1 s 1 τ + = τ e t0 τ ⋅ τ s⋅ 1+ =f t( ) e t0 τ e t− τ = (from Table 2-1.1) (a) Function is non-zero for all values of t > 0: f t( ) e t t0−( )− τ = Problem 2-5. Delayed versus non-delayed function
  • 8. Y t( ) 2.5− e t− 2.5u t( )+= (Table 2-1.1) (b) 9 d 2 y t( )⋅ dt 2 ⋅ 18 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Initial steady state: 4 y 0( )⋅ 8 x 0( ) 4−= Subtract: 9 d 2 Y t( )⋅ dt 2 ⋅ 18 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y t( ) y t( ) y 0( )−= Y 0( ) 0= X t( ) x t( ) x 0( )−= Laplace transform: 9s 2 Y s( ) 18s Y s( )⋅+ 4 Y s( )+ 8 X s( )= 8 1 s ⋅= Solve for Y(s): Y s( ) 8 9s 2 18s+ 4+ 1 s = r1 18− 18 2 4 9⋅ 4⋅−+ 2 9⋅ := r1 0.255−= r2 18− 18 2 4 9⋅ 4⋅−− 2 9⋅ := r2 1.745−= Expand in partial fractions: Y s( ) 8 9 s 0.255+( ) s 1.745+( )s = A1 s 0.255+ A2 s 1.745+ + A3 s += A1 0.255−s 8 9 s 1.745+( )s 8 9 0.255− 1.745+( )⋅ 0.255−( )⋅ = 2.342−=lim → = Smith & Corripio, 3rd edition Problem 2-6. Solution of differential equations by Laplace transforms Input function: X t( ) u t( )= X s( ) 1 s = (Table 2-1.1) (a) d y t( )⋅ dt 2 y t( )+ 5 x t( ) 3+= Initial steady state: 2 y 0( ) 5 x 0( )= 3= Subtract: d Y t( )⋅ dt 2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )−= X t( ) x t( ) x 0( )−= Laplace transform: sY s( ) Y 0( )− 2 Y s( )+ 5 X s( )= 5 1 s ⋅= Y 0( ) y 0( ) y 0( )−= 0= Solve for Y(s): Y s( ) 5 s 2+ 1 s = A1 s 2+ A2 s += Partial fractions: A1 2−s 5 s 2.5−=lim → = A2 0s 5 s 2+ 2.5=lim → = Y s( ) 5− s 1+ 5 s += Invert:
  • 9. Y 0( ) 0=9 d 2 Y t( )⋅ dt 2 ⋅ 12 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Subtract initial steady state: 9 d 2 y t( )⋅ dt 2 ⋅ 12 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−=(d) Y t( ) 1− 1.134i+( )e 0.5− 0.441i+( )t 1− 1.134i−( )e 0.5− 0.441i−( )t + 2 u t( )+= Invert using Table 2-1.1: Y s( ) 1− 1.134i+ s 0.5+ 0.441i− 1− 1.134i− s 0.5+ 0.441i+ + 2 s += A3 0s 8 9s 2 9s+ 4+ 2=lim → =A2 1− 1.134i−= 8 9 2 0.441i⋅( ) 0.5− 0.441i+( ) 1− 1.134i+=A1 0.5− 0.441i+s 8 9 s 0.5+ 0.441i+( ) s lim → = A1 s 0.5+ 0.441i− A2 s 0.5+ 0.441i+ + A3 s += Y s( ) 8 9 s 0.5+ 0.441i−( ) s 0.5+ 0.441+( )s =Solve for Y(s), expand: A2 1.745−s 8 9 s 0.255+( )s 8 9 1.745− 0.255+( ) 1.745−( ) = 0.342=lim → = A3 0s 8 9 s 0.255+( ) s 1.745+( ) 8 9 0.255( ) 1.745( ) = 2.0=lim → = Y s( ) 2.342− s 0.255+ 0.342 s 1.745+ + 2 s += Invert with Table 2-1.1: Y t( ) 2.342− e 0.255− t 0.342e 1.745− t + 2 u t( )+= (c) 9 d 2 y t( )⋅ dt 2 ⋅ 9 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state: 9 d 2 Y t( )⋅ dt 2 ⋅ 9 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0= Laplace transform: 9s 2 9s+ 4+( )Y s( ) 8 X s( )= 8 1 s ⋅= r1 9− 9 2 4 9⋅ 4⋅−+ 2 9⋅ := r2 9− 9 2 4 9⋅ 4⋅−− 2 9⋅ := r1 0.5− 0.441i+= Find roots: r2 0.5− 0.441i−=
  • 10. A2 0.027 0.022i−= 3 2 2 2.598i⋅( ) 1− 2.598i+( ) 1.5− 2.598i+( ) 0.027 0.022i+= A1 1.5− 2.598i+s 3 2 s 1.5+ 2.598i+( ) s 0.5+( )s 0.027 0.022i+=lim → = A1 s 1.5+ 2.598i− A2 s 1.5+ 2.598i+ + A3 s 0.5+ + A4 s += Y s( ) 3 2 s 1.5+ 2.598i−( ) s 1.5+ 2.598i+( ) s 0.5+( )s =Solve for Y(s) and expand: polyroots 9 21 7 2                    1.5− 2.598i− 1.5− 2.598i+ 0.5−       = Find roots: 2s 3 7s 2 + 21s+ 9+( )Y s( ) 3 X s( )= 3 1 s ⋅=Laplace transform: Y 0( ) 0= 2 d 3 Y t( )⋅ dt 3 ⋅ 7 d 2 Y t( )⋅ dt 2 ⋅+ 21 d Y t( )⋅ dt ⋅+ 9 Y t( )+ 3 X t( )=Subtract initial steady state: 2 d 3 y t( )⋅ dt 3 ⋅ 7 d 2 y t( )⋅ dt 2 ⋅+ 21 d y t( )⋅ dt ⋅+ 9 y t( )+ 3 x t( )=(e) Y t( ) 4− 3 t 2−     e 0.667− t 2 u t( )+=Invert using Table 2-1.1: A3 0s 8 9 s 0.667+( ) 2 2=lim → = A2 0.667−s d ds 8 9s      0.667−s 8− 9s 2 2−=lim → =lim → =A1 0.667−s 8 9s 4− 3 =lim → = Y s( ) 8 9 s 0.667+( ) 2 s = A1 s 0.667+( ) 2 A2 s 0.667+ + A3 s +=Solve for Y(s) and expand: r2 0.667−= r1 0.667−=r2 12− 12 2 4 9⋅ 4⋅−− 2 9⋅ :=r1 12− 12 2 4 9⋅ 4⋅−+ 2 9⋅ := Find roots: 9s 2 12s+ 4+( )Y s( ) 8 X s( )= 8 1 s ⋅=Laplace transform:
