SlideShare a Scribd company logo
EE 290C

CMOS Analog Design Using
All-region MOSFET Modeling

 Lecture 4: Design-oriented dc MOSFET model
Symmetry and Normalization - 1



       I D = I D (VG , VS , VD )
  1.                                                                                VG

                                                   VS                                         VD
  Ungrounded local substrate:
VG→ VGB       VS→ VSB          VD→ VDB                                              B    ID



   2. Symmetry                                                                     B
                                                     V1                                  ID   V2
  I D (VG , V1 , V2 ) = − I D (VG , V2 , V1 )

                                                                               VG


                                  CMOS Analog Design Using All Region MOSFET Modeling
                                                                                               2
Symmetry and Normalization - 2

3. For a long-channel MOSFET
                                         W
 I D = I F − I R = I S i f − ir  = I SQ  f (VG , VS ) − f (VG , VD ) 
                                         L                             
                                
 I F ( R ) = I S  q ′ ( D ) 2 + 2 q′ ( D )                                        D
                  IS                       
                                    IS
                                                                                           ID
 q′ ( D ) = QIS ( D ) / ( −nCoxφt )
                 ′                ′
   IS

 i f (r ) = I F ( R) / I S
                                                       G                                      IF − IR
                    φt2 WW
          ′
 I S = µ Cox n    = I SQ                                                                                B
               2L        L
IS and ISQ are the normalization (specific)
current and the “sheet” normalization
                                                                                   S
current, slightly dependent on bias.
                                                                                                        3
                                                CMOS Analog Design Using All Region MOSFET Modeling
Forward and Reverse Currents


Long-channel MOSFET        I D = I F − I R = I (VG ,VS ) − I (VG ,VD )

IF: forward current
                                    IR=
IR: reverse current
                                                                       IF=




                      CMOS Analog Design Using All Region MOSFET Modeling    4
Specific Current

                                                                        φt2 W      W
The specific (normalization) current                          ′
                                                      I S = µCox n          = I SQ
                                                                         2L        L

 ISQ : design parameter
 slightly dependent on VG

  ISQ ≈25 nA (p-channel)
  ISQ ≈75 nA (n-channel)
    in 0.35 µm CMOS


                           CMOS Analog Design Using All Region MOSFET Modeling         5
Pinch-off Voltage and Slope Factor - 1


UCCM VP − VS ( D ) = φt  qIS ( D ) − 1 + ln q′ ( D )  & q′ ( D ) = 1 + i f ( r ) − 1
                        ′                                IS
                                              IS
                                                           2
                                     γ γ
                                                  2
                              
           VP =  VG − VT 0 +  2φF +  −  − 2φF
                                     2  2
                              
                                             Linearization:
                                                               VG − VG 0
                                                 VP = VP 0 +
 VP                                                              n (VG 0 )
                                    Slope =1/n
                  Slope =1
                                                                          γ
                                                  n (VG 0 ) = 1 +
                                                                  2 VP 0 + 2φF
                                                                     In particular:
 VP0
                                                                              VG − VT 0
                                                                      VP =
                                                                               n (VT 0 )
                                                                                           γ
                                                                      n (VT 0 ) = 1 +
           VT0        VG0                         VG                                    2 2φF
                               CMOS Analog Design Using All Region MOSFET Modeling              6
Pinch-off Voltage and Slope Factor - 2




      Determination of the pinch-off voltage and the slope factor as
      functions of VG. NMOS transistor W=20 µm, L=2 µm, 0.18 µm
      CMOS technology.


