Implicit & Explicit Forms
Implicit Form Explicit Form Derivative
Explicit: y in terms of x
Implicit: y and x together
Differentiating: want to be able to use either
1

xy 1
1 

 x
x
y 2
2 1
x
x
dx
dy



 
Differentiating with respect to x
Derivative →
Deriving when denominator agrees → use properties
Deriving when denominator disagrees → use chain rule & properties
dx
d
 
2
4x
dx
d
x
8 Denominator agrees -
properties
 
2
3y
dx
d
dx
dy
y
6 Denominator disagrees –
chain rule
Implicit Differentiation
Trying to find
dx
dy
Derive Explicitly Derive Implicitly
x2
+ y2
= 5 x2
+ y2
= 5
y = ± 5- x2
dy
dx
=
1
±2 5- x2
× -2x
( )
dy
dx
=
-x
± 5- x2
dy
dx
=
-x
y
since y = ± 5- x2
2x+2y
dy
dx
=0
2y
dy
dx
=-2x
y
dy
dx
=-x
dy
dx
=
-x
y
Derive implicitly:
y = 3xy4
dy
dx
= 3× y4
+4y3 dy
dx
3x
dy
dx
- 4y3 dy
dx
×3x = 3× y4
dy
dx
1- 4y3
3x
( )= 3× y4
dy
dx
1-12xy3
( )=3×y4
dy
dx
=
3×y4
1-12xy3
( )
Example: Find the derivative
38
3
2 2
2
3


 xy
y
x
x
3x2
- 4xy+
dy
dx
2x2
æ
è
ç
ö
ø
÷+ 3y2
+2y
dy
dx
3x
æ
è
ç
ö
ø
÷= 0
3x2
- 4xy-
dy
dx
2x2
+3y2
+2y
dy
dx
3x = 0
-6xy
dy
dx
+2x2 dy
dx
= 3x2
- 4xy+3y2
dy
dx
-6xy+2x2
( )= 3x2
- 4xy+3y2
dy
dx
=
3x2
- 4xy+3y2
-6xy+2x2
( )
Example: Determine the slope at the point (1,1)
xy
y
x 2
3
3


3x2
+3y2 dy
dx
= 2y+
dy
dx
2x
3y2 dy
dx
-2x
dy
dx
= 2y -3x2
dy
dx
3y2
-2x
( )= 2y -3x2
dy
dx
x=1
y=1
=
-1
1
= -1
dy
dx
=
2y -3x2
3y2
- 2x
( )
dy
dx
x=1
y=1
=
2×1-3×12
3×12
- 2×1
( )
xy
y
x 2
3
3


dy
dx
=
2y -3x2
3y2
- 2x
( )
dy
dx
x=1
y=1
=
-1
1
= -1

4.1 implicit differentiation

  • 2.
    Implicit & ExplicitForms Implicit Form Explicit Form Derivative Explicit: y in terms of x Implicit: y and x together Differentiating: want to be able to use either 1  xy 1 1    x x y 2 2 1 x x dx dy     
  • 3.
    Differentiating with respectto x Derivative → Deriving when denominator agrees → use properties Deriving when denominator disagrees → use chain rule & properties dx d   2 4x dx d x 8 Denominator agrees - properties   2 3y dx d dx dy y 6 Denominator disagrees – chain rule
  • 4.
  • 5.
    Derive Explicitly DeriveImplicitly x2 + y2 = 5 x2 + y2 = 5 y = ± 5- x2 dy dx = 1 ±2 5- x2 × -2x ( ) dy dx = -x ± 5- x2 dy dx = -x y since y = ± 5- x2 2x+2y dy dx =0 2y dy dx =-2x y dy dx =-x dy dx = -x y
  • 6.
    Derive implicitly: y =3xy4 dy dx = 3× y4 +4y3 dy dx 3x dy dx - 4y3 dy dx ×3x = 3× y4 dy dx 1- 4y3 3x ( )= 3× y4 dy dx 1-12xy3 ( )=3×y4 dy dx = 3×y4 1-12xy3 ( )
  • 7.
    Example: Find thederivative 38 3 2 2 2 3    xy y x x 3x2 - 4xy+ dy dx 2x2 æ è ç ö ø ÷+ 3y2 +2y dy dx 3x æ è ç ö ø ÷= 0 3x2 - 4xy- dy dx 2x2 +3y2 +2y dy dx 3x = 0 -6xy dy dx +2x2 dy dx = 3x2 - 4xy+3y2 dy dx -6xy+2x2 ( )= 3x2 - 4xy+3y2 dy dx = 3x2 - 4xy+3y2 -6xy+2x2 ( )
  • 8.
    Example: Determine theslope at the point (1,1) xy y x 2 3 3   3x2 +3y2 dy dx = 2y+ dy dx 2x 3y2 dy dx -2x dy dx = 2y -3x2 dy dx 3y2 -2x ( )= 2y -3x2 dy dx x=1 y=1 = -1 1 = -1 dy dx = 2y -3x2 3y2 - 2x ( ) dy dx x=1 y=1 = 2×1-3×12 3×12 - 2×1 ( )
  • 9.
    xy y x 2 3 3   dy dx = 2y -3x2 3y2 -2x ( ) dy dx x=1 y=1 = -1 1 = -1