Rolle’s Theorem
and Mean Value
Theorem
Theorem:
Example
Let f(x) = sin 2x. Find all values of c in the interval
such that f’(c) = 0
Does it satisfy Rolle’s Theorem?
f is continuous
f is differentiable
Find any c values:






3
,
6


f
p
6
æ
è
ç
ö
ø
÷= sin 2×
p
6
æ
è
ç
ö
ø
÷ = sin
p
3
æ
è
ç
ö
ø
÷=
3
2
f
p
3
æ
è
ç
ö
ø
÷= sin 2×
p
3
æ
è
ç
ö
ø
÷ = sin
2p
3
æ
è
ç
ö
ø
÷=
3
2
f
p
6
æ
è
ç
ö
ø
÷ = f
p
3
æ
è
ç
ö
ø
÷
f ' x
( )= 2cos 2x
( )
2cos 2x
( )= 0 cos 2x
( )= 0 2x =
p
2
x =
p
4
Another Example:
Let . Find all values of c in the interval
such that f’(c) = 0
Does it satisfy Rolle’s Theorem?
Find any c values:
1,4
( )
f (x)= x2
-5x+4
Theorem: Mean Value
Theorem
Let f be continuous on the
closed interval [a, b] and
differentiable on the open
interval (a, b). Then there is
at least one point c in (a, b)
such that
     
a
b
a
f
b
f
c
f




slope of
tangent at c
slope of
secant over
the interval
[a, b]
Example
Find a value for c within the interval (-1, 1) where the tangent
line at c will be parallel to the secant line through the
endpoints of the interval.
¢
f x
( )= 3x2
-2x -2
f (1)- f (-1)
1-(-1)
=
-2-0
2
= -1
3x2
-2x -2 = -1
3x2
-2x -1= 0
3x+1
( ) x -1
( )= 0
x = -
1
3
and x =1
Another Example
Show that the function satisfies the hypotheses of the
Mean-Value-Theorem over the interval , and find all values of c in the
interval (0, 2) at which the tangent line to the graph of f is parallel to the
secant line joining the endpoints of the interval
f x
( ) =
1
4
x3
+1
0,2
[ ]
f ' x
( ) =
3
4
x2
f 2
( )- f (0)
2-0
=
3-1
2
=1
3
4
x2
=1
x2
=
4
3
x = ±
2
3
x =
2
3
x = -
2
3

5.7 rolle's thrm & mv theorem

  • 1.
  • 2.
  • 3.
    Example Let f(x) =sin 2x. Find all values of c in the interval such that f’(c) = 0 Does it satisfy Rolle’s Theorem? f is continuous f is differentiable Find any c values:       3 , 6   f p 6 æ è ç ö ø ÷= sin 2× p 6 æ è ç ö ø ÷ = sin p 3 æ è ç ö ø ÷= 3 2 f p 3 æ è ç ö ø ÷= sin 2× p 3 æ è ç ö ø ÷ = sin 2p 3 æ è ç ö ø ÷= 3 2 f p 6 æ è ç ö ø ÷ = f p 3 æ è ç ö ø ÷ f ' x ( )= 2cos 2x ( ) 2cos 2x ( )= 0 cos 2x ( )= 0 2x = p 2 x = p 4
  • 4.
    Another Example: Let .Find all values of c in the interval such that f’(c) = 0 Does it satisfy Rolle’s Theorem? Find any c values: 1,4 ( ) f (x)= x2 -5x+4
  • 5.
    Theorem: Mean Value Theorem Letf be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is at least one point c in (a, b) such that       a b a f b f c f     slope of tangent at c slope of secant over the interval [a, b]
  • 6.
    Example Find a valuefor c within the interval (-1, 1) where the tangent line at c will be parallel to the secant line through the endpoints of the interval. ¢ f x ( )= 3x2 -2x -2 f (1)- f (-1) 1-(-1) = -2-0 2 = -1 3x2 -2x -2 = -1 3x2 -2x -1= 0 3x+1 ( ) x -1 ( )= 0 x = - 1 3 and x =1
  • 7.
    Another Example Show thatthe function satisfies the hypotheses of the Mean-Value-Theorem over the interval , and find all values of c in the interval (0, 2) at which the tangent line to the graph of f is parallel to the secant line joining the endpoints of the interval f x ( ) = 1 4 x3 +1 0,2 [ ] f ' x ( ) = 3 4 x2 f 2 ( )- f (0) 2-0 = 3-1 2 =1 3 4 x2 =1 x2 = 4 3 x = ± 2 3 x = 2 3 x = - 2 3