                                                                         7
                   CMOS Analog Design Using All Region MOSFET Modeling
The I-V Relationship
                                                                                                          (                   )
                                  VP − VS = φt  1 + i f − 2 + ln                                              1 + i f (r ) −1 
                                                                                                                              
  1,00E-03
 10-3                                                                    VD = VG
             ID (A)
                                                                                                                                  VD
  1,00E-04


                                                                                                                           ID
                           VS = 0 V
  1,00E-05

                                         0.5
                                                   1.0
 10-6
  1,00E-06
                                                              1.5
                                                                                                                         VS
                                                                                                              VG
                                                                           2.0
  1,00E-07

                                                                                     2.5

                                                                                                3.0
  1,00E-08




 10-90,00E+00
  1,00E-09
                5,00E-01   1,00E+00 1,50E+00   2,00E+00   2,50E+00   3,00E+00   3,50E+00   4,00E+00
                                                                                              4 4,50E+00(V)
           0                 1                   2                     3                         VG
             Common-source characteristics
                                                      CMOS Analog Design Using All Region MOSFET Modeling                              8
The I-V relationship
                                                                   (                       )
                    VP − VS = φt  1 + i f − 2 + ln                    1 + i f (r ) − 1 
                                                                                       
10-3
       ID (A)                                       VD = VG
                                  VG = 4.8 V
                                                                                      VD
                                                                                           ID
10-6

                                                                                 VG
        0.8 V                                                                                  VS


10-9
                0      1           2              3        VS (V)

Common-gate characteristics VG=0.8, 1.2, 1.6,
     2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V
                           CMOS Analog Design Using All Region MOSFET Modeling                      9
Weak inversion model


Weak inversion            VG − VT 0
                                                                                          (                  )
                                    − VS ( D ) = φt  1 + i f ( r ) − 2 + ln                    1 + i f (r) −1 
    if(r)<1                                                                                                   
                             n
                                                                         -1
                                                                                                   if(r)/2
              VG −VT 0     
                        −VS  / φt                                            W
             
                                                                                nCox φ t2e1 = 2 I S e1
                                     1 − e               
                                              −VDS / φt                           ′
                                                                  I0 = µ n
            e n            
 I D = I0                                                                   L




                                          CMOS Analog Design Using All Region MOSFET Modeling                 10
Strong inversion model - 1


                    VG − VT 0
                                                                                  (     )
                               − VS ( D ) = φt  1 + i f ( r ) − 2 + ln 1 + i f ( r ) − 1 
                                                                                         
                        n
Strong inversion
                     VG − VT 0
    if(r)>>1                   − VS ( D ) ≅ φt i f ( r ) = φt I F ( R ) I S
                         n


                             W                                      2
                                                2
                                  (V − V − nVS ) − (VG − VT 0 − nVD ) 
                        ′
  I D = I F − I R ≅ µ nCox
                                  G T0
                             2nL
Moderate inversion
  1<if(r) <100               Both sqrt(.) and ln(.) terms are important


                                CMOS Analog Design Using All Region MOSFET Modeling     11
Strong inversion model - 2


                            ID
                                                     VDS

                VG
     ID/IF

       1




               VDSsat=VP=(VG-VT0)/n                   VDS

             Output characteristics at VS=0
                       CMOS Analog Design Using All Region MOSFET Modeling   12
Strong inversion model - 3

                     ′
                  µ Cox W                                                     ′
                                                                           µ Cox W
                            (VG − VT 0 )
           ID =                                                                         (VG − VT 0 − nVS )
ID                                                                ID =
                                                 ID
                   2n L                                                      2n L


                            SCE, µ, n,
                            “model”


          VT0                          VG                                         (VG − VT 0 )   n
                            VDD                                                                         VS
                     ID                                        VDD
                                                                    ID


                                                         VG
     VG
                                                                     VS

                                  CMOS Analog Design Using All Region MOSFET Modeling                        13
Universal output characteristics

                                                         1+ if −1 
                       q′    
  VDS
                               = 1 + i f − 1 + ir + ln             
        ′     ′
     = qIS − qID + ln  IS
                                                         1 + ir − 1 
                         ′
  φt                   qID                                        



                                                                  (a) if= 4.5x 10-2 (VG=0.7 V).
                                                                  (b) if= 65(VG= 1.2 V).
                                                                  (c) if= 9.5x102 (VG= 2.0 V).
                                                                  (d) if= 3.1x 103 (VG= 2.8 V).
                                                                  (e) if= 6.8x 103 (VG= 3.6 V).
                                                                  (f) if= 1.2x 104 (VG= 4.4 V).

