SlideShare a Scribd company logo
EE 290C

CMOS Analog Design Using
All-region MOSFET Modeling

           Carlos Galup-Montoro

    Univ. of Santa Catarina, Brazil; UC Berkeley
                     373 Cory Hall
              carlosgalup@gmail.com
          http://eel.ufsc.br/~lci/faculty.html
290C Basics

 Course Format: Two hours of lecture and one hour
 of project discussion per week

 Prerequisites: EE140 Linear Integrated Circuits or
 equivalent

 Grading Policy: Homework 50% + Project 50%

 Textbook: CMOS Analog Design Using All-region
 MOSFET Modeling, M. C. Schneider and C. Galup-
 Montoro, Cambridge University Press, 2009
                 CMOS Analog Design Using All Region MOSFET Modeling   2
Analog Bipolar and MOS Circuits


•Bipolar and MOS

A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, 1983.
K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and
Systems, 1994.
D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1997.
P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of
Analog Integrated Circuits, Fourth Edition, 2001.
W. M. C. Sansen, Analog Design Essentials, Springer, Dordrecht, 2006

•MOS
B. Razavi, Design of Analog CMOS Integrated Circuits, 2001.
F. Maloberti, Analog Design for CMOS VLSI Systems, 2001.
P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2002.
                              CMOS Analog Design Using All Region MOSFET Modeling   3
Important Differences between Bipolar
Transistors (BJTs) and MOSFETs

 A) BJTs are three-terminal devices and MOSFETs are four-
    terminal devices

 B) Differences in the internal symmetries of the most
 commonly used BJTs and MOSFETs

 C) BJT exponential current law vs. MOS current law

 D) The geometric degrees of freedom for MOSFETs in
 analog design

 E) Quality of BJT and MOSFET models


                      CMOS Analog Design Using All Region MOSFET Modeling   4
Ebers-Moll Equivalent Circuit of an npn
Transistor
Forward and reverse currents

            IE
                                                                                     IC
                      α R IR                                 αFIF


                        DE                                                                C
                                                              DC
        E




                                                      IR
                                     IF


   IC = α F I F − I R                            IB



   IE = αR IR − IF                          B




    I B = −( I C + I E ) = (1 − α F ) I F + (1 − α R ) I R
                                                                                              5

                               CMOS Analog Design Using All Region MOSFET Modeling
The Capacitive Model of the MOS
Structure

               VGB             VGB
 depletion
                                     ′
                                    Cox
 region
                                            φs                    ′
                                                          dφs    Cox     1
                                                              =        =
φs
                                                                ′    ′
                                                         dVGB Cox + Cb n
                                       ′
                                      Cb
          p- type neutral
          region




                        CMOS Analog Design Using All Region MOSFET Modeling   6
MOSFET: Symmetric Strong and Weak
 Inversion Models


     Strong inversion                                           VGB
                                                                                                      VDB
                                      VSB
                                                                                             ID

  ID = IF − IR
                                                         n+                             n+

           β                                 2
              (V    − nVSB ( DB ) − VT 0 )
IF (R) =                                                           p-type substrate
               GB
           2n
                                                                                  (b)
                                                    W
                                                         ′
                                             β=       µ Cox
     weak inversion                                 L

                     W (VGB −VT 0 − nVSB ) / nφt
                                (                                                                 )
                                                 − e( GB T 0 DB ) t
                                                                 / nφ
                                                     V −V − nV
I D = I F − I R = I0   e
                     L                                                                                7
                                CMOS Analog Design Using All Region MOSFET Modeling
Intrinsic Gain Stages: (a) Common-
Source and (b) Common-Emitter
Amplifiers




             CMOS Analog Design Using All Region MOSFET Modeling   8
Small-Signal Circuit and Frequency
Response of the Amplifiers




                                                             gm
                                                     vo ≅ −      vi
                                                            jωCL
                                                     ω >> ωb
                                                                  9
         CMOS Analog Design Using All Region MOSFET Modeling
Design of Common-Emitter and
        Common-Source Amplifiers
           Av (ωu ) = 1         g m = ω u C L = 2 π .G B W .C L

        BJT                 VBE /φt
                IC = I S e                      I C = g mφt = 2π .GBW .CL .φt


