Evaluating Definite Integrals
by Substitution
Two Methods for Making
Substitutions in Definite
Integrals
• “Conveniently” ignore the limits of
integration and revisit them at the end
of the process.
• Recalculate the limits in the very
beginning so you don’t have to revisit
them at the end.
Let’s see how does that
works without
recalculating limits of
integration.
2

∫ x( x
0

3

2

1/2
I

+1) dx =

∫(x

2

+1)

2
3 I

1
xdx =
2

4 2

∫ u du =
3

 ( x 2 +1)  1  2
1u
 = ( 2 +1) 4 − ( 0 2 +1) 4  =
du = 2xdx
=



 8
2 4
8
0
1
624
= 78
[ 625 −1] =
8
8

u = x 2 +1

4
How about
recalculating limits of
integration?
π
8

∫ sin

5

2x cos2xdx =

π
1/2 8
I

0

u = sin 2x
du = 2 cos2xdx

x = 0 → u = sin(0) = 0
π  1
π
x = → u = sin  ÷=
4
8
2

∫ sin 2x
5

0

1
2

1u 

2 6 0
6

2
I

1
cos2xdx =
2

1
2

∫

u5du =

0

 1 6

1
6
= 
÷ − ( 0)  =
12  2 




1 1  1
 − 0 ÷=
12  8  96
Practice Time!!!
9

5

1. ∫ ( 2x − 5) ( x − 3) dx =
2
3
4

dx
2. ∫
=
0 1− x
ln3

3. ∫ e x ( 1+ e
0
2

1
x 2

)

dx =

dx
4. ∫ 2
=
1 x − 6x + 9
2

5. ∫ xe
1

− x2

=
More!!!
π
6

1. ∫ 2 cos3xdx =
0

(

ln 2

2.

∫

ln 2

3

)

e− x dx
1− e

−2 x

=

2

3. ∫ 5x −1dx =
1
ln 5

4. ∫ e x ( 3 − 4e x ) dx =
0
π
6

5. ∫ tan 2θ dθ =
0
More!!!
π
6

1. ∫ 2 cos3xdx =
0

(

ln 2

2.

∫

ln 2

3

)

e− x dx
1− e

−2 x

=

2

3. ∫ 5x −1dx =
1
ln 5

4. ∫ e x ( 3 − 4e x ) dx =
0
π
6

5. ∫ tan 2θ dθ =
0
6.1 & 6.4 an overview of the area problem area
6.1 & 6.4 an overview of the area problem area
6.1 & 6.4 an overview of the area problem area

6.1 & 6.4 an overview of the area problem area

  • 1.
  • 2.
    Two Methods forMaking Substitutions in Definite Integrals • “Conveniently” ignore the limits of integration and revisit them at the end of the process. • Recalculate the limits in the very beginning so you don’t have to revisit them at the end.
  • 3.
    Let’s see howdoes that works without recalculating limits of integration. 2 ∫ x( x 0 3 2 1/2 I +1) dx = ∫(x 2 +1) 2 3 I 1 xdx = 2 4 2 ∫ u du = 3  ( x 2 +1)  1  2 1u  = ( 2 +1) 4 − ( 0 2 +1) 4  = du = 2xdx =     8 2 4 8 0 1 624 = 78 [ 625 −1] = 8 8 u = x 2 +1 4
  • 4.
    How about recalculating limitsof integration? π 8 ∫ sin 5 2x cos2xdx = π 1/2 8 I 0 u = sin 2x du = 2 cos2xdx x = 0 → u = sin(0) = 0 π  1 π x = → u = sin  ÷= 4 8 2 ∫ sin 2x 5 0 1 2 1u   2 6 0 6 2 I 1 cos2xdx = 2 1 2 ∫ u5du = 0  1 6  1 6 =  ÷ − ( 0)  = 12  2     1 1  1  − 0 ÷= 12  8  96
  • 5.
    Practice Time!!! 9 5 1. ∫( 2x − 5) ( x − 3) dx = 2 3 4 dx 2. ∫ = 0 1− x ln3 3. ∫ e x ( 1+ e 0 2 1 x 2 ) dx = dx 4. ∫ 2 = 1 x − 6x + 9 2 5. ∫ xe 1 − x2 =
  • 6.
    More!!! π 6 1. ∫ 2cos3xdx = 0 ( ln 2 2. ∫ ln 2 3 ) e− x dx 1− e −2 x = 2 3. ∫ 5x −1dx = 1 ln 5 4. ∫ e x ( 3 − 4e x ) dx = 0 π 6 5. ∫ tan 2θ dθ = 0
  • 7.
    More!!! π 6 1. ∫ 2cos3xdx = 0 ( ln 2 2. ∫ ln 2 3 ) e− x dx 1− e −2 x = 2 3. ∫ 5x −1dx = 1 ln 5 4. ∫ e x ( 3 − 4e x ) dx = 0 π 6 5. ∫ tan 2θ dθ = 0