                                  (o): measured
                                  (—): model



                               CMOS Analog Design Using All Region MOSFET Modeling         14
Saturation voltage

   Saturation voltage (VDSsat) – VDS such that q′ / qIS = ξ
                                                     ′
                                                ID

                                    (                )
VDSsat = φt ln (1 ξ ) + (1 − ξ )       1+ i f −1            (1−ξ)     is the saturation level
                                                 




                               CMOS Analog Design Using All Region MOSFET Modeling            15
Transconductances - 1

Transconductances                        ∆I D = g mg ∆VG − g ms ∆V S + g md ∆V D + g mb ∆V B
                                                    ∂I D           ∂I         ∂I         ∂I
g mg − g ms + g md + g mb = 0                            , g ms = − D , g md = D , g mb = D
                                         g mg =
                                                    ∂VG            ∂VS        ∂VD        ∂VB
                                            ∂ ( IF − IR )    ∂I      W
Calculation of gms                                                     ′
                                                          = − F = − µ QIS
                                  g ms = −
                                                ∂ VS         ∂ VS    L
                                              W
                                                    ′
                                         = − µ QID
                                  g md
                                               L
                                                                             Pao-Sah ID (UCCM)
                ∂ (i f − ir )
   g mg = I S
                   ∂VG          ∂i f         ∂i f                        g ms − g md
                                       =−                         g mg =
                                ∂VG         n∂VS                              n
  UCCM
                                                                         g
                                ∂ir    ∂i                                            in saturation
                                                                   g mg = ms
                                    =− r
                                                                           n
                                ∂VG   n∂VD
                                                                                                 16
                                       CMOS Analog Design Using All Region MOSFET Modeling
Transconductances - 2



                                                                                      VDD
                                                                                        ID


                                                                                 VG
                                                                                            VS




Source transconductance VG= 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and
4.8 V     (W=L=25 µm, tox=280 Å)
                           CMOS Analog Design Using All Region MOSFET Modeling                   17
Transconductances - 3



                                                                                           VDD
                                                                                      ID




                                                                                     VS
                                                                          VG




Gate transconductance VS= 0, 0.5, 1.0,1.5, 2.0, 2.5, and 3.0 V
W=L=25 µm, tox=280 Å
                                                                                            18
                               CMOS Analog Design Using All Region MOSFET Modeling
The transconductance-to-current ratio - 1

                                                                                                                                 WI (if <1)
                                                                                                               ≅1
                                          g ms ( d )φ t                         2
Transconductance                                             =                                                         2
-to-current ratio                           I F (R)                  1 + i f (r ) + 1                          ≅                 SI (if >>1)
                                                                                                                      i f (r )
       100
      102
                    gms/IF


                                                                                                                     W=25 µm
                        tox = 28 nm (IS = 26 nA)
                      Seqüência1
      101                                                                                                            L=25 µm, tox= 280 Å
        10



                         tox = 5.5 nm (IS = 111 nA)
                      Seqüência2


                                                                                                                     L=20 µm, tox= 55 Å
                         model
                      Seqüência3




      1001
       1,00E-04   1,00E-03     1,00E-02       1,00E-01    1,00E+00   1,00E+01       1,00E+02   1,00E+03   1,00E+04
         10-4                      10-2                    100                       102                  104
                                                                                                  if
                                                    CMOS Analog Design Using All Region MOSFET Modeling
                                                                                                                                        19
The transconductance-to-current ratio - 2

                                                g ms ( d )φ t                      2                                            WI (if <1)
Transconductance                                                                                                ≅1
                                                                    =
-to-current ratio                                   I F (R)                1 + i f (r ) + 1                           2
                                                                                                                ≅               SI (if >>1)
                                                                                                                     i f (r )
    10   2
   1,00E+02

              gms/IF



                           V       = 1.0 V (IS = 33 nA)
                              GB
                          Seqüência1



    10   1
   1,00E+01

                           VGB = 2.0 V (IS = 26 nA)
                          Seqüência2


                                                                                                                W=L=25 µm, tox= 280 Å
                            VGB = 3.0 V (IS = 24 nA)
                          Seqüência3