        MOSFET
                                                                                        2
          1        W                                                               ng m
                                            2
              µ Cox  (VGB − VT 0 − nVSB )
                  ′
        =                                                                    =
I Dsi                                                                I Dsi
                                                                               2 µ Cox (W / L )
          2n       L                                                              ′
                               CMOS Analog Design Using All Region MOSFET Modeling          10
Example: GBW = 10 MHz, CL = 10 pF
    µ Cox = 80·10-6 A/V2, n = 1.35
       ′
      g m = 2π .GBW .CL = 628µ A / V

                    IDsi (µA)1                             ID (µA)2
W/L                       µ                                    µ
                    0                                      22
∞
500                 6.6                                    28.6
100                 33.2                                   55.2
50                  66.4                                   88.4
10                  332                                    354
      1Strong inversion model. 2 Accurate all-
      region MOSFET model
                    CMOS Analog Design Using All Region MOSFET Modeling   11
All Region “Empirical” Model of the
MOSFET

                I D = 22 µA + I Dsi
       IWI = ng mφt = 1.35 ⋅ 628 ⋅10−6.26 ⋅10−3 = 22 µA

                                                  
                                       gm
                     = ng mφt 1 +                 
I D = IWI + I Dsi
                               2 µ Coxφt (W / L ) 
                                     ′
                                                  
              (W / L )th 
             1 +          
 I D = IWI                                     g m = (W / L )th µ ( 2Coxφt )
                                                                      ′
                  (W / L ) 
             
                          
                                                                               12
                       CMOS Analog Design Using All Region MOSFET Modeling
Aspect Ratio vs. Current Excess in a
MOSFET Design


                                                  (W / L )th 
                                                 1 +          
                                I D = IWI
                                                      (W / L ) 
                                                 
                                                              




             CMOS Analog Design Using All Region MOSFET Modeling   13
Consistent Modeling of FETs: Use of
Series Associations of FETs
          D
                  ID
     MD
                           WD
                           LD

                                          W
                            I       =(      )    [g( V , V ) - g( V , V )]
 G            X
                                D             eq      G   S        G   D
                                          L
                           WS
                           LS
                                                               W      W
     MS
                                                                     (
                                                                 ) D ( )S
                                                     W         L      L
                                                    ( ) eq =
          S            B
                                                              W        W
                                                     L
                                                             ( ) D + ( )S
                                                              L        L




                                    CMOS Analog Design Using All Region MOSFET Modeling   14
Series-Parallel Associations of FETs




             CMOS Analog Design Using All Region MOSFET Modeling   15
Series Associations of FET’s vs. Long
  Channel MOSFETs

Series association                Long-channel
nominal VT                        L-dependent VT


Characterize one                  L-dependent characterization
transistor ( performance          (halo/pocket implants effects)
of the shortest transistor
is “optimized”)
                                  L-dependent accuracy
“accurate” for current
mirrors
Gate current more
predictable              CMOS Analog Design Using All Region MOSFET Modeling   16
M:1
                                                          Iin
Application of Series                                                                                   IOut
                                                                  ∆βaj, ∆VTaj
                              M                                                           ∆βB ∆VTB
                                                 A

Parallel Associations of FETs-                       Ma                                                          MB
                                                                                              VG
Three M:1 Current Mirrors                                                                                       (a)
                                                             MA = M parallel Ma transistors


      a) M :1                                                                                                  IOut
                                                                       N2 : 1                      MB


                                                       Iin
                                                                                                                           N
                                                                    MA                                           Mb2
                                                                                              VG
                                                 Ma1
      B) N=√M, N:1/N                                               N
                                                                                                                  (b)

                                                                                                                IOut
                                                                                       MB

                                                 Iin            M:1
                                                                                                                               N
                                                                                                                      Mb
      C) M: N/N                                                            MA
                                            Ma

                                                           M                                             N
                                                                                                                       (c)



                    CMOS Analog Design Using All Region MOSFET Modeling                                                17
Current Mismatch in Two M:1 Current
Mirrors




                                                  Arnaud, JSSC Sep. 06


                                                                     18
            CMOS Analog Design Using All Region MOSFET Modeling
M-2M Digital-to-Analog Converter 1:
Mbb can be substituted by set of four transistors