  • 11. A3 0.5−s 3 2 s 1.5+ 2.598i−( ) s 1.5+ 2.598i+( )s 0.387−=lim → = 3 2 1 2.598i−( ) 1 2.598i+( ) 0.5−( ) 0.387−= A4 0s 3 2s 3 7s 2 + 21s+ 9+ 1 3 =lim → = Y s( ) 0.027 0.022i+ s 1.5+ 2.598i− 0.027 0.022i− s 1.5+ 2.598i+ + 0.387− s 0.5+ + 1 3 1 s += Invert using Table 2-1.1: Y t( ) 0.027 0.022i+( )e 1.5− 2.598i+( )t 0.027 0.022i−( )e 1.5− 2.598i−( )t + 0.387e 0.5− t − 1 3 u t( )+= Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 12. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Y t( ) u t 1−( ) 8− 3 t 1−( )⋅ 8−      e 0.667− t 1−( )⋅ ⋅ 8 e 0.333− t 1−( )⋅ ⋅+      ⋅= Apply the real translation theorem in reverse to this solution: Y s( ) 8− 3 1 s 0.667+( ) 2 8 s 0.667+ − 8 s 0.333+ +      e s− = The partial fraction expansion of the undelayed signal is the same: (Real translation theorem) X s( ) e s− s 1 3 + =X t( ) u t 1−( ) e t 1−( )− 3 =(b) Forcing function: Y t( ) 8− 3 t 8−     e 0.667− t 8e 0.333− t +=Invert using Table 2-1.1: Y s( ) 8− 3 1 s 0.667+( ) 2 8− s 0.667+ + 8 s 0.333+ += A2 0.667−s d ds 8 9 s 0.333+( )       0.667−s 8− 9 s 0.333+( ) 2 8−=lim → =lim → = A3 0.333−s 8 9 s 0.667+( ) 2 8=lim → =A1 0.667−s 8 9 s 0.333+( ) 8− 3 =lim → = 8 9 s 0.667+( ) 2 s 0.333+( ) = A1 s 0.667+( ) 2 A2 s 0.667+ + A3 s 0.333+ += Y s( ) 8 9s 2 12s+ 4+( ) s 1 3 +     = X s( ) 1 s 1 3 + =From Table 2-1.1:X t( ) e t− 3 =(a) Forcing function: Y 0( ) 0=9 d 2 Y t( )⋅ dt 2 ⋅ 12 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Problem 2-7. Solve Problem 2-6(d) with different forcing functions Smith & Corripio, 3rd edition
  • 13. (Final value theorem) (b) 9 d 2 y t( )⋅ dt 2 ⋅ 18 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state: 9 d 2 Y t( )⋅ dt 2 ⋅ 18 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0= Laplace transform and solve for Y(s): Y s( ) 8 9s 2 18s+ 4+ X s( )= Find roots: r1 18− 18 2 4 9⋅ 4⋅−+ 2 9⋅ min := r2 18− 18 2 4 9⋅ 4⋅−− 2 9⋅ min := r1 0.255− min 1− = r2 1.745− min 1− = Invert using Table 2-1.1: Y t( ) A1 e 0.255− t ⋅ A2 e 1.745− t ⋅+= + terms of X(s) The response is stable and monotonic. The domnant root is: r1 0.255− min 1− = Time for the response to decay to 0.67% of its initial value: 5− r1 19.6 min= Final steady-state value for unit step input: 0s s 8 9s 2 18s+ 4+ ⋅ 1 s lim → 2→ (Final value theorem) Smith & Corripio, 3rd edition Problem 2-8. Response characteristics of the equations of Problem 2-6 (a) d y t( )⋅ dt 2 y t( )+ 5 x t( ) 3+= Initial steady state: 2 y 0( ) 5 x 0( ) 3+= Subtract: d Y t( )⋅ dt 2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )−= X t( ) x t( ) x 0( )−= Laplace transform: s Y s( )⋅ 2 Y s( )+ 5 X s( )= Y 0( ) y 0( ) y 0( )−= 0= Solve for Y(s): Y s( ) 5 s 2+ X s( )= A1 s 2+ = + terms of X(s) Invert using Table 2-1.1: Y t( ) A1 e 2− t ⋅= + terms of X(t) The response is stable and monotonic.The dominant and only root is r 2− min 1− := Time for response to decay to within 0.67% of its initial value: 5− r 2.5min= Final steady-state value for unit step input: 0s s 5 s 2+ ⋅ 1 s lim → 5 2 → 2.5=
  • 14. Time for oscillations to die: 5− 0.5− min 1− 10 min= Final steady state value for a unit step imput: 0s s 8 9s 2 9s+ 4+ ⋅ 1 s lim → 2→ (Final value theorem) (d) 9 d 2 y t( )⋅ dt 2 ⋅ 12 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state: 9 d 2 Y t( )⋅ dt 2 ⋅ 12 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0= Laplace transform and solve for Y(s): Y s( ) 8 9s 2 12s+ 4+ X s( )= Find roots: r1 12− 12 2 4 9⋅ 4⋅−+ 2 9⋅ min := r2 12− 12 2 4 9⋅ 4⋅−− 2 9⋅ min := r1 0.667− min 1− = r2 0.667− min 1− = Invert using Table 2-1.1: Y t( ) A1 t⋅ A2+( )e 0.667− t = + terms of X(t) (c) 9 d 2 y t( )⋅ dt 2 ⋅ 9 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state: 9 d 2 Y t( )⋅ dt 2 ⋅ 9 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0= Laplace transform and solve for Y(s): Y s( ) 8 9s 2 9s+ 4+ X s( )= Find the roots: r1 9− 9 2 4 9⋅ 4⋅−+ 2 9⋅ min := r2 9− 9 2 4 9⋅ 4⋅−− 2 9⋅ min := r1 0.5− 0.441i+ min 1− = r2 0.5− 0.441i− min 1− = Invert using Table 2-3.1: Y t( ) D e 0.5− t ⋅ sin 0.441t θ+( )= + terms of X(t) The response is stable and oscillatory. The dominant roots are r1 and r2. Period of the oscillations: T 2π 0.441min 1− := T 14.25 min= Decay ratio: e 0.5− min 1− T 0.00081=