                            model
                          Seqüência4




    10 10 0
   1,00E+00
                                   10                     10                    10                    10
                -4                       -2                    0                     2                     4
                                                                                               if
         1,00E-04    1,00E-03     1,00E-02    1,00E-01   1,00E+00   1,00E+01   1,00E+02   1,00E+03   1,00E+04




                                                          CMOS Analog Design Using All Region MOSFET Modeling                          20
The transconductance-to-current ratio - 3

                                             g ms ( d )φ t                        2                                                WI (if <1)
Transconductance                                                                                                   ≅1
                                                                =
-to-current ratio                                I F (R)                1 + i f (r ) + 1                                 2
                                                                                                                   ≅               SI (if >>1)
                                                                                                                        i f (r )
   102
    100

          gms/IF




                                                                                                                   W=25 µm, tox= 280 Å
                      L = 25 µm (IS = 26 nA)
                     Seqüência1
   1010
      1


                       L = 2.5 µm (IS = 260 nA)
                     Seqüência2




                       model
                     Seqüência3




   100 1
     1,00E-04   1,00E-03   1,00E-02   1,00E-01   1,00E+00   1,00E+01   1,00E+02   1,00E+03   1,00E+04   1,00E+05
       10-4                   10-2                100                   102                   104
                                                                                      if
                                                      CMOS Analog Design Using All Region MOSFET Modeling                                 21
The low-frequency small-signal model

        G


                    g md v d


                                          id
                    g mb vb
        S                                          D



                     g ms v s


                    g mg v g
        B
              CMOS Analog Design Using All Region MOSFET Modeling   22

More Related Content

What's hot (8)

Chapter8
Chapter8Chapter8
Chapter8
 
Gears
GearsGears
Gears
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
 
Et201 eoc1
Et201 eoc1Et201 eoc1
Et201 eoc1
 
Electrovariable Devices
Electrovariable DevicesElectrovariable Devices
Electrovariable Devices
 
R05010204 E L E C T R O N I C D E V I C E S A N D C I R C U I T S
R05010204  E L E C T R O N I C  D E V I C E S  A N D  C I R C U I T SR05010204  E L E C T R O N I C  D E V I C E S  A N D  C I R C U I T S
R05010204 E L E C T R O N I C D E V I C E S A N D C I R C U I T S
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 

Viewers also liked

Analog Layout and Process Concern
Analog Layout and Process ConcernAnalog Layout and Process Concern
Analog Layout and Process Concern
asinghsaroj
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
bheemsain
 
lect5_Stick_diagram_layout_rules
lect5_Stick_diagram_layout_ruleslect5_Stick_diagram_layout_rules
lect5_Stick_diagram_layout_rules
vein
 

Viewers also liked (17)

Analog Layout and Process Concern
Analog Layout and Process ConcernAnalog Layout and Process Concern
Analog Layout and Process Concern
 
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect TransistorPerformance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
 
Operation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vdsOperation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vds
 
Unit 1 Traditional CMOS Design
Unit 1 Traditional CMOS DesignUnit 1 Traditional CMOS Design
Unit 1 Traditional CMOS Design
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
1 mosfet 1 basics
1 mosfet 1 basics1 mosfet 1 basics
1 mosfet 1 basics
 
About MOSFET
About MOSFETAbout MOSFET
About MOSFET
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Negative Capacitance FET
Negative Capacitance FETNegative Capacitance FET
Negative Capacitance FET
 
FET FOR DIPLOMA
FET FOR DIPLOMAFET FOR DIPLOMA
FET FOR DIPLOMA
 
3673 mosfet
3673 mosfet3673 mosfet
3673 mosfet
 
FET (Field Effect Transistors)
FET (Field Effect Transistors)FET (Field Effect Transistors)
FET (Field Effect Transistors)
 
Mosfet
MosfetMosfet
Mosfet
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
lect5_Stick_diagram_layout_rules
lect5_Stick_diagram_layout_ruleslect5_Stick_diagram_layout_rules
lect5_Stick_diagram_layout_rules
 
Analog vlsi
Analog vlsiAnalog vlsi
Analog vlsi
 
Types of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working OperationTypes of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working Operation
 