                                       ID2
                  ID1




             Mc                  Md



                                                                              ID

                                 Mbc                  Mbd




             Ma                  Mba                  Mbb
VG

                  ID1                  ID2a               ID2b



                        CMOS Analog Design Using All Region MOSFET Modeling        19
M-2M Digital-to-Analog Converter 2:
     8 bit DAC with M-2M Ladder
IB         VB     VR         IR



     MB1               M71                               M61        M64                    M01        M04          M00



     MB2               M72            M73                M62       M63                     M02        M03
                Q7                           -Q7   Q6                         -Q6   Q0                       -Q0
                                             Q7                               Q6                             Q0
                -Q7                                -Q6                              -Q0

                                                                                                                         I0
                                                                                                                         V0
                                                                                                                         IG
GB                                                                                                                       VG
                                            Q7               Q6                Q1                    Q0

                      Di                                                                                    Do
                                  D     Q          D     Q          D     Q               D      Q
                                  ck               ck               ck                    ck
                      Ck



                                                    CMOS Analog Design Using All Region MOSFET Modeling                  20
M-2M Digital-to-Analog Converter 3:
Normalized current mismatch for a 10 µm x 10 µm
transistor




                                                                       21
                 CMOS Analog Design Using All Region MOSFET Modeling
M-2M Digital-to-Analog Converter 4




 Standard deviation of the measured error from 20
 samples of DAC0       CMOS Analog Design Using All Region MOSFET Modeling   22
M-2M Digital-to-Analog Converter 5




Klimach. ISCAS 08


         Top area is the M-2M ladder and the bottom area is the
         serial register.     CMOS Analog Design Using All Region MOSFET Modeling   23
290C Course Outline

   - MOSFET modeling (3 weeks)

   - Mismatch and noise (2 weeks)

   - Basic CMOS building blocks (5 weeks)

   - Op amps ( 4 weeks)




                                                                     24
               CMOS Analog Design Using All Region MOSFET Modeling
290C Learning Goals



 Understand and use an all-region ( accumulation,
 WI, MI and SI) compact MOSFET model for analog
 design
 Acquire a deep understanding ( nonlinearities,
 noise, mismatch) of the basic CMOS build blocks
 and op amps
 Apply the above concepts in a design project


                                                                      25
                CMOS Analog Design Using All Region MOSFET Modeling
Similar Approaches to CMOS Design

Paul G. A. Jespers; The gm/ID Design Methodology for CMOS
Analog Low Power Integrated Circuits
2009, ISBN: 978-0-387-47100-6

D. M. Binkley; Tradeoffs and Optimization in Analog CMOS
Design ISBN: 978-0-470-03136-0, Wiley 2008.



 Danica Stefanovic and Maher Kayal; Structured Analog CMOS
 Design Series: Analog Circuits and Signal Processing
  2009, ISBN: 978-1-4020-8572-7




                      CMOS Analog Design Using All Region MOSFET Modeling   26

More Related Content

What's hot

Vlsi design flow
Vlsi design flowVlsi design flow
Vlsi design flow
Rajendra Kumar
 
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSSPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
Praveen Kumar
 
Flip Chip technology
Flip Chip technologyFlip Chip technology
Flip Chip technology
Mantra VLSI
 
faults in digital systems
faults in digital systemsfaults in digital systems
faults in digital systems
dennis gookyi
 
Microprocessor & Micro-controller
Microprocessor & Micro-controllerMicroprocessor & Micro-controller
Microprocessor & Micro-controller
Om Bheda
 
5. differential amplifier
5. differential amplifier5. differential amplifier
5. differential amplifier
ShahbazQamar2
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
Rajesh Tiwary
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor LogicDiwaker Pant
 
Physical design
Physical design Physical design
Physical design
Mantra VLSI
 
Second order effects
Second order effectsSecond order effects
Second order effects
PRAVEEN KUMAR CHITLURI
 
Basics of MOSFET
Basics of MOSFETBasics of MOSFET
Basics of MOSFET
EFY HR
 
Fpga architectures and applications
Fpga architectures and applicationsFpga architectures and applications
Fpga architectures and applications
Sudhanshu Janwadkar
 