  • 15. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. (Final value theorem) 0s s 3 2s 3 7s 2 + 21s+ 9+ ⋅ 1 s lim → 1 3 →Final steady state value for a unit step input: 5− r 2 10 min=Time for response to die out:e 1.5− min 1− T 0.027= Decay ratio: T 2.42 min=T 2π 2.598min 1− :=The period of the oscillations is: r 2 0.5− min 1− =The response is stable and oscillatory. The dominant root is r 1.5− 2.598i− 1.5− 2.598i+ 0.5−       min 1− =r polyroots 9 21 7 2                    min 1− := Find roots: Y s( ) 3 2s 3 7s 2 + 21s+ 9+ X s( )=Laplace transform and solve for Y(s): 2 d 3 Y t( )⋅ dt 3 ⋅ 7 d 2 Y t( )⋅ dt 2 ⋅+ 21 d Y t( )⋅ dt ⋅+ 9 Y t( )+ 3 X t( )=Subtract initial steady state: 2 d 3 y t( )⋅ dt 3 ⋅ 7 d 2 y t( )⋅ dt 2 ⋅+ 21 d y t( )⋅ dt ⋅+ 9 y t( )+ 3 x t( )=(e) (Final value theorem) 0s s 8 9s 2 12s+ 4+ ⋅ 1 s lim → 2→Final steady state value for a unit step input: 5− r1 7.5min=Time required for the response to decay within 0.67% of its initial value: r1 0.667− min 1− =The response is stable and monotonic. The dominant root is
  • 16. Value of k: k M− g⋅ y0 := k 1.816 N m = Laplace transform: M s 2 ⋅ Y s( ) k Y s( )⋅+ F s( )= Solve for Y(s): Y s( ) 1 M s 2 ⋅ k+ F s( )= A1 s i k M ⋅− A2 s i k M ⋅+ += + terms of F(s) θ 0:= D 1:= Invert using Table 2-3.1: Y t( ) D sin k M t s⋅ θ+      ⋅:= + terms of f(t) The mobile will oscillate forever with a period of T 2π M k ⋅:= T 1.043 s= Smith & Corripio, 3rd edition Problem 2-9. Second-Order Response: Bird Mobile -Mg f(t) y(t) -ky(t) y = 0 Problem data: M 50gm:= y0 27− cm:= Solution: Force balance: M d v t( )⋅ dt ⋅ M− g⋅ k y t( )⋅− f t( )+= Velocity: d y t( )⋅ dt v t( )= Initial steady state: 0 M− g⋅ k y0⋅−= Subtract and substitute: M d 2 Y t( )⋅ dt 2 ⋅ k− Y t( )⋅ f t( )+= Y 0( ) 0=
  • 17. 0 2 4 1 0 1 Y t( ) t To more accurately reflect the motion of the bird mobile, we must add the resistance of the air. If we assume it to be a force proportional to the velocity: M d 2 Y t( )⋅ dt 2 ⋅ k− Y t( )⋅ b d Y t( )⋅ dt ⋅− f t( )+= With this added term the roots will have a negative real part, causing the oscillations to decay, as they do in practice: Y s( ) 1 M s 2 ⋅ b s⋅+ k+ F s( )= r1 b− b 2 4M k⋅−+ 2M = b− 2M i k M b 2 4M 2 −⋅+= Invert: b 2 4M k⋅< Y t( ) D e b− 2M t⋅ ⋅ sin k M b 2 4M 2 − t θ+       = + terms of f(t) Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 18. H 1:=T 1:=τ 1:=KH 1:=Invert using Table 2-1.1, and the real translation theorem: Y s( ) K H 1 s 1 s 1 τ + −      ⋅ 1 e sT− −( )= A2 0s K H⋅ τ s⋅ 1+ K H⋅=lim → =A1 1− τ s K H⋅ τ s⋅ K− H⋅=lim → = Y s( ) K τ s⋅ 1+ H⋅ 1 e sT− − s ⋅= A1 s 1 τ + A2 s +       1 e sT− −( )=Substitute: X s( ) H 1 e sT− − s ⋅= From Example 2-1.1b: (b) Pulse of Fig. 2-1.1b 0 2 4 0 0.5 1 Y t( ) t Y t( ) K τ e t− τ := Invert using Table 2-1.1: Y s( ) K τ s⋅ 1+ = X s( ) 1=From Table 2-1.1:X t( ) δ t( )=(a) Unit impulse: Y s( ) K τ s⋅ 1+ X s( )=Laplace transform and solve for Y(s): Y 0( ) 0=τ d Y t( )⋅ dt ⋅ Y t( )+ K X t( )⋅= Problem 2-10. Responses of general first-order differential equation Smith & Corripio, 3rd edition
  • 19. Y t( ) KH u t( ) e t− τ − u t T−( ) 1 e t T−( )− τ −      ⋅−      ⋅:= X t( ) H u t( ) u t T−( )−( )⋅:= 0 2 4 0 0.5 1 Y t( ) X t( ) t Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 20. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. The tank is an integrating process because its ouput, the level, is the time integral of its input, the inlet flow. 0 5 10 0 5 10 h t( ) t f(t) h(t) A 1:= h t( ) 1 A t:=Invert using Table 2-1.1:H s( ) 1 A 1 s 2 =Substitute: (Table 2-1.1)F s( ) 1 s =f t( ) u t( )=Response to a unit step in flow: H s( ) F s( ) 1 A s⋅ =Transfer function of the tank: H s( ) 1 A s⋅ F s( )=Laplace transform and solve for H(s): h 0( ) 0=A d h t( )⋅ dt ⋅ f t( )= Problem 2-11. Response of an integrating process Smith & Corripio, 3rd edition
  • 21. r2 1.745− min 1− = τe2 1− r2 := τe2 0.573 min= 5 τe1⋅ 19.64 min= Time for response to decay within 0.67% of its initial value: (b) 9 d 2 y t( )⋅ dt 2 ⋅ 9 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state and divide by the Y(t) coefficient: 9 4 d 2 Y t( )⋅ dt 2 ⋅ 9 4 d Y t( )⋅ dt ⋅+ Y t( )+ 2 X t( )= Y 0( ) 0= Compare coefficients to standard form: τ 9 4 min:= τ 1.5min= ζ 9min 4 2⋅ τ⋅ := ζ 0.75= K 2:= Underdamped. Find roots: r1 9− 9 2 4 9⋅ 4⋅−+ 2 9⋅ min := r1 0.5− 0.441i+ min 1− = Frequency of oscillations: ω 0.441 rad min := Period of oscillations: T 2π ω := T 14.25 min= Smith & Corripio, 3rd edition Problem 2-12. Second-order differeential equations of Problem 2-6. Standard form of the second-order equation: τ 2 d 2 Y t( )⋅ dt 2 ⋅ 2 ζ⋅ τ⋅ d Y t( )⋅ dt ⋅+ Y t( )+ K X t( )⋅= (b) 9 d 2 y t( )⋅ dt 2 ⋅ 18 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract the initial steady state: 9 d 2 Y t( )⋅ dt 2 ⋅ 18 d Y t( )⋅ dt ⋅+ 4 Y t( )+ 8 X t( )= Y 0( ) 0= Divide by Y(t) coefficient: 9 4 d 2 Y t( )⋅ dt 2 ⋅ 18 4 d Y t( )⋅ dt ⋅+ Y t( )+ 2 X t( )= Match coeffients to standard form: τ 9 4 min:= τ 1.5min= ζ 18min 4 2⋅ τ⋅ := ζ 1.5= Equivalent time constants: K 2:= Overdamped. Find roots: r1 18− 18 2 4 9⋅ 4⋅−+ 2 9⋅ min := r1 0.255− min 1− = τe1 1− r1 := τe1 3.927 min= r2 18− 18 2 4 9⋅ 4⋅−− 2 9⋅ min :=