Similar to CMOS Analog Design Lect 4

Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
aicdesign
 
MOSFET IV characteristics and its operations
MOSFET IV characteristics and its operationsMOSFET IV characteristics and its operations
MOSFET IV characteristics and its operations
jpradha86
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curve
GayathriPriya34
 
June2006 P1
June2006 P1June2006 P1
June2006 P1
nazarin
 
Ru Final Exam Bm602
Ru Final Exam Bm602Ru Final Exam Bm602
Ru Final Exam Bm602
tltutortutor
 

Similar to CMOS Analog Design Lect 4 (20)

Standard formula
Standard formulaStandard formula
Standard formula
 
BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価
 
JFET
JFETJFET
JFET
 
Lec 15.pptx
Lec 15.pptxLec 15.pptx
Lec 15.pptx
 
Lect2 up190 (100327)
Lect2 up190 (100327)Lect2 up190 (100327)
Lect2 up190 (100327)
 
Review of basic concepts (kuliah ke 3)
Review of basic concepts (kuliah ke 3)Review of basic concepts (kuliah ke 3)
Review of basic concepts (kuliah ke 3)
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
MOSFET.ppt
MOSFET.pptMOSFET.ppt
MOSFET.ppt
 
MOSFET IV characteristics and its operations
MOSFET IV characteristics and its operationsMOSFET IV characteristics and its operations
MOSFET IV characteristics and its operations
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curve
 
Datasheet of 2SK2233
Datasheet of 2SK2233Datasheet of 2SK2233
Datasheet of 2SK2233
 
June2006 P1
June2006 P1June2006 P1
June2006 P1
 
Finance Formula
Finance FormulaFinance Formula
Finance Formula
 
Finance Formula
Finance FormulaFinance Formula
Finance Formula
 
Finance Formula
Finance FormulaFinance Formula
Finance Formula
 
Ru Final Exam Bm602
Ru Final Exam Bm602Ru Final Exam Bm602
Ru Final Exam Bm602
 
Finance Formula
Finance FormulaFinance Formula
Finance Formula
 
SPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARKSPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARK
 
SPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARKSPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARK
 