Mosfet
MosfetMosfet
Mosfet
Umme habiba
 
Introduction to Digital Electronics & What we will study.ppt
Introduction to Digital Electronics & What we will study.pptIntroduction to Digital Electronics & What we will study.ppt
Introduction to Digital Electronics & What we will study.ppt
GauravKumarDas5
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
Ikhwan_Fakrudin
 
Digital VLSI Design : Introduction
Digital VLSI Design : IntroductionDigital VLSI Design : Introduction
Digital VLSI Design : Introduction
Usha Mehta
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
A B Shinde
 

What's hot (20)

Vlsi design flow
Vlsi design flowVlsi design flow
Vlsi design flow
 
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSSPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
 
JFET
JFETJFET
JFET
 
Flip Chip technology
Flip Chip technologyFlip Chip technology
Flip Chip technology
 
faults in digital systems
faults in digital systemsfaults in digital systems
faults in digital systems
 
Microprocessor & Micro-controller
Microprocessor & Micro-controllerMicroprocessor & Micro-controller
Microprocessor & Micro-controller
 
5. differential amplifier
5. differential amplifier5. differential amplifier
5. differential amplifier
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
 
Analog vlsi
Analog vlsiAnalog vlsi
Analog vlsi
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Actel fpga
Actel fpgaActel fpga
Actel fpga
 
Physical design
Physical design Physical design
Physical design
 
Second order effects
Second order effectsSecond order effects
Second order effects
 
Basics of MOSFET
Basics of MOSFETBasics of MOSFET
Basics of MOSFET
 
Fpga architectures and applications
Fpga architectures and applicationsFpga architectures and applications
Fpga architectures and applications
 
Mosfet
MosfetMosfet
Mosfet
 
Introduction to Digital Electronics & What we will study.ppt
Introduction to Digital Electronics & What we will study.pptIntroduction to Digital Electronics & What we will study.ppt
Introduction to Digital Electronics & What we will study.ppt
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
 
Digital VLSI Design : Introduction
Digital VLSI Design : IntroductionDigital VLSI Design : Introduction
Digital VLSI Design : Introduction
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 

Similar to CMOS Analog Design Lect 1

CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4carlosgalup
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
GunaG14
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2carlosgalup
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
MahoneyKadir
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
SEENET-MTP
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
Napex Terra
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
Pei-Che Chang
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3carlosgalup
 
Bjt1
Bjt1Bjt1
V3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdfV3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdf
ShajedurRahman14
 
Bjts
BjtsBjts
Bjts
Bjts Bjts
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1Napex Terra
 
Bipolar Junction Transistors BJT
Bipolar Junction Transistors BJTBipolar Junction Transistors BJT
Bipolar Junction Transistors BJT
AbdulAziz Ahmed Siyad
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
Dr Naim R Kidwai
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
Praveen Vadlamudi
 
B bjt-characteristics
B bjt-characteristicsB bjt-characteristics
B bjt-characteristics
Bharti Airtel Ltd.
 

Similar to CMOS Analog Design Lect 1 (20)

CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
 
Bjts
BjtsBjts
Bjts
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3
 
Bjt1
Bjt1Bjt1
Bjt1
 
V3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdfV3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdf
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Bipolar Junction Transistors BJT
Bipolar Junction Transistors BJTBipolar Junction Transistors BJT
Bipolar Junction Transistors BJT
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
B bjt-characteristics
B bjt-characteristicsB bjt-characteristics
B bjt-characteristics
 

Recently uploaded

AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 

Recently uploaded (20)

AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 

CMOS Analog Design Lect 1

  • 1. EE 290C CMOS Analog Design Using All-region MOSFET Modeling Carlos Galup-Montoro Univ. of Santa Catarina, Brazil; UC Berkeley 373 Cory Hall carlosgalup@gmail.com http://eel.ufsc.br/~lci/faculty.html
  • 2. 290C Basics Course Format: Two hours of lecture and one hour of project discussion per week Prerequisites: EE140 Linear Integrated Circuits or equivalent Grading Policy: Homework 50% + Project 50% Textbook: CMOS Analog Design Using All-region MOSFET Modeling, M. C. Schneider and C. Galup- Montoro, Cambridge University Press, 2009 CMOS Analog Design Using All Region MOSFET Modeling 2
  • 3. Analog Bipolar and MOS Circuits •Bipolar and MOS A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, 1983. K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems, 1994. D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1997. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition, 2001. W. M. C. Sansen, Analog Design Essentials, Springer, Dordrecht, 2006 •MOS B. Razavi, Design of Analog CMOS Integrated Circuits, 2001. F. Maloberti, Analog Design for CMOS VLSI Systems, 2001. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2002. CMOS Analog Design Using All Region MOSFET Modeling 3
  • 4. Important Differences between Bipolar Transistors (BJTs) and MOSFETs A) BJTs are three-terminal devices and MOSFETs are four- terminal devices B) Differences in the internal symmetries of the most commonly used BJTs and MOSFETs C) BJT exponential current law vs. MOS current law D) The geometric degrees of freedom for MOSFETs in analog design E) Quality of BJT and MOSFET models CMOS Analog Design Using All Region MOSFET Modeling 4
  • 5. Ebers-Moll Equivalent Circuit of an npn Transistor Forward and reverse currents IE IC α R IR αFIF DE C DC E IR IF IC = α F I F − I R IB IE = αR IR − IF B I B = −( I C + I E ) = (1 − α F ) I F + (1 − α R ) I R 5 CMOS Analog Design Using All Region MOSFET Modeling
  • 6. The Capacitive Model of the MOS Structure VGB VGB depletion ′ Cox region φs ′ dφs Cox 1 = = φs ′ ′ dVGB Cox + Cb n ′ Cb p- type neutral region CMOS Analog Design Using All Region MOSFET Modeling 6
  • 7. MOSFET: Symmetric Strong and Weak Inversion Models Strong inversion VGB VDB VSB ID ID = IF − IR n+ n+ β 2 (V − nVSB ( DB ) − VT 0 ) IF (R) = p-type substrate GB 2n (b) W ′ β= µ Cox weak inversion L W (VGB −VT 0 − nVSB ) / nφt ( ) − e( GB T 0 DB ) t / nφ V −V − nV I D = I F − I R = I0 e L 7 CMOS Analog Design Using All Region MOSFET Modeling
  • 8. Intrinsic Gain Stages: (a) Common- Source and (b) Common-Emitter Amplifiers CMOS Analog Design Using All Region MOSFET Modeling 8
  • 9. Small-Signal Circuit and Frequency Response of the Amplifiers gm vo ≅ − vi jωCL ω >> ωb 9 CMOS Analog Design Using All Region MOSFET Modeling
  • 10. Design of Common-Emitter and Common-Source Amplifiers Av (ωu ) = 1 g m = ω u C L = 2 π .G B W .C L BJT VBE /φt IC = I S e I C = g mφt = 2π .GBW .CL .φt MOSFET 2 1 W ng m 2  µ Cox  (VGB − VT 0 − nVSB ) ′ = = I Dsi I Dsi 2 µ Cox (W / L ) 2n  L ′ CMOS Analog Design Using All Region MOSFET Modeling 10
  • 11. Example: GBW = 10 MHz, CL = 10 pF µ Cox = 80·10-6 A/V2, n = 1.35 ′ g m = 2π .GBW .CL = 628µ A / V IDsi (µA)1 ID (µA)2 W/L µ µ 0 22 ∞ 500 6.6 28.6 100 33.2 55.2 50 66.4 88.4 10 332 354 1Strong inversion model. 2 Accurate all- region MOSFET model CMOS Analog Design Using All Region MOSFET Modeling 11