  • 22. ζ 1= K 2:= Critically damped. Equivalent time constants: Find roots: r1 12− 12 2 4 9⋅ 4⋅−+ 2 9⋅ min := r1 0.667− min 1− = τe1 1− r1 := τe1 1.5min= r2 12− 12 2 4 9⋅ 4⋅−− 2 9⋅ min := r2 0.667− min 1− = τe2 1− r2 := τe2 1.5min= Time for response to decay to within 0.67% of its initial value: 5 τe1⋅ 7.5min= Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Decay ratio: e 0.5− min 1− T 0.00081= Percent overshoot: e 0.5− min 1− T 2 2.8%= Rise time: T 4 3.56 min= Settling time: 5− 0.5− min 1− 10 min= (c) 9 d 2 y t( )⋅ dt 2 ⋅ 12 d y t( )⋅ dt ⋅+ 4 y t( )+ 8 x t( ) 4−= Subtract initial steady state and divide by the coefficient of Y(t): 9 4 d 2 Y t( )⋅ dt 2 ⋅ 3 d Y t( )⋅ dt ⋅+ Y t( )+ 2 X t( )= Y 0( ) 0= Compare coefficients to standard form: τ 9 4 min:= τ 1.5min= ζ 3min 2 τ⋅ :=
  • 23. Y s( ) K ∆x 1− τ 1 s 1 τ +     2 1 s 1 τ +       − 1 s +        ⋅= A2 1− τ s d ds K ∆x⋅ τ 2 s      1− τ s K− ∆x⋅ τ 2 s 2 K− ∆x⋅=lim → =lim → = A3 0s K ∆x⋅ τ s⋅ 1+( )2 K ∆x⋅=lim → =A1 1− τ s K ∆x⋅ τ 2 s K− ∆x⋅ τ =lim → = Y s( ) K τ s⋅ 1+( )2 ∆x s = A1 s 1 τ +     2 A2 s 1 τ + + A3 s += Step response for the critically damped case: Y t( ) K ∆x u t( ) τe1 τe1 τe2− e t− τe1 − τe2 τe2 τe1− e t− τe2 −         ⋅= (2-5.10)Invert using Table 2-1.1: Y s( ) K ∆x τe1− τe1 τe2− 1 s 1 τe1 + τe2 τe2 τe1− 1 s 1 τe2 + − 1 s +         ⋅= A3 0s K ∆x⋅ τe1 s⋅ 1+( ) τe2 s⋅ 1+( ) K ∆x⋅=lim → = A2 K− ∆x⋅ τe2⋅ τe2 τe1− =A1 1− τe1 s K ∆x⋅ τe1 τe2⋅ s 1 τe2 +     ⋅ s K− ∆x⋅ τe1⋅ τe1 τe2− =lim → = Y s( ) K τe1 s⋅ 1+( ) τe2 s⋅ 1+( ) ∆x s = A1 s 1 τe1 + A2 s 1 τe2 + + A3 s += X s( ) ∆x s =Step response, over-damped second-order differential equation: Problem 2-13. Partial fraction expansion coefficients for Eqs. 2-5.10 to 2-5.13 Smith & Corripio, 3rd edition
  • 24. Y s( ) K τ s⋅ 1+( )2 r s 2 = A1 s 1 τ +     2 A2 s 1 τ + + A3 s 2 + A4 s += Ramp response for critically damped case: Y t( ) K r τe1 2 τe1 τe2− e t− τe1 τe2 2 τe2 τe1− e t− τe2 + t+ τe1 τe2+( )−           ⋅= (2-5.12) Invert using Table 2-1.1: Y s( ) K r τe1 2 τe1 τe2− 1 s 1 τe1 + τe2 2 τe2 τe1− 1 s 1 τe2 + + 1 s 2 + τe1 τe2+ s −         ⋅= K r τe1− τe2−( )⋅= A4 0s d ds K r⋅ τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅       ⋅ 0s K r⋅ τe1− τe2 s⋅ 1+( )⋅ τe2 τe1 s⋅ 1+( )⋅− τe1 s⋅ 1+( ) 2 τe2 s⋅ 1+( ) 2 ⋅lim → =lim → = A3 0s K r⋅ τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅ K r⋅=lim → = A2 K r⋅ τe2 2 ⋅ τe2 τe1− =A1 1− τe1 s K r⋅ τe1 τe2⋅ s 1 τe2 +     ⋅ s 2 ⋅ K r⋅ τe1 2 ⋅ τe1 τe2− =lim → = Y s( ) K τe1 s⋅ 1+( ) τe2 s⋅ 1+( )⋅ r s 2 = A1 s 1 τe1 + A2 s 1 τe2 + + A3 s 2 + A4 s += X s( ) r s 2 =Ramp response for the over-damped case: Y t( ) K ∆x u t( ) t τ 1+     e t− τ −         ⋅= (2-5.11) Invert using Table 2-1.1:
  • 25. A1 1− τ s K r⋅ τ 2 s 2 K r⋅=lim → = A3 0s K r⋅ τ s⋅ 1+( )2 K r⋅=lim → = A2 1− τ s d ds K r⋅ τ 2 s 2      1− τ s 2− K r⋅ τ 2 s 3 ⋅ 2 K⋅ r⋅ τ⋅=lim → =lim → = A4 0s d ds K r⋅ τ s⋅ 1+( )2       0s 2− K r⋅ τ⋅ τ s⋅ 1+( )3 ⋅ 2− K⋅ r⋅ τ⋅=lim → =lim → = Y s( ) K r 1 s 1 τ +     2 2 τ⋅ s 1 τ + + 1 s 2 + 2 τ⋅ s −           ⋅= Invert using Table 2-1.1: Y t( ) K r⋅ t 2 τ⋅+( )e t− τ t+ 2 τ⋅−      ⋅= (2-5.13) Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 26. Smith & Corripio, 3rd edition X s( ) ∆x s = Problem 2-14. Derive step reponse of n lags in series Y s( ) K 1 n k τk s⋅ 1+( )∏ = ∆x s = A0 s 1 n k Ak s 1 τk + ∑ = += A0 0s K ∆x⋅ 1 n k τk s⋅ 1+( )∏ = K ∆x⋅=lim → = Invert using Table 2-1.1: Y t( ) K ∆x⋅ u t( )⋅ 1 n k Ak e t− τk ⋅ ∑ = += Ak 1− τk s K ∆x⋅ s 1 j k≠( )⋅ n j s 1 τj +     ∏ = ⋅ 1 n j τj∏ = ⋅ K ∆x⋅ 1− τk 1 j k≠( ) n j 1− τk 1 τj +     1 n j τj∏ = ⋅ ∏ = ⋅ =lim → = K− ∆x⋅ 1 τk 1 τk n 1− ⋅ τk⋅ 1 j k≠( )⋅ n j τk τj−( )∏ = ⋅ = K− ∆x⋅ τk n 1− ⋅ 