CMOS Analog Design Lect 4

  • 1. EE 290C CMOS Analog Design Using All-region MOSFET Modeling Lecture 4: Design-oriented dc MOSFET model
  • 2. Symmetry and Normalization - 1 I D = I D (VG , VS , VD ) 1. VG VS VD Ungrounded local substrate: VG→ VGB VS→ VSB VD→ VDB B ID 2. Symmetry B V1 ID V2 I D (VG , V1 , V2 ) = − I D (VG , V2 , V1 ) VG CMOS Analog Design Using All Region MOSFET Modeling 2
  • 3. Symmetry and Normalization - 2 3. For a long-channel MOSFET W I D = I F − I R = I S i f − ir  = I SQ  f (VG , VS ) − f (VG , VD )  L    I F ( R ) = I S  q ′ ( D ) 2 + 2 q′ ( D )  D  IS  IS ID q′ ( D ) = QIS ( D ) / ( −nCoxφt ) ′ ′ IS i f (r ) = I F ( R) / I S G IF − IR φt2 WW ′ I S = µ Cox n = I SQ B 2L L IS and ISQ are the normalization (specific) current and the “sheet” normalization S current, slightly dependent on bias. 3 CMOS Analog Design Using All Region MOSFET Modeling
  • 4. Forward and Reverse Currents Long-channel MOSFET I D = I F − I R = I (VG ,VS ) − I (VG ,VD ) IF: forward current IR= IR: reverse current IF= CMOS Analog Design Using All Region MOSFET Modeling 4
  • 5. Specific Current φt2 W W The specific (normalization) current ′ I S = µCox n = I SQ 2L L ISQ : design parameter slightly dependent on VG ISQ ≈25 nA (p-channel) ISQ ≈75 nA (n-channel) in 0.35 µm CMOS CMOS Analog Design Using All Region MOSFET Modeling 5
  • 6. Pinch-off Voltage and Slope Factor - 1 UCCM VP − VS ( D ) = φt  qIS ( D ) − 1 + ln q′ ( D )  & q′ ( D ) = 1 + i f ( r ) − 1 ′  IS IS 2  γ γ 2  VP =  VG − VT 0 +  2φF +  −  − 2φF  2  2    Linearization: VG − VG 0 VP = VP 0 + VP n (VG 0 ) Slope =1/n Slope =1 γ n (VG 0 ) = 1 + 2 VP 0 + 2φF In particular: VP0 VG − VT 0 VP = n (VT 0 ) γ n (VT 0 ) = 1 + VT0 VG0 VG 2 2φF CMOS Analog Design Using All Region MOSFET Modeling 6
  • 7. Pinch-off Voltage and Slope Factor - 2 Determination of the pinch-off voltage and the slope factor as functions of VG. NMOS transistor W=20 µm, L=2 µm, 0.18 µm CMOS technology. 7 CMOS Analog Design Using All Region MOSFET Modeling
  • 8. The I-V Relationship ( ) VP − VS = φt  1 + i f − 2 + ln 1 + i f (r ) −1    1,00E-03 10-3 VD = VG ID (A) VD 1,00E-04 ID VS = 0 V 1,00E-05 0.5 1.0 10-6 1,00E-06 1.5 VS VG 2.0 1,00E-07 2.5 3.0 1,00E-08 10-90,00E+00 1,00E-09 5,00E-01 1,00E+00 1,50E+00 2,00E+00 2,50E+00 3,00E+00 3,50E+00 4,00E+00 4 4,50E+00(V) 0 1 2 3 VG Common-source characteristics CMOS Analog Design Using All Region MOSFET Modeling 8
  • 9. The I-V relationship ( ) VP − VS = φt  1 + i f − 2 + ln 1 + i f (r ) − 1    10-3 ID (A) VD = VG VG = 4.8 V VD ID 10-6 VG 0.8 V VS 10-9 0 1 2 3 VS (V) Common-gate characteristics VG=0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V CMOS Analog Design Using All Region MOSFET Modeling 9
  • 10. Weak inversion model Weak inversion VG − VT 0 ( ) − VS ( D ) = φt  1 + i f ( r ) − 2 + ln 1 + i f (r) −1  if(r)<1   n -1 if(r)/2  VG −VT 0  −VS  / φt W  nCox φ t2e1 = 2 I S e1 1 − e  −VDS / φt ′ I0 = µ n e n  I D = I0   L CMOS Analog Design Using All Region MOSFET Modeling 10
  • 11. Strong inversion model - 1 VG − VT 0 ( ) − VS ( D ) = φt  1 + i f ( r ) − 2 + ln 1 + i f ( r ) − 1    n Strong inversion VG − VT 0 if(r)>>1 − VS ( D ) ≅ φt i f ( r ) = φt I F ( R ) I S n W 2 2 (V − V − nVS ) − (VG − VT 0 − nVD )  ′ I D = I F − I R ≅ µ nCox  G T0 2nL Moderate inversion 1<if(r) <100 Both sqrt(.) and ln(.) terms are important CMOS Analog Design Using All Region MOSFET Modeling 11