  • 12. All Region “Empirical” Model of the MOSFET I D = 22 µA + I Dsi IWI = ng mφt = 1.35 ⋅ 628 ⋅10−6.26 ⋅10−3 = 22 µA   gm = ng mφt 1 +  I D = IWI + I Dsi  2 µ Coxφt (W / L )  ′    (W / L )th  1 +  I D = IWI g m = (W / L )th µ ( 2Coxφt ) ′ (W / L )     12 CMOS Analog Design Using All Region MOSFET Modeling
  • 13. Aspect Ratio vs. Current Excess in a MOSFET Design  (W / L )th  1 +  I D = IWI (W / L )     CMOS Analog Design Using All Region MOSFET Modeling 13
  • 14. Consistent Modeling of FETs: Use of Series Associations of FETs D ID MD WD LD W I =( ) [g( V , V ) - g( V , V )] G X D eq G S G D L WS LS W W MS ( ) D ( )S W L L ( ) eq = S B W W L ( ) D + ( )S L L CMOS Analog Design Using All Region MOSFET Modeling 14
  • 15. Series-Parallel Associations of FETs CMOS Analog Design Using All Region MOSFET Modeling 15
  • 16. Series Associations of FET’s vs. Long Channel MOSFETs Series association Long-channel nominal VT L-dependent VT Characterize one L-dependent characterization transistor ( performance (halo/pocket implants effects) of the shortest transistor is “optimized”) L-dependent accuracy “accurate” for current mirrors Gate current more predictable CMOS Analog Design Using All Region MOSFET Modeling 16
  • 17. M:1 Iin Application of Series IOut ∆βaj, ∆VTaj M ∆βB ∆VTB A Parallel Associations of FETs- Ma MB VG Three M:1 Current Mirrors (a) MA = M parallel Ma transistors a) M :1 IOut N2 : 1 MB Iin N MA Mb2 VG Ma1 B) N=√M, N:1/N N (b) IOut MB Iin M:1 N Mb C) M: N/N MA Ma M N (c) CMOS Analog Design Using All Region MOSFET Modeling 17
  • 18. Current Mismatch in Two M:1 Current Mirrors Arnaud, JSSC Sep. 06 18 CMOS Analog Design Using All Region MOSFET Modeling
  • 19. M-2M Digital-to-Analog Converter 1: Mbb can be substituted by set of four transistors ID2 ID1 Mc Md ID Mbc Mbd Ma Mba Mbb VG ID1 ID2a ID2b CMOS Analog Design Using All Region MOSFET Modeling 19
  • 20. M-2M Digital-to-Analog Converter 2: 8 bit DAC with M-2M Ladder IB VB VR IR MB1 M71 M61 M64 M01 M04 M00 MB2 M72 M73 M62 M63 M02 M03 Q7 -Q7 Q6 -Q6 Q0 -Q0 Q7 Q6 Q0 -Q7 -Q6 -Q0 I0 V0 IG GB VG Q7 Q6 Q1 Q0 Di Do D Q D Q D Q D Q ck ck ck ck Ck CMOS Analog Design Using All Region MOSFET Modeling 20
  • 21. M-2M Digital-to-Analog Converter 3: Normalized current mismatch for a 10 µm x 10 µm transistor 21 CMOS Analog Design Using All Region MOSFET Modeling
  • 22. M-2M Digital-to-Analog Converter 4 Standard deviation of the measured error from 20 samples of DAC0 CMOS Analog Design Using All Region MOSFET Modeling 22
  • 23. M-2M Digital-to-Analog Converter 5 Klimach. ISCAS 08 Top area is the M-2M ladder and the bottom area is the serial register. CMOS Analog Design Using All Region MOSFET Modeling 23
  • 24. 290C Course Outline - MOSFET modeling (3 weeks) - Mismatch and noise (2 weeks) - Basic CMOS building blocks (5 weeks) - Op amps ( 4 weeks) 24 CMOS Analog Design Using All Region MOSFET Modeling
  • 25. 290C Learning Goals Understand and use an all-region ( accumulation, WI, MI and SI) compact MOSFET model for analog design Acquire a deep understanding ( nonlinearities, noise, mismatch) of the basic CMOS build blocks and op amps Apply the above concepts in a design project 25 CMOS Analog Design Using All Region MOSFET Modeling
  • 26. Similar Approaches to CMOS Design Paul G. A. Jespers; The gm/ID Design Methodology for CMOS Analog Low Power Integrated Circuits 2009, ISBN: 978-0-387-47100-6 D. M. Binkley; Tradeoffs and Optimization in Analog CMOS Design ISBN: 978-0-470-03136-0, Wiley 2008. Danica Stefanovic and Maher Kayal; Structured Analog CMOS Design Series: Analog Circuits and Signal Processing 2009, ISBN: 978-1-4020-8572-7 CMOS Analog Design Using All Region MOSFET Modeling 26