1 j k≠( ) n j τk τj−( )∏ = = Substitute: Y t( ) K ∆x u t( ) 1 n k τk n 1− 1 j k≠( ) n j τk τj−( )∏ = e t− τk ∑ = −               ⋅= (2-5.23) Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 27. r1 τ1 τ2+( )− τ1 τ2+( ) 2 4τ1 τ2 1 k2−( )⋅−+ 2 τ1⋅ τ2⋅ = (b) The response is stable if both roots are negative if 0 < k2 < 1. This term is positive as long as τ1, τ2, and k2 are positive, so the response is overdamped. τ1 τ2−( ) 2 4τ1 τ2⋅ k2⋅+= τ1 2 2τ1 τ2⋅− τ2 2 + 4τ1 τ2⋅ k2⋅+= τ1 τ2+( ) 2 4τ1 τ2⋅ 1 k2−( )⋅− τ1 2 2τ1 τ2⋅+ τ2 2 + 4τ1 τ2⋅− 4τ1 τ2⋅ k2⋅+= (a) The response is overdamped if the term in the radical is positive: r1 τ1 τ2+( )− τ1 τ2+( ) 2 4τ1 τ2 1 k2−( )⋅−+ 2 τ1⋅ τ2⋅ = τ1 τ2⋅ s 2 ⋅ τ1 τ2+( )s+ 1+ k2− 0= Find the roots of the denominator: ζ τ1 τ2+ 2 τ⋅ 1 k2−( )⋅ = τ1 τ2+ 2 τ1 τ2⋅ 1 k2−( )⋅⋅ =Damping ratio: τ τ1 τ2⋅ 1 k2− =Time constant:K k1 1 k2− =Gain:Comparing coefficients: Y s( ) k1 1 k2− τ1 τ2⋅ 1 k2−      s 2 τ1 τ2+ 1 k2− s+ 1+ X s( )= Rerrange interacting equation: Y s( ) K τ 2 s 2 2ζ τ⋅ s⋅+ 1+ X s( )= Standard form of the second-order differential equaton, Eq. 2-5.4: Y s( ) k1 τ1 s⋅ 1+( ) τ2 s⋅ 1+( )⋅ k2− X s( )= k1 τ1 τ2⋅ s 2 ⋅ τ1 τ2+( )s+ 1+ k2− X s( )= Problem 2-15. Transfer function of second-order interacting systems. Smith & Corripio, 3rd edition
  • 28. If τ1, τ2, and k2 are positive, and if k2 < 1, then the positive term in the numerator is always less in magnitude than the negative term, and the root is negative. The other root has to be negative because both terms in the numerator are negative. So, the response is stable. (c) Effective time constants As the response is overdamped, we can derive the formulas for the two effective time constants. These are the negative reciprocals of the two real roots: τe1 2 τ1⋅ τ2⋅ τ1 τ2+ τ1 τ2−( ) 2 4τ1 τ2⋅ k2⋅+− = τe1 2 τ1⋅ τ2⋅ τ1 τ2+ τ1 τ2−( ) 2 4τ1 τ2⋅ k2⋅++ = The first of these is the dominant time constant. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 29. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. The response canot be unstable for positive Kc. The time constant and damping ratio are always real and positive for positive gain. Cannot be undamped for finite Kc. ζ 0=(iii) Undamped: ζ cannot be negative for positive Kc 1 3 Kc< ∞<0 ζ< 1<(ii) Underdamped: Kc 1 3 < 4 3 1 Kc+> 2 3 1 Kc+( ) 1>ζ 1>(i) Overdamped: Ranges of the controller gain for which the response is: ζ 4 2 τ⋅ 1 Kc+( )⋅ = 2 3 1 Kc+( )⋅ =Damping ratio: τ 3 1 Kc+ =Time constant:K Kc 1 Kc+ =Gain: C s( ) Kc 1 Kc+ 3 1 Kc+ s 2 4 1 Kc+ s+ 1+ R s( )= Rearrange feedback loop transfer function and compare coefficients: C s( ) K τ 2 2ζ τ⋅ s⋅+ 1+ R s( )=Standard second-order transfer function, Eq. 2-5.4: This is a second-order process with a proportional controller. C s( ) Kc 3s 1+( ) s 1+( )⋅ Kc+ R s( )= Kc 3s 2 4s+ 1+ Kc+ = Problem 2-16. Transfer function of a second-order feedback control loop Smith & Corripio, 3rd edition
  • 30. Y X t( )( ) α 1 α 1−( )xb+  2 X t( )= Y X t( )( ) y x t( )( ) y xb( )−=X t( ) x t( ) xb−=Let y x t( ) y xb( ) 1 α 1−( ) xb⋅+  α⋅ α xb⋅ α 1−( )⋅− 1 α 1−( )xb+  2 x t( ) xb−( )+= y x t( )( ) α x t( )⋅ 1 α 1−( )x t( )+ = (c) Eqilibrium mole fraction by relative volatility, Eq. 2-6.3: P o Γ t( )( ) B p o ⋅ Tb( ) Tb C+( )2 Γ t( )= P o Γ t( )( ) p o T t( )( ) p o Tb( )−=Γ t( ) T t( ) Tb−=Let p o T t( )( ) p o Tb( ) B Tb C+( )2 e A B Tb C+ − T t( ) Tb−( )+= p o T t( )( ) e A B T t( ) C+ − = (b) Antoine equation for vapor pressure, Eq. 2-6.2: Hd Γ t( )( ) a1 2a2 Tb⋅+ 3a3 Tb 2 ⋅+ 4a4 Tb 3 ⋅+   Γ t( )= Hd Γ t( )( ) H T t( )( ) H Tb( )−=Γ t( ) T t( ) Tb−=Let H T t( )( ) H Tb( ) a1 2a2 Tb⋅+ 3a3 Tb 2 ⋅+ 4a4 Tb 3 ⋅+    T t( ) Tb−( )+= H T t( )( ) H0 a1 T t( )⋅+ a2 T 2 ⋅ t( )⋅+ a3 T 3 ⋅ t( )+ a4 T 4 ⋅ t( )+= (use subscript b for base value)(a) Enthalpy as a function of temperature, Eq. 2-6.1: Problem 2-17. Linearization of common process model functions. Smith & Corripio, 3rd edition