  • 12. Strong inversion model - 2 ID VDS VG ID/IF 1 VDSsat=VP=(VG-VT0)/n VDS Output characteristics at VS=0 CMOS Analog Design Using All Region MOSFET Modeling 12
  • 13. Strong inversion model - 3 ′ µ Cox W ′ µ Cox W (VG − VT 0 ) ID = (VG − VT 0 − nVS ) ID ID = ID 2n L 2n L SCE, µ, n, “model” VT0 VG (VG − VT 0 ) n VDD VS ID VDD ID VG VG VS CMOS Analog Design Using All Region MOSFET Modeling 13
  • 14. Universal output characteristics  1+ if −1   q′  VDS  = 1 + i f − 1 + ir + ln   ′ ′ = qIS − qID + ln  IS  1 + ir − 1  ′ φt  qID    (a) if= 4.5x 10-2 (VG=0.7 V). (b) if= 65(VG= 1.2 V). (c) if= 9.5x102 (VG= 2.0 V). (d) if= 3.1x 103 (VG= 2.8 V). (e) if= 6.8x 103 (VG= 3.6 V). (f) if= 1.2x 104 (VG= 4.4 V). (o): measured (—): model CMOS Analog Design Using All Region MOSFET Modeling 14
  • 15. Saturation voltage Saturation voltage (VDSsat) – VDS such that q′ / qIS = ξ ′ ID ( ) VDSsat = φt ln (1 ξ ) + (1 − ξ ) 1+ i f −1  (1−ξ) is the saturation level   CMOS Analog Design Using All Region MOSFET Modeling 15
  • 16. Transconductances - 1 Transconductances ∆I D = g mg ∆VG − g ms ∆V S + g md ∆V D + g mb ∆V B ∂I D ∂I ∂I ∂I g mg − g ms + g md + g mb = 0 , g ms = − D , g md = D , g mb = D g mg = ∂VG ∂VS ∂VD ∂VB ∂ ( IF − IR ) ∂I W Calculation of gms ′ = − F = − µ QIS g ms = − ∂ VS ∂ VS L W ′ = − µ QID g md L Pao-Sah ID (UCCM) ∂ (i f − ir ) g mg = I S ∂VG ∂i f ∂i f g ms − g md =− g mg = ∂VG n∂VS n UCCM g ∂ir ∂i in saturation g mg = ms =− r n ∂VG n∂VD 16 CMOS Analog Design Using All Region MOSFET Modeling
  • 17. Transconductances - 2 VDD ID VG VS Source transconductance VG= 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V (W=L=25 µm, tox=280 Å) CMOS Analog Design Using All Region MOSFET Modeling 17
  • 18. Transconductances - 3 VDD ID VS VG Gate transconductance VS= 0, 0.5, 1.0,1.5, 2.0, 2.5, and 3.0 V W=L=25 µm, tox=280 Å 18 CMOS Analog Design Using All Region MOSFET Modeling
  • 19. The transconductance-to-current ratio - 1 WI (if <1) ≅1 g ms ( d )φ t 2 Transconductance = 2 -to-current ratio I F (R) 1 + i f (r ) + 1 ≅ SI (if >>1) i f (r ) 100 102 gms/IF W=25 µm tox = 28 nm (IS = 26 nA) Seqüência1 101 L=25 µm, tox= 280 Å 10 tox = 5.5 nm (IS = 111 nA) Seqüência2 L=20 µm, tox= 55 Å model Seqüência3 1001 1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 10-4 10-2 100 102 104 if CMOS Analog Design Using All Region MOSFET Modeling 19
  • 20. The transconductance-to-current ratio - 2 g ms ( d )φ t 2 WI (if <1) Transconductance ≅1 = -to-current ratio I F (R) 1 + i f (r ) + 1 2 ≅ SI (if >>1) i f (r ) 10 2 1,00E+02 gms/IF V = 1.0 V (IS = 33 nA) GB Seqüência1 10 1 1,00E+01 VGB = 2.0 V (IS = 26 nA) Seqüência2 W=L=25 µm, tox= 280 Å VGB = 3.0 V (IS = 24 nA) Seqüência3 model Seqüência4 10 10 0 1,00E+00 10 10 10 10 -4 -2 0 2 4 if 1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 CMOS Analog Design Using All Region MOSFET Modeling 20
  • 21. The transconductance-to-current ratio - 3 g ms ( d )φ t 2 WI (if <1) Transconductance ≅1 = -to-current ratio I F (R) 1 + i f (r ) + 1 2 ≅ SI (if >>1) i f (r ) 102 100 gms/IF W=25 µm, tox= 280 Å L = 25 µm (IS = 26 nA) Seqüência1 1010 1 L = 2.5 µm (IS = 260 nA) Seqüência2 model Seqüência3 100 1 1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05 10-4 10-2 100 102 104 if CMOS Analog Design Using All Region MOSFET Modeling 21
  • 22. The low-frequency small-signal model G g md v d id g mb vb S D g ms v s g mg v g B CMOS Analog Design Using All Region MOSFET Modeling 22