  • 31. (d) Flow as a function of pressure drop, Eq. 2-6.4: f ∆p t( )( ) k ∆p t( )⋅= f ∆p t( )( ) f ∆pb( ) k 2 ∆pb⋅ ∆p t( ) ∆pb−( )+= Let ∆P t( ) ∆p t( ) ∆pb−= F ∆P t( )( ) f ∆p t( )( ) f ∆pb( )−= F ∆P t( )( ) k 2 ∆pb⋅ ∆P t( )= (e) Radiation heat transfer rate as a function of temperature, Eq. 2-6.5: q T t( )( ) ε σ⋅ A⋅ T 4 ⋅ t( )= q T t( )( ) q Tb( ) 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅ T t( ) Tb−( )+= Let Γ t( ) T t( ) Tb−= Q Γ t( )( ) q T t( )( ) q Tb( )−= Q Γ t( )( ) 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅ Γ t( )⋅= Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 32. Tmax 610 K= Tmin 590 K= Temperature range for which the heat transfer rate is within 5% of the linear approximation: error ε σ⋅ A⋅ T 4 ⋅ ε σ⋅ A⋅ Tb 4 ⋅ 4ε σ⋅ A⋅ Tb 3 ⋅ T Tb−( )+   −= 0.05 ε σ⋅ A T 4 ⋅⋅( )= Simplify and rearrange: T 4 4 Tb 3 ⋅ T⋅− 3Tb 4 + 0.05T 4 = As the error is always positive, the absolute value brackets can be dropped. Rearrange into a polynomial and find its roots: 0.95 T Tb      4 4 T Tb − 3+ 0= polyroots 3 4− 0 0 0.95                         1.014− 1.438i− 1.014− 1.438i+ 0.921 1.108           = Ignore the complex roots. The other two roots are the lower and upper limits of the range: 0.921 T Tb ≤ 1.108≤ For Tb 400K:= Tmin 0.921 Tb⋅:= Tmax 1.108Tb:= Tmin 368 K= Tmax 443 K= Smith & Corripio, 3rd edition Problem 2-18. Linearization of radiation heat transfer--range of accuracy. q T( ) 4ε σ⋅ A⋅ T 4 ⋅= Use subscript "b" for base value for linearization. From the solution to Problem 2-17(e), the slope is: d q T( )⋅ dT 4 ε⋅ σ⋅ A⋅ T 3 ⋅= Temperature range for which the slope is within 5% of the slope at the base value K 1.8R:= error 4 ε⋅ σ⋅ A⋅ T 3 ⋅ 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅−= 0.05 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅   ⋅= Tmax 3 1.05 Tb= 1.0164Tb=T Tb      3 1− 0.05= Simplify and rearrange: Tmin 3 0.95 Tb= 0.983Tb= For Tb 400K:= Tmax 3 1.05 Tb:= Tmin 3 0.95 Tb:= Tmax 407 K= Tmin 393 K= Tb 600K:= Tmax 3 1.05 Tb:= Tmin 3 0.95 Tb:=
  • 33. Tb 600K:= Tmin 0.921 Tb⋅:= Tmax 1.108Tb:= Tmin 553 K= Tmax 665 K= So the range for which the linear approximation is within 5% of the heat rate is much wider than the range for which the value of the slope is within 5% of the actual slope. We must keep in mind that the parameters of the dynamic model are a function of the slope, not the heat rate. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 34. 0 x≤ 0.362≤ (b) xmin 1.1 0.9,( ) 0.637= xmax 1.1 0.9,( ) 1.183= (one) 0.637 x≤ 1≤ (c) xmin 5 0.1,( ) 0.092= xmax 5 0.1,( ) 0.109= 0.092 x≤ 0.109≤ (d) xmin 5 0.9,( ) 0.872= xmax 5 0.9,( ) 0.93= 0.872 x≤ 0.93≤ The range of accuracy is narrower the higher α and the higher xb. For the vapor composition: y x( ) α x⋅ 1 α 1−( )x+ = error α x⋅ 1 α 1−( )x+ α xb⋅ 1 α 1−( )xb+ α 1 α 1−( )xb+  2 x xb−( )+ 1−= 0.05= α x⋅ 1 α 1−( )x+ 1 α 1−( )xb+  2 α xb 1 α 1−( )xb+ ⋅ α x⋅+ α xb⋅− 1− 0.05= The error is always negative, so we can change signs and drop the absolute value bars: Smith & Corripio, 3rd edition Problem 2-19. Equilibrium vapor composition--range of accuracy y x( ) α x⋅ 1 α 1−( )x+ = Use subscript "b" for base value for linearization. From the solution to Problem 2-17(c): d y x( )⋅ dx α 1 α 1−( )x+  2 = For the slope: error α 1 α 1−( )x+  2 α 1 α 1−( )xb+  2 −= 0.05 α 1 α 1−( )xb+  2 = Simplify and rearrange: 1 α 1−( )xb+ 1 α 1−( )x+       2 1− 0.05= Lower limit: 1 α 1−( )xb+ 1 α 1−( )xmin+ 1.05= xmin α xb,( ) 1 α 1−( )xb+ 1.05− 1.05 α 1−( ) := Upper limit: 1 α 1−( )xb+ 1 α 1−( )xmax+ 0.95= xmax α xb,( ) 1 α 1−( )xb+ 0.95− 0.95 α 1−( ) := (a) xmin 1.1 0.1,( ) 0.143−= (zero) xmax 1.1 0.1,( ) 0.362=
  • 35. 0.40 x≤ 1≤ (c) α 5:= xb 0.1:= polyroots 0.95 α 1−( )⋅ 0.05− α 1−( )2 xb 0.05 xb − 2 α 1−( )− 0.95 α 1−( )                         0.605 1.653      = xmin 0.605xb:= xmax 1.653xb:= xmin 0.061= xmax 0.165= 0.061 x≤ 0.165≤ (d) α 5:= xb 0.9:= polyroots 0.95 α 1−( )⋅ 0.05− α 1−( )2 xb 0.05 xb − 2 α 1−( )− 0.95 α 1−( )                         0.577 1.732      = xmin 0.577xb:= xmax 1.732xb:= xmin 0.519= xmax 1.559= 0.519 x≤ 1≤ Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 1 α 1−( )xb+  2 α x⋅ 0.95 1 α 1−( )x+  α α 1−( )xb 2 α x⋅+   = 0.95 α 1−( )⋅ x 2 ⋅ 0.95 α 1−( )2 ⋅ xb 2 ⋅ 0.95+ 1− 2 α 1−( )⋅ xb⋅− α 1−( )2 xb 2 ⋅−    x⋅+ 0.95 α 1−( )⋅ xb⋅+ 0.95 α 1−( ) x xb      2 0.05− α 1−( )2 ⋅ xb 0.05 xb − 2 α 1−( )−      x xb ⋅+ 0.95 α 1−( )+ 0= Find the roots, one is the lower limit and the other one the upper limit: (a) α 1.1:= xb 0.1:= polyroots 0.95 α 1−( )⋅ 0.05− α 1−( )2 xb 0.05 xb − 2 α 1−( )− 0.95 α 1−( )                         0.138 7.231      = xmin 0.138xb:= xmax 7.231xb:= xmin 0.014= xmax 0.723= 0.014 x≤ 0.723≤ (b) α 1.1:= xb 0.9:= polyroots 0.95 α 1−( )⋅ 0.05− α 1−( )2 xb 0.05 xb − 2 α 1−( )− 0.95 α 1−( )                         0.444 2.25      = xmin 0.444xb:= xmax 2.25xb:= xmin 0.4= xmax 2.025=
  • 36. 2 k⋅ cAb⋅ cBb⋅ 2 hr 1− = k cAb 2 ⋅ 2 hr 1− = R CA t( ) CB t( ),( ) 2hr 1− CA t( ) 2hr 1− CB t( )+= For cA 3 kmole m 3 := 2 k⋅ cA⋅ cBb⋅ 2 k⋅ cAb⋅ cBb⋅− 1 hr 1− = (off by 50%) k cA 2 ⋅ k cAb 2 ⋅− 2.5hr 1− = (off by 125%) For cB 2 kmole m 3 := 2 k⋅ cAb⋅ cB⋅ 2 k⋅ cAb⋅ cBb⋅− 2 hr 1− = (off by 100%) k cAb 2 ⋅ k cAb 2 ⋅− 0 hr 1− = (same as the base value) These errors on the parameters of the linear approximation are significant, meaning that it is only valid for very small deviations of the reactant concentrations from their base values. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Smith & Corripio, 3rd edition Problem 2-20. Linearization of chemical reaction rate. kmole 1000mole:= r cA t( ) cB t( ),( ) k cA t( ) 2 ⋅ cB t( )= Use subscript "b" for base value for linearization. Problem parameters: k 0.5 m 6 kmole 2 hr := cAb 2 kmole m 3 := cBb 1 kmole m 3 := Linearize: r cA t( ) cB t( ),( ) r cAb cBb,( ) 2k cAb⋅ cBb cA t( ) cAb−( )⋅+ k cAb 2 ⋅ cB t( ) cBb−( )+= Let R CA t( ) CB t( ),( ) r cA t( ) cB t( ),( ) r cAb cBb,( )−= CAb t( ) cA t( ) cAb−= CB t( ) cB t( ) cBb−= R CA t( ) CB t( ),( ) 2k cAb⋅ cBb⋅ CA t( )⋅ k cAb 2 ⋅ CB t( )⋅+= At the given base conditions:
  • 37. degC K:= mmHg atm 760 := mole% %:= Numerical values for benzene at: pb 760mmHg:= Tb 95degC:= xb 50mole%:= A 15.9008:= B 2788.51degC:= C 220.80degC:= Let pob p o Tb( )= pob e A B Tb C+ − mmHg:= pob 1177 mmHg= xb B⋅ pob⋅ pb Tb C+( )2 ⋅ 0.022 1 degC = pob pb 1.549= pob xb⋅ pb 2 0.00102 1 mmHg = Smith & Corripio, 3rd edition Problem 2-21. Linearization of Raoult's Law for equilibrium vapor composition. Raoult's Law: y T t( ) p t( ), x t( ),( ) p o T t( )( ) p t( ) x t( )= p o T t( )( ) e A B T t( ) C+ − = Linearize: Use subscript "b" for base value for linearization. y T t( ) p t( ), x t( ),( ) y Tb pb, xb,( ) xb pb δ δT ⋅ p o T t( )( )⋅ ⋅ T t( ) Tb−( )⋅+ p o Tb( ) pb x t( ) xb−( )+= p o − Tb( )xb pb 2 p t( ) pb−( )+ δ δT e A B T t( ) C+ −     ⋅ B Tb C+( )2 e A B Tb C+ − ⋅= B p o ⋅ Tb( )⋅ Tb C+( )2 = Let Y Γ t( ) P t( ), X t( ),( ) y T t( ) p t( ), x t( ),( ) y Tb pb, xb,( )−= Γ t( ) T t( ) Tb−= P t( ) p t( ) pb−= X t( ) x t( ) xb−= Y Γ t( ) P t( ), X t( ),( ) xb B⋅ p o ⋅ Tb( )⋅ pb Tb C+( )2 ⋅ Γ t( ) p o Tb( ) pb X t( )+ p o Tb( ) xb⋅ pb 2 P t( )−=
  • 38. Y Γ t( ) P t( ), X t( ),( ) 0.022 degC Γ t( ) 1.549 X t( )+ 0.00102 mmHg P t( )−= pob xb⋅ pb 77.441 %= y Tb pb, xb,( ) 77.44mole%= Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
  • 39. From the initial steady state: 0 fb cA.b cAb−( )⋅ k Tb( ) V⋅ cAb⋅−= cAb fb cAib⋅ fb kb V⋅+ := cAb 9.231 10 5− × kmole m 3 = Calculate parameters: τ V fb kb V⋅+ := K1 cAib cAb− fb V kb⋅+ := K2 fb fb V kb⋅+ := τ 0.01 s= K1 0.046 s kmole⋅ m 6 = K3 V− kb⋅ E⋅ cAb⋅ 1.987 kcal kmole K⋅ Tb 2 ⋅ fb V kb⋅+( )⋅ := K2 7.692 10 6− ×= fb V kb⋅+ 260.002 m 3 s = K3 3.113− 10 6− × kmol m 3 K = Linearized equation: 0.01 sec⋅ d CA t( )⋅ dt ⋅ CA t( )+ 0.046 kmole m 3 s m 3 F t( ) 7.692 10 6− ⋅ CAi t( )+ 3.113 kmole m 3 K Γ t( )−= Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Smith & Corripio, 3rd edition Problem 2-22. Linearization of reactor of Examples 2-6.4 and 2-6.1. From the results of Example 2-6.4: τ d CA t( )⋅ dt ⋅ CA t( )+ K1 F t( )⋅ K2 CAi t( )⋅+ K3 Γ t( )⋅+= Use subscript "b" for base value for linearization. τ V fb V k Tb( )⋅+ = K1 cAib cAb− fb V k Tb( )⋅+ = K2 fb fb V k Tb( )⋅+ = K3 V− k Tb( )⋅ E cAb⋅ R Tb 2 ⋅ fb V k Tb( )⋅+( ) = Problem parameters: V 2.6m 3 := fb 0.002 m 3 s := cAib 12 kmole m 3 := Let kb k Tb( )= Tb 573K:= kb 100s 1− := E 22000 kcal kmole :=
  • 40. p t( ) ρ t( ) v 2 t( ) 2 ⋅ po+= v t( ) 2 p t( ) po−( ) ρ t( ) ⋅= Flow through the orifice caused by the bullet: wo t( ) ρ t( ) Ao⋅ v t( )⋅= Ao 2 ρ t( )⋅ p t( ) po−( )⋅⋅= Ideal gas law: ρ t( ) M p t( )⋅ Rg T 273K+( )⋅ = Substitute into mass balance: V M⋅ Rg T 273 K⋅+( )⋅ d p t( )⋅ dt ⋅ wi t( ) Ao 2 M⋅ Rg T 273K+( )⋅ p t( ) p t( ) po−( )⋅−= Solve for the derivative: d p t( )⋅ dt g wi t( ) p t( ),( )= Rg T 273K+( )⋅ V M⋅ wi t( ) Ao 2 M⋅ Rg T 273K+( )⋅ p t( ) p t( ) po−( )⋅⋅−       = Linearize: d p t( )⋅ dt δ g⋅ δ wi⋅ b ⋅ wi t( ) wb−( ) δ g⋅ δ p⋅ b ⋅ p t( ) pb−( )+= Let P t( ) p t( ) pb−= Wi t( ) wi t( ) wb−= a1 δ g⋅ δ wi⋅ b ⋅= a1 Rg T 273K+( )⋅ V M⋅ := a1 65.56 kPa kg = Smith & Corripio, 3rd edition Problem 2-23. Pressure in a compressed air tank when punctured. V p(t) wi(t) wo(t) po Assumptions: Air obeys ideal gas law• Constant temperature• Design conditions: kPa 1000Pa:= pb 500 101.3+( )kPa:= M 29 kg kmole := Ao 0.785cm 2 := T 70degC:= V 1.5m 3 := Rg 8.314 kPa m 3 ⋅ kmole K⋅ ⋅:= po 101.3kPa:= Use subscript "b" for base value for linearization. Solution: Mass balance on the tank: V d ρ t( )⋅ dt ⋅ wi t( ) wo t( )−= Bernoulli's equation:
  • 41. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. K 1.8R:= If the compressor shuts down it will take approximately 5(42.8) = 214 sec (3.5 min) for the pressure transient to die out, according to the linear approximation. (See the results of the simulation, Problem 13-3, to see how long it actually takes.) P s( ) Wi s( ) K τ s⋅ 1+ =Transfer function: K 2.8 10 3 × kPa sec⋅ kg =τ 42.9 sec= K a1 a2− :=τ 1 a2− :=Then τ d P t( )⋅ dt ⋅ P t( )+ K Wi t( )⋅=Compare to standard form of first-order equation: P 0( ) 0= 1 a2− d P t( )⋅ dt ⋅ P t( )+ a1 a2− Wi t( )= d P t( )⋅ dt a1 Wi t( )⋅ a2 P t( )⋅+=Substitute: a2 0.023− sec 1− =a2 Ao− 2 V⋅ 2 Rg⋅ T 273 K⋅+( )⋅ M pb⋅ pb po−( )⋅ kPa 1000Pa ⋅ 2 pb⋅ po−( )1000Pa kPa ⋅ m 100cm      2 := a2 δ g⋅ δ p⋅ b ⋅= Ao− V 2 Rg⋅ T 273K+( )⋅ M ⋅ 1 2 pb pb p0−( )  1− 2 ⋅ 2pb po−( )=
  • 42. Γ t( ) T t( ) Tb−= Substitute: d Γ t( )⋅ dt a1 Γs t( )⋅ a2 Γ t( )⋅+= Γ 0( ) 0= (base is initial steady state) Standard form of the first-order differential equation: τ d Γ t( )⋅ dt ⋅ Γ t( )+ K Γs t( )⋅= Divide by -a2 and rearrange: 1 a2− d Γ t( )⋅ dt ⋅ Γ t( )+ a1 a2− Γs t( )= M cv⋅ 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅ d Γ t( )⋅ dt ⋅ Γ t( )+ Tsb Tb      3 Γs t( )= Compare coefficients: τ M cv⋅ 4 ε⋅ σ⋅ A⋅ Tb 3 ⋅ = K Tsb Tb      3 = Laplace transform: Γ s( ) Γs s( ) K τ s⋅ 1+ = The input variable is the temperature of the oven wall. See problem 13-4 for the simulation. Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Smith & Corripio, 3rd edition Problem 2-24. Temperature of a turkey in an oven. T(t) Ts(t) M Assumptions Uniform turkey temperature• Negligible heat of cooking• Radiation heat transfer only• Energy balance on the turkey: M cv⋅ d T t( )⋅ dt ⋅ ε σ⋅ A⋅ Ts 4 t( ) T 4 t( )−   ⋅= Use subscript "b" for linearization base values. Solve for the derivative: d T t( )⋅ dt g Ts t( ) T t( ),( )= ε σ⋅ A⋅ M cv⋅ Ts 4 t( ) T 4 t( )−   = Linearize: d T t( )⋅ dt a1 Ts t( ) Tsb−( )⋅ a2 T t( ) Tb−( )⋅+= where a1 δ g⋅ δTs b ⋅= 4 ε⋅ σ⋅ A⋅ M cv⋅ Tsb 3 = a2 δ g⋅ δT b ⋅= 4− ε⋅ σ⋅ A⋅ M cv⋅ Tb 3 = Let Γs t( ) Ts t( ) Tsb−=
  • 43. Q t( ) q t( ) qb−= a1 δ g⋅ δq b ⋅= a2 δ g⋅ δT b ⋅= a1 1 C := a2 4− α⋅ Tb 3 ⋅ C := a1 5.556 10 3− × R BTU = a2 0.381− hr 1− = Substitute: d Γ t( )⋅ dt a1 Q t( )⋅ a2 Γ t( )⋅+= Γ 0( ) 0= (base is initial value) Standard form of first-order differential equation: τ d Γ t( )⋅ dt ⋅ Γ t( )+ K Q t( )⋅= Divide by -a2 and rearrange: 1 a2− d Γ t( )⋅ dt ⋅ Γ t( )+ a1 a2− Q t( )= C 4 α⋅ Tb 3 ⋅ d Γ t( )⋅ dt ⋅ Γ t( )+ 1 4α Tb 3 ⋅ Q t( )= Compare coefficients: τ C 4α Tb 3 ⋅ := K 1 4α Tb 3 ⋅ := τ 2.62 hr= K 0.01458 R hr⋅ BTU = Smith & Corripio, 3rd edition Problem 2-25. Slab heated by an electric heater by radiation. T(t) Ts q(t) Assumptions: Uniform temperature of the slab• Heat transfer by radiation only• Energy balance on the slab: M cv⋅ d T t( )⋅ dt ⋅ q t( ) ε σ⋅ A⋅ T 4 t( ) Ts 4 −   ⋅−= Let C M cv⋅= α ε σ⋅ A⋅= Substitute C d T t( )⋅ dt ⋅ q t( ) α T 4 t( ) Ts 4 −   −= Problem parameters: Use subscript "b" to denote linearization base value. C 180 BTU R := α 5 10 8− ⋅ BTU hr R 4 ⋅ := Ts 540R:= Tb 700R:= Solve for the derivative: d T t( )⋅ dt g q t( ) T t( ),( )= 1 C q t( ) α C T 4 t( ) Ts 4 −   −= Linearize: d T t( )⋅ dt a1 q t( ) qb−( )⋅ a2 T t( ) Tb−( )⋅+= Let Γ t( ) T t( ) Tb−=
  • 44. Transfer function: Γ s( ) Q s( ) K τ s⋅ 1+ = Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.